Natural Supersymmetry in Warped Space

Yuichiro Nakai (Harvard U.)

B. Heidenreich and YN, arXiv:1407.5095[hep-ph]

Questions in Higgs Mechanism

Naturalness

Dynamics of EWSB

Higgs potential is ad hoc.

Quantum correction destabilizes the EW scale.

Why?

Yukawa hierarchies

$$m_u \sim 3 \text{ MeV} \ll m_t \sim 173 \text{ GeV}$$

We need BSM physics!

Yukawa couplings have to be hierarchical.

Supersymmetry

SUSY is a nice framework to address several questions!

Naturalness

Quadratic divergence is cancelled.

 γ , Z, \cdots \longleftrightarrow gaugino (spin 1) (spin 1/2) quark, \cdots \longleftrightarrow squark, \cdots

Higgs \longrightarrow Higgsino

Radiative EWSB

SUSY breaking can drive EWSB radiatively.

Problems of SUSY

Little hierarchy problem

$$m_{1\mathrm{st,2nd}} > 5 imes 10^4 \,\mathrm{TeV}$$

Fine-tuning!

M. Bona, the UK Flavour Workshop (2013)

Light Higgs

125 GeV Higgs is heavy for SUSY.

Yukawa hierarchies

SUSY itself does not address Yukawa hierarchies.

Stop mass bound

$$m_{ ilde{t}} > 650\,{
m GeV}$$

Tuning

To solve these questions, ...

SUSY + Compositeness

is good.

Composite Higgs

AdS/CFT

UV

IR

Higgs

Warped Natural SUSY

Gherghetta, Pomarol (2003), Sundrum (2009), Larsen, Nomura, Roberts (2012) ...

Combine SUSY and Randall-Sundrum!

Quadratic divergence is cutoff

at the IR scale ($\sim 10 \text{ TeV}$).

1

For naturalness, we only need ...

Light stops, gauginos and Higgsinos.

The other squarks and sleptons are heavy.

Light quark, Top quark Higgs

!

UV brane

IR brane

Little hierarchy problem is solved!

This pattern of SUSY breaking is naturally realized.

Accidental SUSY

Even with large SUSY on UV brane, IR brane SUSY is maintained.

SUSY Yang-Mills coupled to SCFT

Sundrum (2009)

$$\mathcal{L}(\mu) = -\frac{1}{4}F_{\mu\nu}^{a^2} + \bar{\lambda}D.\sigma\lambda + \mathcal{L}_{SCFT} + \underline{g}A_{\mu}^a J_a^{\mu} + \underline{\tilde{g}}\lambda_a \Psi_J^a - \frac{1}{2}\underline{g}_D^2 D^a D^a$$

$$\frac{d1/g^2}{d\ln\mu} = \frac{d1/\tilde{g}^2}{d\ln\mu} = \frac{d1/g_D^2}{d\ln\mu} \equiv -b_{CFT} \sim \frac{\mathcal{O}(N_{CFT})}{16\pi^2} \quad \Longrightarrow \quad \text{IR free !}$$

Focusing effect in the IR

Warped Natural SUSY

Gherghetta, Pomarol (2003), Sundrum (2009), Larsen, Nomura, Roberts (2012) ...

SUSÝ

EW breaking is driven by top/stop loop.

125 GeV Higgs is naturally obtained in λ SUSY.

Barbieri, Hall, Nomura, Rychkov (2006)

Light quark,

lepton

Top quark

Higgs

$$W = \lambda S H_u H_d$$
 $\lambda > 0.7$

(without encountering Landau pole)

Let's pursue a fully realistic model!

