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State of the art

• Merged tree level matrix elements interfaced to Parton Shower generators
(ME-PS) available with a high degree of automation. Widely used by the
experimental collaboration

• NLO calculation interfaced to shower generators (NLO+PS) available
with a high degree of automation also for complex processes (2 → 3,
2→ 4). Widely used by experimental collaborations

• Merged NLO+PS generators available

• First NNLO+PS generators appearing

"Merging" refers to generators for processes with an increasing number of asso-
ciated jet.
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LO+PS H LO+PS HJ LO+PS HJJ Merged

Inclusive O(α
s

2) (LO) NO NO O(α
s

2)

1 jet O(α
s

3) approximate O(α
s

3) (LO) NO O(α
s

3)

2 jet ... O(α
s

4) approximate O(α
s

4) (LO) O(α
s

4)

3 jet ... ... O(α
s

5) approximate appr.
4 jet ... ... ...

NLO-PS H NLO-PS HJ NLO-PS HJJ

Inclusive O(α
s

2+α
s

3) (NLO) NO NO

1 jet O(α
s

3) (LO) O(α
s

3+α
s

4) (NLO) NO

2 jet approximate O(α
s

4) O(α
s

4) (i.e. LO) O(α
s

4+α
s

5) (NLO)

3 jet approximate O(α
s

5) O(α
s

5) (i.e. LO)

4 jet approximate O(α
s

6)

H H+HJ merging (1) H+HJ+HJJ merging (2) NNLO-PS H

Incl. O(αs
2+αs

3) (NLO) O(αs
2+αs

3) (NLO) O(αs
2+αs

3) (NLO) O(αs
2+αs

3+αs
4) (NNLO)

1 jet O(αs
3) (LO) O(αs

3+αs
4) (NLO) O(αs

3+αs
4) (NLO) O(αs

3+αs
4) (NLO)

2 jet approximate O(αs
4) O(αs

4) (LO) O(αs
4+αs

5) (NLO) O(αs
4) (LO)

3 jet approximate O(αs
5) O(αs

5) (LO) approximate O(αs
5)

4 jet approximate O(αs
5)
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ME-PS:
AlpGen (Mangano,Moretti,Piccinini,Pittau,Polosa)
Sherpa (Gleisberg, Höche,Krauss,Schonherr,Schumann,Siegert,Winter)
MadGraph (Alwall,Herquet,Maltoni,Mattelaer,Stelzer)

NLO-PS:
(a)MC@NLO (Frixione,Webber,Frederix,Hirschi,Maltoni,Pittau,Torielli ...)
POWHEG-BOX (Alioli,Oleari,Re,Hamilton,Zanderighi,P.N. + ...)
POWHEL (Garzelli, Kardos, Papadopoulos, Trocsanyi + ...)
Sherpa (POWHEG and MC@NLO variants, Höche,Krauss,Schonherr,Siegert)
Herwig++ (POWHEG and MC@NLO variants, Plätzer, Gieseke ...)
New proposal: VINCIA (Giele et al, 2013), GENEVA (Alioli et al, ),
CKKW-L extensions (Lönnblad, Prestel, 2013)

All generators are automated to a certain extent; noticeably:
aMC@NLO FULLY automated: "MG5_aMC> generate p p > e+ ve [QCD]"
generates NLO+PS W+ events in hadronic collisions ...
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Open Problems
Not all is done. Most important open problems (in my opinion ...):

• Processes with intermediate resonances
Problems arise in case of coloured-resonance mediated processes, also in
the narrow width approximation. More problems arise if we wish to include
non-resonant effects.

• NLO+PS merging (and NNLOPS).
Although general procedures are advocated for NLO+PS merging that
may work in practice, whether or not they achieve the desired accuracy is
at times a matter of definitions.
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Problems with resonances: NLO calculations
Standard schemes for NLO calculation fail in the narrow resonance limit.
Example: FKS in tt̄ production

FKS subtraction term kinematics does not preserve the bgW mass.
(b direction preserved; Wb̄ recoiling system boosted along b direction and b

momentum set to conserve 4-momentum)
Thus: when bgW is on shell, the counterterm is off-shell, spoiling IR cancellation
in the narrow width approximation. The same happens with CS dipoles (W four
momentum preserved.)
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Message #1:
Current NLO subtraction schemes fail in the narrow width limit

As long as we have finite width, current schemes converge given an unlimited
amount of CPU time, i.e. brute force solutions are sometimes possible.
NLO calculations of W+W−bb̄ have been performed by Bevilacqua etal, 2011,
and Denner etal, 2012, in the 5-flavour scheme, and Frederix, 2014, massive b.

