SUSY naturalness without prejudice

D. Ghilencea*

"Physics Challenges in the face of LHC-14". 17 Sep 2014 - IFT, Madrid.

arXiv:1311.6144, NPB 876(2013), NPB 870(2013).

* sponsored by UEFISCDI PN-II-ID-PCE-2011-3-0607, contract 118/2011.

- Purpose of the talk:
- 1). do NOT assume a criterion of naturalness or a fine-tuning measure (many, controversial, etc)
- 2). derive mathematical support and eventually identify these from more general principles. How?
- 3). Recall the essence of naturalness that motivated SUSY:

"Fixing" the EW scale ($v \sim m_Z$), at quantum level, to the measured value. We do this because, unlike SM, in TeV-scale SUSY the EW scale is a prediction. [2]

(I). Naturalness - review:

• why EW scale $v \sim M_Z \ll M_P$ stable under quantum corrections?, $\left[\frac{G_f h^2}{G_N c^2} = 1.7 \times 10^{33}\right]$

 $\delta v^2 \sim \delta m_h^2 \sim f(\alpha_j) \Lambda^2$, Λ : scale of new physics; if $\Lambda \sim M_P$: "tune" couplings: 1 : 10³³ (!)

Hierarchy Problem \Leftrightarrow "Fine tuning". Unnatural. Ways out: symmetries:

"Naturalness dogma": 't Hooft (1979)

- Then consider:
- 1. scale (conformal) symmetry....

see for example Bardeen 1995;

2. SUSY: $\delta m_h^2 \sim m_S^2 \ln \Lambda/m_S$, $m_S \sim \text{TeV}$... no SUSY seen, $m_S \gg \text{TeV} \rightarrow \text{back to SM}$ fine-tuning

-worse fine tunings: cosmological const.
-but softly broken TeV-scale SUSY solves hierarchy problem

3. EFT approach, enforce consistency at every loop order. Note: extra dimensions do not fix this problems... $m_h^2(q^2) \sim y^2/R^2 + O(q^4R^2)$.

 $\left[\frac{\rho_v}{\rho} \approx \frac{(2.3 \times 10^{-12} \text{GeV})^4}{(10^{19} \text{ GeV})^4} \right]$

[3]

• General potential, SUSY models:

$$V = m_1^2 |h_1|^2 + m_2^2 |h_2|^2 - (B_0 \mu_0 h_1 \cdot h_2 + h.c.) + \lambda_1 |h_1|^4 + \lambda_2 |h_2|^4 + \lambda_3 |h_1|^2 |h_2|^2 + \lambda_4 |h_1 \cdot h_2|^2 + [\lambda_5/2 (h_1 \cdot h_2)^2 + \lambda_6 |h_1|^2 (h_1 \cdot h_2) + \lambda_7 |h_2|^2 (h_1 \cdot h_2) + h.c.]$$

$$m^{2} \equiv m_{1}^{2} \cos^{2}\beta + m_{2}^{2} \sin^{2}\beta - B_{0} \mu_{0} \sin 2\beta, \quad \text{UV} : m_{1,2}^{2} = m_{0}^{2} + \mu_{0}^{2}$$
$$\lambda \equiv \lambda_{1} \cos^{4}\beta + \lambda_{2} \sin^{4}\beta + \lambda_{345}/4 \sin^{2}2\beta + \sin 2\beta \left(\lambda_{6} \cos^{2}\beta + \lambda_{7} \sin^{2}\beta\right)$$

• The Problem: scales vs. couplings "tension" (or "fine-tuning", whatever its measure...):

$$v^2 = -m^2/\lambda$$
, with $v = \mathcal{O}(100 \text{ GeV})$, $\lambda < 1$, **but** $m_{1,2}, B_0$ and $m \sim \mathcal{O}(1 \text{ TeV})$

- $m_h > m_Z \leftrightarrow$ large loop effects \leftrightarrow large $m_{1,2}, B_0...$; also a problem of couplings (λ small) \Rightarrow Solution: - increase λ by 1.- quantum corrections.

2.- (susy) corrections from "new physics" beyond MSSM.