SUSY RS Model

$$ds^2 = e^{-2k|y|} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2 \quad (0 \le |y| \le \pi R)$$

Randall, Sundrum (1999)

$$S^1/\mathrm{Z}_2$$

Extended SUSY in the bulk \rightarrow N = 1 SUSY on the branes

Compactification scale:
$$k' \equiv k e^{-k\pi R} = \mathcal{O}(10) \, \mathrm{TeV} - kR \sim 10$$

SM gauge fields in the bulk

Wavefunction profile of the zero mode is flat.

$$A_{\mu}(x,y) \simeq rac{1}{\sqrt{2\pi R}}\,A_{\mu}^{(0)}(x)$$

SUSY RS Model

Matter (hyper-)multiplets in the bulk

$$S_{\Psi} = \int d^5x \bigg\{ e^{-2k|y|} \int d^4\theta \left(\Psi^{\dagger} \Psi + \Psi^c \Psi^{c\dagger} \right) \hspace{0.5cm} \textit{Bulk mass parameter} \\ + e^{-3k|y|} \int d^2\theta \, \Psi^c \left[\partial_y - \left(\frac{3}{2} - c_{\Psi} \right) k \epsilon(y) \right] \Psi + \text{h.c.} \bigg\}$$

Wavefunction profile of the zero mode

$$\Psi(x,y) \simeq \frac{e^{-(c_{\Psi} - \frac{3}{2})k|y|}}{\sqrt{\frac{1}{(c_{\Psi} - \frac{1}{2})k} \left(1 - e^{-2\pi kR(c_{\Psi} - \frac{1}{2})}\right)}} \Psi^{(0)}(x) \qquad c_{\Psi} > \frac{1}{2} \qquad c_{\Psi} < \frac{1}{2}$$

Yukawa hierarchy

Yukawa coupling on IR brane

$$S_{\rm Yukawa} = \int d^5x \, \delta(y-\pi R) \, e^{-3\pi k R} \bigg\{ \qquad \qquad \qquad \begin{array}{l} {\rm Light \, quarks} \\ {\rm Leptons} \end{array} \qquad {\rm Top \, quark} \\ \int d^2\theta \, \left(\tilde{y}_u^{ij} H_u Q_i \bar{u}_j + \tilde{y}_d^{ij} H_d Q_i \bar{d}_j + \tilde{y}_\nu^{ij} H_u L_i \bar{\nu}_j + \tilde{y}_e^{ij} H_d L_i \bar{e}_j \right) + {\rm h.c.} \bigg\}$$

$$y_u^{ij} = \tilde{y}_u^{ij} k \, \zeta_{Q_i} \zeta_{\bar{u}_j}, \quad y_d^{ij} = \tilde{y}_d^{ij} k \, \zeta_{Q_i} \zeta_{\bar{d}_j}, \quad y_\nu^{ij} = \tilde{y}_\nu^{ij} k \, \zeta_{L_i} \zeta_{\bar{\nu}_j}, \quad y_e^{ij} = \tilde{y}_e^{ij} k \, \zeta_{L_i} \zeta_{\bar{e}_j}$$

$$\zeta_\Psi \simeq \begin{cases} \sqrt{c_\Psi - \frac{1}{2}} \ e^{-(c_\Psi - \frac{1}{2})\pi kR} & (c_\Psi \gg 1/2) \end{cases} \qquad \text{Light quarks , Leptons} \\ \frac{1}{\sqrt{2\pi kR}} & (c_\Psi \sim 1/2) \\ \sqrt{\frac{1}{2} - c_\Psi} & (c_\Psi \ll 1/2) \end{cases} \qquad \text{Top quark}$$

Proton Decay

Even if we impose R-parity as usual, ...

$$W_{
m IR} \sim rac{1}{\Lambda_{
m IR}} QQQL \,\,$$
 $imes$ (wavefunction factors)

O(10) TeV!

Rapid proton decay ...

Z_3 lepton number symmetry

RPV is natural in SUSY RS!

$$L
ightarrow e^{2\pi i/3} \, L, \qquad ar{
u}
ightarrow e^{-2\pi i/3} \, ar{
u}, \qquad ar{e}
ightarrow e^{-2\pi i/3} \, ar{e}$$

$$ar
u o e^{-2\pi i/3}\,ar
u$$
 ,

$$ar{e}
ightarrow e^{-2\pi i/3} \, ar{e}$$

Anomaly free Three generations!