If only resonant graphs are included: radiative corrections for production and
decays are distinct, and can be separated.
One can use the different subtraction schemes in production and decays;

If non resonant contributions, and interference between non-resonant and reso-
nant graphs are included, more work is needed.
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Problems with resonances: PS
Key problem: momentum reshuffling.

Collinear splitting conservers momentum only in the strict
collinear limit. Shower Monte Carlo enforce exact momentum conservation by
"Momentum reshuffling" (i.e. adjust the momenta by subleading corrections to
enforce momentum conservation).

For example (Herwig): If a Final State particle undergoes splitting, and its
3-momentum is kept fixed to balance the 3-momenta of all other FS particles,
its energy becomes larger. In order to restore energy conservation, all 3-momenta
are rescaled down by a common factor.

If we have a radiating resonance decay, this procedure does not conserve the reso-
nance mass. Hence: in this case, Herwig does momentum reshuffling maintaining
the resonance 4-momentum fixed, by rescaling the momenta of the resonance
decay products in the resonance rest frame.
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Problems with resonances: NLO+PS
POWHEG example:

B̄exp

[

−
∫

R

B
dΦrad

]

R

B
dΦrad

Here R contains the radiation, and B is the underlying Born kinematics.
The standard POWHEG underlying Born mapping does not preserve resonance
virtuality: if R is on shell, B is off shell, R/B LARGE!

More quantitatively: consider for example t→ bW ; b splits into a bg with mass
m2. The bW mass in the counterterm differs from the original top virtuality by
an amount m2/Eb. So, we expect that

The b jet mass profile is distorted when mjet
2 /Eb≈Γtop .
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Message #2:
Current NLO+PS schemes fail in the narrow width limit

Brute force solution: Full W+W−bb̄ production in POWHEL has been implemented
(Kardos,Garzelli,Trocsanyi 2014), using the standard POWHEG BOX mapping.
The euristic argument given above would imply unphysical features of jet struc-

ture when mjet≈ ΓE
√

≈ 8GeV. Studies in this direction are being pursued.
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NLO+PS with radiating resonances in narrow width limit

POWHEG-BOX-V2 can deal with radiation in resonance decays in the zero-width
limit in a fully general way. In order to implement a process one must:

• Specify the resonance and its decay products in the user provided sub-
process list. For example:

realfl:[ 0, 0, 6, -6, 24,-24,-11, 12, 13,-14, 5, -5, 0]

realrs:[ 0, 0, 0, 0, 3, 4, 5, 5, 6, 6, 3, 4, 3]

represents a real graph for gg→ (t→ (W → ēν) b g)(t̄→ (W−→ µν̄)).

• Virtual corrections should include virtual corrections to resonance decays.

• Real correction should yield separately the radiation from the hard inter-
action (if the radiated parton does not belong to a resonance), and the
radiation from each decaying resonance, depending upon realrs[n]
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Implementation in tt̄ production

(Campbell,Ellis,Re,P.N.)

Matrix elements from Campbell,Ellis,2012.

Narrow resonance decay machinery from POWHEG BOX V2.

Further problems:

• Finite width effects

• Multiplicative vs. additive corrections to resonance decays.
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Finite width effects
In certain applications (for example, t mass measurement from end-points) the
finite width of the top may have an effect. We implement it in the following way:

• We generate the Born phase space with finite width for the t and t̄

• We project the Born finite width phase space onto a zero width phase
space with a top mass equal to the average top virtuality. The projection
conserves the total CM partonic momentum.

• Matrix elements are computed with the projected phase space.

• Real emission events are projected backward into real emission events
initiated by the original (off-shell top) kinematics.

• The final cross section is reweighted either with

→ The exact Born matrix elements for the production of the given
final state after decay (from MadGraph), (including interference
effects) divided by the projected on-shell matrix element

→ The Breit Wigner shapes of the t and t̄
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Multiplicative vs. additive corrections
In POWHEG only the hardest emission is generated. All remaining emissions are
committed to the Shower generator.

In tt̄ production we can have: a production emission, an emission from either t
or t̄ , and an emission for each W decay, if applicable, for a total of 5 emissions.
In POWHEG each emission is tried, and only the hardest one is kept. All the
remaining one have to be generated by the shower.

Undesirable feature: the emission in hard production is more likely to have large
transverse momentum. Emissions from decay become thus rare, and most of the
time they will be handled by the shower.
It would of course be more desirable to have an emission from the hard produc-
tion, plus one for each decaying resonance.
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Present solution: keep hard radiation and the emissions from all decaying reso-
nances, and merged them into a single radiation phase space with several radiated
partons, up to one for each resonance.