[4]

• A closer look: Lagrangian $\mathcal L$ of UV parameters $\gamma_i: m_0, \mu_0, A_0, B_0, m_{1/2}, \cdots$.

$$\frac{(g_1^2 + g_2^2) v^2}{8} = -\mu^2 + \frac{m_1^2 - m_2^2 \tan^2 \beta}{\tan^2 \beta - 1} + \dots,$$

$$2 m_3^2 = (m_1^2 + m_2^2 + 2\mu^2) \sin 2\beta + \cdots,$$

so $v = v(\gamma, \beta)$, $\beta = \beta_0(\gamma) \Rightarrow m_Z = m_Z(\gamma, \beta_0(\gamma))$. Taylor expansion

$$\begin{split} m_Z &= m_Z^0 + \left(\frac{\partial m_Z}{\partial \gamma_i}\right)_{\gamma_i = \gamma_i^0} (\gamma_i - \gamma_i^0) + \cdots, \qquad m_Z^0 = 91.187 \,\text{GeV} \\ \Rightarrow \frac{\delta m_Z}{m_Z^0} &= \Delta_q \, n^i \frac{\delta \gamma_i}{\gamma_i^0} + \mathcal{O}((\delta \gamma_i)^2), \qquad \vec{n} \text{ normal to } m_Z(\gamma_i^0, \beta_0(\gamma_i^0)) = m_Z^0. \end{split}$$
with notation $\Delta_q \equiv \left\{\sum_i \left(\frac{\partial \ln m_Z}{\partial \ln \gamma_i}\right)_{\gamma_i = \gamma_i^0}^2\right\}^{1/2}$

$$\frac{\delta m_Z}{m_Z^0} = 4.6 \times 10^{-5} \ (2\sigma), \text{if} \ \Delta_q \approx 1000 \ \rightarrow \frac{\delta \gamma_i}{\gamma_i^0} \approx 4.6 \times 10^{-8} \rightarrow \gamma_i = 1 \text{ TeV} \rightarrow \delta \gamma_i = 46 \text{ keV}!$$

[5]

(II). Fixing EW scale (m_Z) and emergent fine-tuning.

- Max of likelihood to fit EW observables O_j (γ_i UV parameters), factorization:

$$L(\mathsf{data}|\gamma_i; v, \beta) = \prod_{j \ge 1} L(O_j|\gamma_i; v, \beta), \qquad \gamma_i = m_0, m_{1/2}, A_0, B_0, \mu_0, \dots, (\text{susy}) \ (y_t, y_b, \dots)$$

- Unlike SM, SUSY predicts $v = v(\gamma_i)$ & EWSB \Rightarrow Regard m_Z as an observable, $m_Z^0 = 91.187$ GeV

$$f_1 \equiv v - (-m^2/\lambda)^{1/2} = 0, \qquad f_2 \equiv \tan\beta - \tan\beta_0(\gamma_i) = 0$$

$$\begin{split} L_{\text{total}}(\text{data}, m_Z | \gamma_i) &= \int dv \ d(\tan \beta) \ \delta\left(f_1(\gamma_i; v, \beta)\right) \ \delta\left(f_2(\gamma_i; v, \beta)\right) \ L(\text{data} | \gamma_i; v, \beta) \ \delta(1 - m_Z / m_Z^0) \\ &= v_0 \left[L(\text{data} | \gamma_i; v_0, \beta) \ \delta\left[f_1(\gamma_i; v_0, \beta)\right] \right]_{\beta = \beta_0(\gamma_i)} \qquad v_0 = 246 \text{ GeV} \\ &= L(\text{data} | \gamma_i; v_0, \beta_0(\gamma_i)) \ \delta\left[1 - \frac{m_Z(\gamma_i, \beta_0(\gamma_i))}{m_Z^0}\right], \qquad m_Z^0 = gv_0/2 \\ &= g^2 = g_1^2 + g_2^2 \end{split}$$

[6]

All γ_i vary simultaneously:

$$\delta \left[1 - \frac{m_Z(\gamma_i, \beta_0(\gamma_i))}{m_Z^0} \right] = \frac{1}{\Delta_q} \delta \left[n^j \left(1 - \frac{\gamma_j}{\gamma_j^0} \right) \right], \qquad \Delta_q \equiv \left[\sum_i \left(\frac{\partial \ln m_Z(\gamma_i, \beta_0(\gamma_i))}{\partial \ln \gamma_i} \right) \right]_{\gamma_i = \gamma_i^0}^{1/2},$$

$$\Rightarrow L_{\text{total}}(\text{data}, m_Z | \gamma_i^0) = \frac{1}{\Delta_q} L(\text{data} | \gamma_i; v_0, \beta_0(\gamma_i)) \Big|_{\gamma_i = \gamma_i^0}$$

