

Status, prospects and interpretation of Dark Matter searches at the LHC

Sarah Alam Malik Imperial College London

Searching for dark matter at colliders

DM at colliders phenomenology

From Tim Tait

Sarah Alam Malik

DM at colliders phenomenology

- SUSY searches
- Mono-X searches
- Invisible Higgs searches
- Interpretation of results
- Projections for 14 TeV

Direct detection search for dark matter

- Observe recoil of dark matter off nucleus, recoil energy 1- 100 keV
- Recoil detected via scintillation, ionization, phonons
- Current experiments use
 10-100 kg heavy nuclei
 targets (Ge, Xe) located
 deep underground to
 minimize backgrounds

Backgrounds from:

- Photons and electrons scattering from atomic electrons
- Neutrons scattering from nucleus

Direct detection search for dark matter

- elastic scattering can be separated into spin-dependent and spin-independent contributions.

Spin-independent interaction

$$\sigma_A^{SI}(q \to 0) = \frac{4\mu_A^2}{\pi} [Zf_p + (A - Z)f_n]^2 \approx \frac{\mu_A^2}{\mu_p^2} \sigma_p A^2$$

Enhancement from Λ^2 torm

Enhancement from A² term

Spin-dependent interaction

$$\sigma_A^{SD}(q \to 0) = \frac{\mu_A^2}{\mu_p^2} \sigma_{p,n}^{SD} \left[\frac{4 J + 1}{3 J} \left(a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle \right)^2 \right]$$

No A² coherence term
Replaced by nucleon spin (J)

Direct detection experiments much less sensitive to spin-dependent interactions than spin-independent

Collider - similar sensitivity to spin-dependent and spin-independent interactions

Direct detection search for dark matter

WIMP searches in low mass region hard Signal expected at very low recoil energies Not a background free region

- rare events and low energy bad combination

No low energy threshold for colliders

Status of direct detection searches

Independent verification from non-astrophysical experiments - colliders

Status of direct detection searches

Neutrino floor

Can colliders complement DD push beyond neutrino floor?

LHC : Mono-X searches

Searching for dark matter at colliders

Phenomenology : effective field theory

Assumptions:

- DM particle is only new state accessible to the collider

- Effective field theory so interaction between DM and SM particles is contact interaction

arXiv:1002.4137 arXiv:1005.1286, arXiv:1007.3797 arXiv:1008.1783, arXiv:1103.0240, arXiv:1109.4398, etc

Operators Γ describe scalar, pseudoscalar, vector, axial vector, tensor interactions

Mono-X

Setting limits on DM-nucleon cross section

Translate collider limits to the same plane as direct detection experiments

For vector operator

$${\cal O}_V = rac{(ar\chi\gamma_\mu\chi)(ar q\gamma^\mu q)}{\Lambda^2}$$

 $\mathcal{O}^{N} = f_{q}^{N} \frac{\left(\bar{N}\gamma^{\mu}N\right)\left(\bar{\chi}\gamma_{\mu}\chi\right)}{\Lambda^{2}}$ fficient relates nucleon and

coefficient relates nucleon and quark operator

$$\sigma_{SI} = \frac{\mu^2}{\pi \Lambda^4} f_q^{N2}$$

- Upper limits on mono-X cross sections converted to lower limits on Λ
- Lower limits on Λ then translated to spinindependent DM-nucleon cross-section

CMS PAS EXO-12-048

Monojet/monophoton

CMS-EXO-12-047

Sarah Alam Malik

Mono-leptons

CMS-EXO-13-004

- DM produced together with W, which decays to lv
- Adapted from search for W'
- consider vector and axial-vector interactions

Mono-t and mono-tt

CMS-B2G-12-022

CMS-B2G-13-004

Mono-W/Mono-Z

arXiv:1404.0051

Sarah Alam Malik

Interpretation of searches

Limitations of EFT

20

Busoni, De Simone, Morgante, Riotto arXiv:1307.2253

EFT valid when $q^2 \ll M$ and $M > m_{DM}$

O. Buchmueller,^a Matthew J. Dolan,^b and Christopher McCabe^b

Beyond EFT : Simplified models of dark matter

Numerous papers in literature advocating simplified model approach to go beyond EFT

arXiv:1402.2285 [arXiv:1401.0221]. arXiv:1308.2679 [arXiv:1312.5281 [arXiv:1308.0592 arXiv:1403.4634 arXiv:1407.8257

Effective field theory

Simplified model

Minimal Simplified model of dark matter (MSDM)

s-channel

Define simplified model with (minimum) 4 parameters		DM		Consider comprehensive set of diagrams for mediator	
Mediator mass (M _{med})	DM mass (М _{DM})	Dirac fermion	Scalar - real	Vector	Axial-vector
gq	gdм	Majorana fermion	Scalar - complex	Scalar	Pseudoscalar

Simplified model of Dark Matter

4-dimensional problem, projecting limits onto all 2-D plane:

- M_{DM} vs M_{med} assuming $g_q = g_{DM}$ and $g_q \neq g_{DM}$
- M_{med} vs $g_{q,}g_{DM}$ for fixed M_{DM}
- M_{DM} vs $g_{q,}g_{DM}$ for fixed M_{med}
- $g_q vs g_{DM}$ for fixed M_{DM} , M_{med}

Comparison with direct detection

Comparison with direct detection

Sarah Alam Malik

Simplified models of Dark Matter : t-channel mediators

Papucci, Vichi, Zurek, arXiv:1402.2285

Limits on t-channel mediator coupling to quarks

Projections for 14 TeV

Projections

Limits from 8 TeV monojet search and projected limits for 3 LHC scenarios: - 13 TeV 30 fb⁻¹ - 14 TeV, 300 fb⁻¹ - 14 TeV, 3000 fb⁻¹ LUX 2013 limits and projected limits for LZ assuming 10 tonne-year exposure

arXiv:1409.4075

Discovery reach accounting for coherent neutrino scattering

Projections

ATL-PHYS-PUB-2014-007

ATLAS projections for monojet analysis assuming a simplified model with a Z`

Increased sensitivity by a factor of 1.5-3 when going from 8 TeV to 14 TeV

Summary

Searches for Dark matter at collider:

- via SUSY
- via generic mono-X signatures
- Higgs invisible decays

Complementarity with direct detection experiments

- low mass DM
- spin-dependent interactions of DM

Interpretation of searches: Shift from EFT approach which has several limitations to simplified models of dark matter.

Future projections, similar complementarity between collider and DD experiments going forward.

Invisible Higgs

Invisible Higgs searches

assuming SM production cross section and kinematics

Invisible Higgs searches

Projections for invisible Higgs

From Jim Brooke talk

Run 1 (8 TeV)

- ggH(inv) interpretation of monojet search
- Run 2-3 (13-14 TeV 300 fb⁻¹)
 - VBF, Z(II)H, monojet, ttH ?
 - ► Exp limit : BR(H→inv) ~ 10-15% ?
- HL-LHC (14 TeV, Lint = 5E34)
 - Scaling 8 TeV results to 3000 fb⁻¹
 - ► Assume systematics scale with 1/√L
 - Expected limits :
 - VBF : BR(H→inv) < 5% (~200 fb)</p>
 - ► ZH : BR(H→inv) < 6% (~40 fb)</p>
- Implies huge assumptions about :
 - Trigger acceptance
 - PU rejection

Limits on BF(H₁₂₅ \rightarrow invisible) at few-% level may be possible with HL-LHC