LSPs can decay promptly and evade searches based on missing transverse energy!

BNV couplings

$$W_{
m BNV}=rac{1}{2}\lambda_{ijk}^{\prime\prime}ar{u}_iar{d}_jar{d}_k$$

Stop and sbottom

$$m_{ ilde{b},\, ilde{t}} \gtrsim 100\,{
m GeV}$$

Constraints from ΔB = 2 processes are satisfied!

 $n - \overline{n}$ oscillations

U(1) D-term Problem

Strassler (2003) **Sundrum (2009)**

Heavy scalars
$$\longrightarrow$$
 $\mathcal{L}_{\mathrm{FI}} \sim \int d^4 heta \, rac{m_{ ilde{q}, ilde{l}}^2}{16\pi^2} \, g_Y V_Y$ near UV brane

Large Higgs soft masses!

The gauge field couples marginally to the CFT current J_V^μ

(
$$\Delta = 3$$
)

- Scaling dimension of D_Y : $\Delta=2$
- SCFT admits a relevant deformation : $\Delta \mathcal{L} = M_D^2 \, D_Y$

Conformal phase breaks down at $\,M_D\,$

TeV Unification

Extend the SM gauge group to forbid the relevant deformation

- Semi-simple group (SU(5), ...)
- Left-right symmetry under which the U(1) D-term transforms nontrivially

$$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

The unified group is broken on IR brane by boundary conditions

cf. The Higgsless model of EWSB

 G_U IR G_{SM}

Extra gauge fields → Dirichlet boundary condition on IR brane

ND Gauge Field

Extra gauge fields with ND boundary conditions satisfy

$$\frac{J_0(m/k)}{Y_0(m/k)} = \frac{J_1(m/k')}{Y_1(m/k')} \qquad \Longrightarrow \qquad m_0 \simeq \sqrt{\frac{2}{\pi kR}} \, k'$$

$$\mathcal{L}_{SU(5)} \sim -\frac{1}{4} \left\{ \frac{1}{g_{\mathrm{UV}}^2} + \frac{N_{\mathrm{CFT}}}{16\pi^2} \log \left(\frac{M_{\mathrm{pl}}}{\Lambda_{\mathrm{IR}}} \right) \right\} \sum_{a \text{ (All)}} (F_{\mu\nu}^a)^2 \qquad \textbf{x, y} \\ + \frac{1}{2} \frac{N_{\mathrm{CFT}}}{16\pi^2} \Lambda_{\mathrm{IR}}^2 \sum_{\alpha \text{ (Broken)}} (A_{\mu}^{\alpha})^2 \qquad \textbf{CFT particles}$$

$$\implies m_0^2 \sim \frac{\Lambda_{\mathrm{IR}}^2}{\log \left(M_{\mathrm{pl}} / \Lambda_{\mathrm{IR}} \right)} - \log \left(M_{\mathrm{pl}} / \Lambda_{\mathrm{IR}} \right) \simeq \pi k R$$

$$k' = \mathcal{O}(10) \,\mathrm{TeV}$$

 $k' = \mathcal{O}(10)\,\mathrm{TeV}$ \Longrightarrow ND gauge fields may be discovered at LHC!

The SU(5) Model

Coupling unification can be realized by IR brane-localized kinetic term

SU(5) IR
$$G_{SM}$$

$$S_{\rm IR} = \int d^5 x \, \delta(y - \pi R) \left\{ \frac{1}{4\tilde{g}_a^2} \int d^2 \theta \, \text{Tr} \, W^{a\alpha} W^a{}_{\alpha} + \text{h.c.} \right\} \quad a = 3, 2, 1$$

Split multiplets for quarks and leptons : $10_Q,\,10_{ar{u},\,ar{e}}$ & $ar{5}_{ar{d}},\,\,ar{5}_L$