- \Rightarrow Emergent Δ_q as part of total likelihood (not put in by hand!).
- $\Rightarrow \Delta_q$: sole consequence of "fixing" EW scale \Rightarrow it makes sense to call it "fine-tuning" from now on. \Rightarrow should maximize the ratio L/Δ_q .

This shows how to compare models A, B:

A. Good fit but large Δ_q and B: less-good fit but smaller fine tuning.

A. Casas et al 2008 B. Allanach et al 2007, 2009 D.G., H.M. Lee, M. Park 2012

$$\delta(f(\vec{z})) = \frac{1}{|\nabla_z f|_o} \delta\Big[\vec{n}.(\vec{z} - \vec{z}^0)\Big], \quad n_i = \frac{\partial_{z_i} f}{|\nabla f|_o}$$

[7]

With $\chi^2 = -2 \ln L$:

D.G., G. Ross, 2012, 2013.

$$\chi^2_{\text{total}}(\gamma_i) = \left[\begin{array}{c} \chi^2(\gamma_i) + 2\ln\Delta_q(\gamma_i) \\ \underbrace{\chi^2_z} \end{array} \right]_{f_1=0, f_2=0}$$

- Good fit: $\chi^2_{\text{total}}/\text{ndf} \approx 1. \Rightarrow \text{Naturalness bound:} \Delta_q < \exp(\text{ndf}/2) \sim 100.$

 \Rightarrow Good fit and fixing EW scale (m_Z) demands small Δ_q .

 \Rightarrow Implications for SUSY models: $\chi^2_{min} \ge \chi^2_z$:

$$\Delta_q \approx 10 \quad \Rightarrow \quad \chi_z^2 / \text{ndf} \approx 0.5 \quad (\text{ndf} = 9)$$

$$\Delta_q \approx 100 \quad \Rightarrow \quad \chi_z^2 / \text{ndf} \approx 1$$

$$\Delta_q \approx 1000 \quad \Rightarrow \quad \chi_z^2 / \text{ndf} \approx 1.5$$

$$\Delta_q \approx 2000 \quad \Rightarrow \quad \chi_z^2 / \text{ndf} \approx 1.7$$

• for $m_h \sim 125 - 126$ GeV: $\Delta_q \sim 500 - 2000$ (see next). Numerical studies $\chi^2_{min}/\text{ndf} > 1(\sim 2)$.

• Δ in SUSY: Δ_q vs m_h [2-loop, all $\{\gamma, \tan\beta\}$ values]

 $\Rightarrow m_h$ strongest impact: $\Delta_q \sim \exp(m_h)$. $\Delta_q \sim 1000$ at 125 GeV.

• grey 0: excluded by SUSY; grey 1: $b \rightarrow s\gamma$, $B_s \rightarrow \mu^+\mu^-$, $\delta\rho$; grey 2: excluded by $\delta a_{\mu} > 0$.

 δa_{μ} : 2σ contour (red) [smaller δa_{μ} outside]

• Δ in SUSY: Δ_{max} vs m_h [2-loop, all $\{\gamma, \tan\beta\}$ values]

 $\Rightarrow \min \Delta_{max} \mathbf{v}$. similar to Δ_q where $\Delta_{max} \equiv \max_{\gamma} |\Delta_{\gamma}|, \quad \Delta_{\gamma} \equiv \left(\frac{\partial \ln v^2}{\partial \ln \gamma^2}\right)_{o}, \ \gamma : m_0, m_{1/2}, \mu_0, A_0...$

[10]

• Δ in SUSY: Δ_{max} vs m_h in MSSM, NMSSM, GNMSSM. (1-loop).

MSSM

GNMSSM:

NMSSM: $W = W_Y + \lambda S H_1 H_2 + \kappa S^3$, $\Delta \sim 200$. $W = W_{NMSSM} + m_{3/2}^2 S + m_{3/2} S^2 + m_{3/2} H_1 H_2.$ from underlying Z_4^R symmetry. $W = W_Y + (\mu + \lambda S) H_1 H_2 + M_* S^2 + \kappa S^3$ $\Delta < 30$ for $m_h \leq 126 \, GeV$.

G.G. Ross, Schmidt-Hoberg

U. Ellwanger et al; D.G., G.Ross, S. Cassel

Model	Δ_q	$\chi^2_Z(123);$	Δ_q	$\chi^2_Z(125);$	Δ_q	$\chi^2_Z(126);$	Δ_q	$\chi^2_Z(127);$	ndf	χ^2_Z/ndf (126)
CMSSM	380	11.88	1100	14.01	1800	14.99	3100	16.08	9	1.66
NUHM1	500	12.43	1000	13.82	1500	14.63	2100	15.29	8	1.83
NUHM2	470	12.31	1000	13.82	1300	14.34	2000	15.20	7	2.05
NUGM	230	10.88	700	13.10	1000	13.82	1300	14.34	7	1.97
NUGMd	200	10.59	530	12.55	850	13.49	1300	14.34	9	1.5
NMSSM	>100	9.21	>200	10.59	>200	10.59	>200	10.59	8	1.32
GNMSSM	22	6.18	25	6.43	27	6.59	31	6.87	7	0.95

• error 2-loop m_h : 2-3 GeV; $\Delta_q \sim \exp(m_h/GeV) \Rightarrow \exp(3) \sim 20 \Rightarrow \Delta_q = 20 \text{ or } 400 \text{ equally "good"}$

• Summary:

[11]

(III). So far we discussed $\chi^2_{min} \sim \chi^2_z = 2 \ln \Delta_q$. Let us now address the deviation $\delta \chi^2$ from χ^2_{min} .

- Many observables depend on $v = v(\gamma)$, so $\mathcal{O}_i = \mathcal{O}_i(\gamma, v(\gamma))$, total $\chi^2_{total} = -2 \ln L_{tot}$:
- no distinction between tuning to fit $\mathcal{O}_n = m_Z$ or other \mathcal{O}_i . D.G. arXiv:1311.6144

$$L_{tot}(\mathcal{O}|\gamma) \sim \frac{1}{(\det M)^{1/2}} \exp\left\{-1/2\left(\mathcal{O}_i - \mathcal{O}_i^0\right)(M^{-1})_{ij}\left(\mathcal{O}_j - \mathcal{O}_j^0\right)\right\}$$
$$\sim \frac{1}{\Delta} \frac{1}{(\det \tilde{M})^{1/2}} \exp\left\{-1/2\left(\gamma_\alpha - \gamma_\alpha^0\right)\tilde{M}_{\alpha\beta}^{-1}\left(\gamma_\beta - \gamma_\beta^0\right)\right\}.$$

$$\mathcal{O}_{i}(\gamma) = \mathcal{O}_{i}(\gamma^{0}) + (\gamma_{\alpha} - \gamma_{\alpha}^{0}) \left(\frac{d\mathcal{O}_{i}}{d\gamma_{\alpha}}\right)_{\gamma = \gamma^{0}} + \cdots, \quad \tilde{M}^{-1} \equiv \mathcal{J}^{T}M^{-1}\mathcal{J}, \qquad \mathcal{J}_{i\alpha} \equiv \frac{1}{\mathcal{O}_{i}^{0}} \left[\frac{d\mathcal{O}_{i}}{d\ln\gamma_{\alpha}}\right]_{\gamma = \gamma^{0}}$$

where $\Delta \equiv \left[\det M \det(\tilde{M}^{-1})\right]^{\frac{1}{2}}$, "differential entropy". \tilde{M} : covariance matrix, if $M_{ij} = \sigma_i^2 \delta_{ij}$

$$\tilde{M}_{\alpha\beta}^{-1} = \left\{ \left(\frac{d(\mathcal{O}_i/\sigma_i)}{d\ln\gamma_{\alpha}} \right) \left(\frac{d(\mathcal{O}_i/\sigma_i)}{d\ln\gamma_{\beta}} \right) \right\}_{\gamma=\gamma^0}, \qquad \alpha, \beta = 1, 2, \dots s.$$

[12]

• With $v = v(\gamma)$, covariance matrix contains info about Δ_q from all \mathcal{O}_i !