Z₃ lepton number symmetry

$$\omega_3 \equiv e^{2\pi i/3}$$

$${f 10}_Q o \omega_3 {f 10}_Q, \quad {f 10}_{ar u, \, ar e} o \omega_3^{-1} {f 10}_{ar u, \, ar e}, \quad {f ar 5}_L o \omega_3 {f ar 5}_L, \quad {f ar 5}_{ar d} o \omega_3^{-1} {f ar 5}_{ar d}$$

Extra fields in split multiplets : $Q', \bar{u}', \bar{d}', L', \bar{e}'$

Light Exotics

Obtain sizable masses of exotics by ND boundary conditions?

Exotics satisfy
$$\frac{J_{c-1/2}(m/k)}{Y_{c-1/2}(m/k)} = \frac{J_{c+1/2}(m/k')}{Y_{c+1/2}(m/k')}$$

→ No ...

For
$$c \gg 1/2$$

$$m \simeq 2\sqrt{c + \frac{1}{2}} \zeta k'$$

Light exotics always appear ...

$$M_{Q_1'} \sim 2\zeta_{\bar{u}_1}k' \ll M_Z$$

Exponentially small overlap!!

Split Couplings without Exotics

A way to avoid light exotics in split multiplets $\Psi_A = (A, B')$ $\Psi_B = (A' B)$

$$\Psi_A = (A, B')$$

$$\Psi_B = (A', B)$$

Introduce a new multiplet on UV brane:

$$ar{\Psi}_{
m UV} = (ar{A}_{
m UV}, ar{B}_{
m UV})$$
 A mass term : $M_{
m UV}ar{\Psi}_{
m UV}(s_{ heta}\Psi_A - c_{ heta}\Psi_B)$

$$lacktriangle$$
 A light multiplet : $\hat{\Psi}=(\hat{A},\hat{B})=c_{ heta}\Psi_{A}+s_{ heta}\Psi_{B}$

Yukawa couplings on IR brane : $\mathcal{L}_{IR} = A\mathcal{O}_A + B\mathcal{O}_B + \dots$

$$\mathcal{L}_{\text{eff}} = y_A \hat{A} \mathcal{O}_A + y_B \hat{B} \mathcal{O}_B + \dots$$

$$y_A \sim c_\theta \zeta_A$$

$$y_B \sim s_\theta \zeta_B$$

The Left-Right Model

The symmetry is broken on IR brane : $SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y$

W', Z' may be discovered at LHC via $W' o \ell
u$, $Z' o \ell^+ \ell^-$

Split multiplets:

Introduce new multiplets on UV brane to avoid light exotics : $\mathcal{Q}_{1.2}$

Yukawa couplings on IR brane : $W_{
m Yukawa} = Q ar{u} H_u + Q d H_d$

To pursue a fully realistic SUSY RS model ...

Proton decay problem

U(1) D-term problem

Lepton number symmetry

RPV

Light stop

ND gauge fields may be discovered at LHC!

Viable pattern of RPV is naturally derived!

Thank you.

Backup

Yukawa hierarchy

Wavefunction factors

$$m_{u_i} \simeq \zeta_{Q_i} \zeta_{\bar{u}_i} v \sin \beta, \qquad m_{d_i} \simeq \zeta_{Q_i} \zeta_{\bar{d}_i} v \cos \beta$$

$$|(V_{\text{CKM}})_{ij}| \simeq \frac{\zeta_{Q_j}}{\zeta_{Q_i}} \quad \text{for } j \leq i$$

$$|(V_{\text{CKM}})_{21}| \simeq \lambda, \qquad |(V_{\text{CKM}})_{32}| \simeq \lambda^2, \qquad |(V_{\text{CKM}})_{31}| \simeq \lambda^3 \qquad \lambda \sim 0.2$$