D.G. arXiv:1311.6144

$$\begin{split} \tilde{M}_{\alpha\beta}^{-1} &= \tilde{M}_{\alpha\beta}^{-1} \Big|_{v=const} + \sum_{i=1}^{s} \Big\{ \Big(\frac{\partial \mathcal{O}_{i}/\sigma_{i}}{\partial \ln v} \Big)^{2} \Big(\frac{\partial \ln v}{\partial \ln \gamma_{\alpha}} \Big) \Big(\frac{\partial \ln v}{\partial \ln \gamma_{\beta}} \Big) \Big\}_{\gamma=\gamma^{0}} \\ &+ \sum_{i=1}^{s} \Big\{ \Big(\frac{\partial \mathcal{O}_{i}/\sigma_{i}}{\partial \ln v} \Big) \Big(\frac{\partial \ln v}{\partial \ln \gamma_{\alpha}} \Big) \Big(\frac{\partial \mathcal{O}_{i}/\sigma_{i}}{\partial \ln \gamma_{\beta}} \Big) + (\alpha \leftrightarrow \beta) \Big\}_{\gamma=\gamma^{0}} \end{split}$$

 \Rightarrow includes individual "tunings" $\Delta_{\gamma}\!=\!\partial\ln v/\partial\ln\gamma$ from all observables. - Also

$$\operatorname{Tr} \tilde{M}^{-1} = \sum_{i=1}^{n} \sum_{\alpha=1}^{s} \left(\frac{d\mathcal{O}_{i}/\sigma_{i}}{d\ln\gamma_{\alpha}} \right)_{\gamma=\gamma^{0}}^{2} = \sum_{i=1}^{n} \left(\frac{\partial\mathcal{O}_{i}/\sigma_{i}}{\partial\ln v} \right)_{\gamma=\gamma^{0}}^{2} \times \underbrace{\sum_{\alpha=1}^{s} \left(\frac{\partial\ln v}{\partial\ln\gamma_{\alpha}} \right)_{\gamma=\gamma^{0}}^{2}}_{=\Delta_{q}^{2}} + \cdots,$$

 $\Rightarrow \tilde{M}$ more fundamental, includes Δ_q in a first approximation!

• Q: do precision data fits (in frequentist approach) account for this effect (v=constant)? include it in a less manifest way via $\mu = \mu(\gamma, m_Z = m_Z^0)$?.... Bayesian approach: Casas et al. [13]

- The s-standard deviation confidence interval:

$$-2\ln L(\gamma') \leq -2\ln L_{max}(\gamma^0) + s^2, \quad \Rightarrow \quad \sum_{i=1}^n \left\{ \left(\frac{d\mathcal{O}_i/\sigma_i}{d\ln\gamma_\alpha} \right)_{\gamma=\gamma^0} (\gamma'_\alpha/\gamma^0_\alpha - 1) \right\}^2 \leq s^2$$
$$\Delta_q \leq \frac{s\,\sigma_z}{m_Z(\gamma^0)} \left| \frac{n^\alpha \left(\gamma'_\alpha - \gamma^0_\alpha}{\gamma^0_\alpha} \right|^{-1} \leq \frac{s\,\sigma_z}{m_Z(\gamma^0)} \left| \frac{n^\alpha \sigma_{th,\alpha}}{\gamma^0_\alpha} \right|^{-1}$$

$$\Rightarrow \Delta_q \text{ bound. } |\gamma'_{\alpha} - \gamma^0_{\alpha}| > \sigma_{th,\alpha}.$$

- \tilde{M} defines global correlation coefficient:

$$\rho_{\alpha} = \sqrt{1 - \tilde{M}_{\alpha\alpha} \, (\tilde{M}^{-1})_{\alpha\alpha}}, \qquad 0 \le \rho_{\alpha} \le 1.$$

- $\rho_{\alpha} = 0$ then γ_{α} : independent of the rest. $\rho_{\alpha} = 1$: combination of the rest.