$$\begin{array}{cccc}
 & \zeta_{Q_1} \simeq \lambda^3 \zeta_{Q_3}, & \zeta_{Q_2} \simeq \lambda^2 \zeta_{Q_3}, \\
 & \zeta_{\bar{u}_1} \simeq \frac{m_u}{\lambda^3 \zeta_{Q_3} v \sin \beta}, & \zeta_{\bar{u}_2} \simeq \frac{m_c}{\lambda^2 \zeta_{Q_3} v \sin \beta}, & \zeta_{\bar{u}_3} \simeq \frac{m_t}{\zeta_{Q_3} v \sin \beta}, \\
 & \zeta_{\bar{d}_1} \simeq \frac{m_d}{\lambda^3 \zeta_{Q_3} v \cos \beta}, & \zeta_{\bar{d}_2} \simeq \frac{m_s}{\lambda^2 \zeta_{Q_3} v \cos \beta}, & \zeta_{\bar{d}_3} \simeq \frac{m_b}{\zeta_{Q_3} v \cos \beta}
\end{array}$$

RPV coupling on IR brane

$$S_{\text{RPV,IR}} = \int d^5x \, \delta(y - \pi R) \, e^{-3k\pi R} \left(\int d^2\theta \, \frac{1}{2} \tilde{\lambda}^{ijk} \bar{u}_i \bar{d}_j \bar{d}_k + \text{h.c.} \right)$$

$$W_{\text{RPV,IR}}^{4D} = \frac{1}{2} \lambda^{ijk} \bar{u}_i \bar{d}_j \bar{d}_k \qquad \lambda^{ijk} = \tilde{\lambda}^{ijk} k^{3/2} \zeta_{\bar{u}_i} \zeta_{\bar{d}_j} \zeta_{\bar{d}_k}$$

Coupling size is proportional to wavefunction factors!

$$\tan \beta = 3$$
 and $\zeta_{Q_3} = 1$

RPV coupling on UV brane

$$S_{\text{RPV, UV}} = \int d^5x \, \delta(y) \left(\int d^2\theta \, \frac{1}{2} \tilde{\lambda}'^{ijk} \bar{u}_i \bar{d}_j \bar{d}_k + \text{h.c.} \right)$$

$$W_{\text{RPV, UV}}^{4D} = \frac{1}{2} \lambda'^{ijk} \bar{u}_i \bar{d}_j \bar{d}_k \qquad \lambda'^{ijk} = \tilde{\lambda}'^{ijk} k^{3/2} \eta_{\bar{u}_i} \eta_{\bar{d}_j} \eta_{\bar{d}_k}$$

$$\lambda'^{ijk} = \tilde{\lambda}'^{ijk} k^{3/2} \eta_{\bar{u}_i} \eta_{\bar{d}_j} \eta_{\bar{d}_k}$$

$$\eta_{\Psi} \simeq \begin{cases} \sqrt{c_{\Psi} - \frac{1}{2}} \simeq \sqrt{\frac{1}{\pi k R}} \log \zeta_{\Psi}^{-1} & (c_{\Psi} \gg 1/2) & sb & bd & ds \\ \hline u & 0.04 & 0.05 & 0.05 \\ \hline \frac{1}{\sqrt{2\pi k R}} \simeq \zeta_{\Psi} & (c_{\Psi} \sim 1/2) & c & 0.02 & 0.03 & 0.03 \\ \hline \sqrt{\frac{1}{2} - c_{\Psi}} e^{-(\frac{1}{2} - c_{\Psi})\pi k R} \simeq \zeta_{\Psi} e^{-\pi k R} \zeta_{\Psi}^{2} & (c_{\Psi} \ll 1/2) \end{cases}$$

$$tan \beta = 3 \text{ and } \zeta_{O_{3}} = 1$$

\underline{n} - \overline{n} oscillations (RPV on IR brane)

Constraint: $\tau_{n-\bar{n}} \ge 2.44 \times 10^8 \,\mathrm{s}$

If the scalars of light quarks are very heavy, ...