- useful to identify fundamental, independent UV parameters (soft masses, couplings). Not yet studied Also note: $\rho_{\alpha\beta} \sim \frac{\tilde{M}_{\alpha\beta}}{\sigma_{\alpha}\sigma_{\beta}}$ Dreiner et al arXiv:1204.4199 [14]

(IV). For model building: ways to achieve smaller Δ_q :

$$v^2 = -\frac{m^2}{\lambda}, \qquad v = \mathcal{O}(100 \text{ GeV}), \quad m \sim \mathcal{O}(\text{TeV}). \quad \lambda < 1.$$

1.- increase λ (effective higgs coupling) by quantum corrections. (*m*: soft masses combination)

2.- increase λ (and m_h) by classical (susy) corrections from "new physics" beyond MSSM higgs, parametrised by d=5, 6 operators: $\Delta_q(m_h) \approx \exp(-\delta m_h/\text{GeV}) \Delta_q(m_h) \Big|_{\text{CMSSM}}$

Carena et al 2009, D.G., Dudas, Antoniadis 2009, 2010.

3.- increase λ by reducing SUSY breaking scale to $\sqrt{F}_X = 1$ TeV (from "usual" 10^{10} GeV). Corrections to λ from: Casas et al 2003, D.G., Dudas, Antoniadis 2010, 2014.

No new states added! downside: v. light gravitino, the LSP (mili-eV). Dark matter?

(V) Conclusions:

- χ^2 and Δ_q often studied separately. They are related $\Rightarrow \Delta_q$ probabilistic interpretation.
- Δ_q emerges from total likelihood to fit data including $m_Z(\gamma)$ which thus accounts for naturalness: $\chi^2_{\text{total}} = \chi^2 + 2 \ln \Delta_q$. Mathematical support for Δ_q as a fine tuning measure
- Bound on Δ_q : good fit: $\chi_z^2 / \operatorname{ndf} \approx 1 \Rightarrow \Delta_q < \exp(\operatorname{ndf}/2) \sim 100$; Δ_q less fundamental than \tilde{M}
- Matrix \tilde{M} with $v = v(\gamma)$ automatically includes EW fine-tuning effects. So if you can do a good fit with $v = v(\gamma)$, forget about "fine-tuning"....
- Values of Δ_q :

 $\Rightarrow \Delta_q$, $\Delta_{max} \sim \exp(m_h/\text{GeV}) \sim 500 - 1000$, for $m_h \approx 126$ GeV. GNMSSM has $\Delta_q \sim \mathcal{O}(20)$.

Significant error factor: $\sim e^{\sigma_h}$ (=7.5 to 20) of Δ_q due to theoretical $\sigma_h = 2 - 3$ GeV.

[16]

Naturalness in the Bayesian approach.
 Bayes theorem:

$$p(a|b) p(b) = p(a \cap b) = p(b|a) p(a)$$

[initial belief + data \rightarrow updated belief].

Thomas Bayes (1761), Laplace (1812)

$$p(\gamma|\mathsf{data}) = rac{L(\mathsf{data}|\gamma) \ p(\gamma)}{p(\mathsf{data})}, \qquad p(\mathsf{data}) = \int L(\mathsf{data}|\gamma) \ p(\gamma) d\gamma, \qquad \gamma : \{m_0, m_{1/2}, \mu_0, A_0, B_0; y_t, y_b, \ldots\}.$$

- p(data): "evidence". Models 1, 2: $p_1(\text{data})/p_2(\text{data})$. $p(\gamma)$ =priors.
- EW constraints: $f_1(\gamma; v, \beta) = f_2(\gamma; v, \beta) = 0$, $\Rightarrow v(\gamma, ...), \tan \beta_0(\gamma...).$

$$\begin{split} p(\mathsf{data}) &= \int d\gamma \ p(\gamma) \ dv \ d(\tan\beta) \ \delta(m_Z - m_Z^0) \ \delta\left(f_1(\gamma; v, \beta)\right) \ \delta\left(f_2(\gamma; v, \beta)\right) L(\mathsf{data}|\gamma; \beta, v), \\ &= \int_{f_{1,2}=0} dS_\gamma \ \frac{L(\mathsf{data}|\gamma)}{\Delta_q(\gamma)} \ p(\gamma), \qquad \Delta_q \equiv \left[\sum_{\gamma} \Delta_\gamma^2\right]^{1/2}, \ d\gamma \equiv \prod_i d\gamma_i, \ p(\gamma) = p(\gamma_1, \dots, \gamma_i). \end{split}$$