The leading diagram must involve only light superpartners.

$$\tau_{n-\bar{n}} \sim (3 \times 10^{10} \,\mathrm{s}) \left(\frac{\lambda_{tds}}{6 \times 10^{-4}}\right)^{-2} \left(\frac{m_{\tilde{g}}}{1.2 \,\mathrm{TeV}}\right) \left(\frac{m_{\tilde{t}}}{300 \,\mathrm{GeV}}\right)^{4}$$

The bound is easily satisfied!

<u>n - \overline{n} oscillations (RPV on UV brane)</u>

Sizable coupling for light quarks.

$$\mathcal{M}_{n-\bar{n}} \sim 4\pi\alpha_3 \, \lambda_{uds}^{\prime \, 2} \, \tilde{\Lambda} \left(\frac{\tilde{\Lambda}}{m_{\tilde{q}}}\right) \left(\frac{\tilde{\Lambda}^2}{m_{\tilde{q}}^2}\right)^2$$

$$\tilde{\Lambda} \sim \Lambda_{\rm QCD} \sim 250 \, {\rm MeV}$$

The bound is weaker than the FCNC bound.

Dinucleon decay (RPV on IR brane)

Constraint:
$$\tau_{pp\to K^+K^+} \ge 1.7 \times 10^{32} \,\mathrm{yrs}$$

If the scalars of light quarks are very heavy, ...

The leading diagram must involve only light superpartners.

$$\tau_{pp\to K^+K^+} \sim (4 \times 10^{39} \,\mathrm{yrs}) \left(\frac{\lambda_{tds}}{6 \times 10^{-4}}\right)^{-4} \left(\frac{m_{\tilde{W}}}{600 \,\mathrm{GeV}}\right)^2 \left(\frac{m_{\tilde{t},\tilde{b}}}{300 \,\mathrm{GeV}}\right)^{12}$$

Dinucleon decay (RPV on UV brane)

Scalars of light quarks are very heavy,

but sizable coupling for light quarks.

For
$$\tan \beta = 3$$
 and $\zeta_{Q_3} = 1$

$$\tau_{pp\to K^+K^+} \sim (5 \times 10^{35} \,\mathrm{yrs}) \left(\frac{\lambda'_{uds}}{0.05}\right)^{-4} \left(\frac{m_{\tilde{g}}}{1.2 \,\mathrm{TeV}}\right)^2 \left(\frac{m_{\tilde{q}}}{1000 \,\mathrm{TeV}}\right)^8$$

Constraints from $\Delta B = 2$ processes are satisfied!

LSP decay (Constraint from displaced vertex)

Higgsino LSP

$$\Gamma_{\widetilde{H}} \sim \frac{m_{\widetilde{H}}}{128\pi^3} |\lambda_{tsb}|^2$$

If LSP is lighter than top quark, decay length is still short.

U(1) D-term problem

Strassler (2003)

Sundrum (2009)

$$\rightarrow$$
 $\mathcal{L}_{\rm FI} \sim \int d^4\theta \, \xi \, V_1$

→ Large Higgs soft masses!

Three-site model

$$\begin{array}{c|ccccc} & U(1)_1 & U(1)_2 & U(1)_3 \\ \hline \Sigma_1 & 1 & -1 & 0 \\ \hline \Sigma_1 & -1 & 1 & 0 \\ \Sigma_2 & 0 & 1 & -1 \\ \hline \Sigma_2 & 0 & -1 & 1 \\ H_u & 0 & 0 & 1/2 \\ H_d & 0 & 0 & -1/2 \\ \end{array}$$

$$H_u$$
 , H_d

$$W \sim X_1 \left(\Sigma_1 \bar{\Sigma}_1 - v_1^2 \right) + X_2 \left(\Sigma_2 \bar{\Sigma}_2 - v_2^2 \right)$$

$$|\Sigma_1|^2 - |\bar{\Sigma}_1|^2 \sim |\Sigma_2|^2 - |\bar{\Sigma}_2|^2 \sim \frac{\xi}{g_Y}$$