D.G., H. M. Lee, M. Park, arXiv:1203:0569

 $\Rightarrow \Delta_q$ due to fixing EW scale, in addition to/independent of priors $p(\gamma)!$ large L/Δ_q needed.

$$\int_{\mathbb{R}^n} h(z_1, ..., z_n) \,\delta(g(z_1, ..., z_n)) \, dz_1 dz_n = \int_{S_{n-1}} dS_{n-1} \, h(z_1, ... z_n) \, \frac{1}{|\nabla_{z_i} g|},$$

[17]

• Reducing Δ_q by physics beyond MSSM higgs sector: MSSM + d=6 operators

$$\begin{aligned} \mathcal{O}_{j} &= \int d^{4}\theta \ \mathcal{Z}_{j} \ (H_{j}^{\dagger} e^{V_{j}} H_{j})^{2}, \quad (j = 1, 2). \\ \mathcal{O}_{4} &= \int d^{4}\theta \ \mathcal{Z}_{4} \ (H_{2} H_{1}) \ (H_{2} H_{1})^{\dagger}, \\ \mathcal{O}_{4} &= \int d^{4}\theta \ \mathcal{Z}_{4} \ (H_{2} H_{1}) \ (H_{2} H_{1})^{\dagger}, \\ \mathcal{O}_{7} &= \int d^{2}\theta \ \mathcal{Z}_{7} \operatorname{Tr} W_{i}^{\alpha} W_{i,\alpha} \ (H_{2} H_{1}) + h.c., \end{aligned}$$

where
$$\mathcal{Z}_{j}(S, S^{\dagger}) = \alpha_{j0} + \alpha_{j1}S + \alpha_{j1}^{*}S^{\dagger} + \alpha_{j2}m_{0}^{2}SS^{\dagger}, \qquad \alpha_{jk} \sim 1/M_{*}^{2}, S = m_{0}\theta\theta$$

 $\mathcal{O}_{1,2,3}$: generated by massive T, U(1); \mathcal{O}_{4} : singlet, T. $\mathcal{O}_{5,6}$: 2 D, singlet.

$$\Rightarrow \delta m_h^2 = -2 v^2 \left[(\alpha_{30} + \alpha_{40}) \mu_0^2 - \alpha_{20} m_Z^2 \right] - \frac{(2 \zeta_0 \mu_0)^2 v^4}{m_A^2 - m_Z^2} + \frac{v^2 \cot \beta}{m_A^2 - m_Z^2} \left[4 m_A^2 \mu_0^2 (2\alpha_{50} + \alpha_{60}) - (2\alpha_{60} - 3\alpha_{70}) m_A^2 m_Z^2 - (2\alpha_{60} + \alpha_{70}) m_Z^4 \right] + \mathcal{O} \left(1/(M_*^2 \tan^2 \beta) \right)$$

 $\Rightarrow \alpha_{j0}$ (choice?) \Rightarrow increase m_h , reduce fine-tuning by:

D.G. et al, NPB 848(2011), NPB 831(2010),

M. Carena et al, PRD 85(2012), PRD 81, 82(2010),

 $\Delta_q(m_h) pprox \exp(-\delta m_h/{\rm GeV}) \Delta_q(m_h) \big|_{\rm CMSSM}$

F. Boudjema et al, PRD 85 (2012)

[18]

• "Non-linear" MSSM: MSSM with low-scale of SUSY breaking: $\sqrt{F} \sim \mathcal{O}(1)$ TeV.

D.G., Dudas, Antoniadis 2011, 2014.

- left plot: Δ_q vs. m_h for $\sqrt{F} = 3.2$ TeV. $\Delta_q \sim 100$.

- right plot: Δ_q vs m_h for $\sqrt{F} = 3.2$ TeV (lower curve) to 9 TeV (top curve).

- MSSM recovered at large \sqrt{F} .

[19]

• Stop vs Gluino with largest m_h and min Δ_q . [{ $\gamma, \tan \beta$ } all values]

 \Rightarrow constraints on m_h strongly reduce the viable regions.