From a given underlying Born configuration
(take away the radiated gluons), in the
longitudinal rest frame of the tt̄ system:
ISR: transverse boost of the whole tt̄ system
t radiation in decay: W boosted along its
momentum in t rest frame
W radiation in decay: either q or q̄ direction
preserved. In order to combine all of them:

• Start from Born phase space, including W radiation in decay if present.

• If t radiation in decay is present, add the corresponding gluon, and replace
the b and W momentum (boosting the W system along its momentum
in the t rest frame)

• If ISR is present, perform transverse boost of tt̄ system and add the gluon
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This prescription guarantees that

• The hardest radiation is generated with full NLO accuracy, and the
subsequent ones are at least accurate in the collinear limit

• Rotationally invariant shape observables for the resonance decays are
all NLO accurate.

However: further radiation from the shower must be vetoed at different scales for
radiation in production (scalup) and for each radiating resonance.

Standard LHIUP (Les Houches Interface for User Processes) allows only for a
single scale for vetoing radiation ... Extensions are needed!
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Some plots
We have generated LH events for leptonic top decays (e+, µ−), with radiation in
decays not included (LO Dec) and included (NLO Dec).

The events of the LO Dec sample were fed to Pythia8, with no further action.
Pythia8 takes care of adding radiation in top decays.
The events of the NLO Dec sample were fed to Pythia8. Care was taken to
compute the transverse momentum of radiation in top decays (in the top rest
frame) and instruct Pythia8 to veto radiation in resonance decays
(using canSetResonanceScale and scaleResonance in UserHooks class)

In the following plots:

• b stands for the MC truth b from t decay

• W+ stands for the MC truth W+

• l+ stands for fermion coming from t→W+→ l+ (MC truth)

• b jet stands for anti-kt jet (R= 0.5) containing b
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b fragmentation properties
in t decays

Observables computed in t rest frame.
b stands for hardest b flavoured hadron
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t mass (pseudo) observables
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Notice small peak in W+b plot, due to x=1 peak in b fragmentation function.
Sensibly different shapes around the top peak.
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Radiating resonances: conclusions

• NLO accurate simulation of processes with radiating resonances is an open
problem in several respects

• A reliable method for NLO subtractions when resonances are present is
needed

• No problems at NLO in the narrow width limit

• Several (solvable?) problems with NLO+PS in the narrow width limit:

− Inclusion of finite width effects

− Multiplicative versus Additive NLO corrections to decays

− Insufficient LHIUP: time to review the standard ...

• For NLO+PS including interference in decays, further studies are
needed ...
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NLO+PS merging: the problem

Focus upon Higgs production; call H and HJ the NLO+PS generators for Higgs
and Higgs + 1 jet production. Accuracy:

NLO-PS H NLO-PS HJ Matched

Inclusive O(αs
2+αs

3) (NLO) NO O(αs
2+αs

3) (NLO)

1 jet O(αs
3) (LO) O(αs

3+αs
4) (NLO) O(αs

3+αs
4) (NLO)

2 jet approximate O(αs
4) O(αs

4) (i.e. LO) O(αs
4) (i.e. LO)

3 jet ... approximate O(αs
5) approximate O(αs

5)

4 jet ... ... ...
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Naive approach:

• Start with the H and HJ generator

• Introduce a separation scale:
ΛQCD≪Q0≪MH

• Use H for pT
H <Q0

• Use HJ for pT
H >Q0

H

HJ
Q0

NLO accuracy requires that the sum of the areas below the blue and red lines

yield an O(αs
3) accurate result. Is it so? We would like Q0 as small as possible ...
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The "blue" integral has roughly the structure

σ0(1+Cαs) exp [L(αsL)n, (αsL)n, αs(αsL)n,
 ]

LL NLL NNLL

where αs = αs(MH), L= logMH
2/Q0

2. In NLO+PS generators, it is guaranteed

that for Q0≈MH the formula is αs
3 accurate, up to corrections of order αs

4.
If Q0 is near the Sudakov peak (i.e. αsL

2 ≈ 1), the first NNLL term yields a

correction factor: 1+αs
2L≈ 1+αs

1.5.

So: unless the NLO+PS Sudakov form factor is accurate at NNLL, the "blue"
contribution misses unknown terms of relative order αs

1.5.
(NLO accuracy requires unknown terms of relative order αs

2).

So: we can’t take Q0 at the Sudakov peak. What is the value of Q0 such that
full NLO accuracy is achieved?

We must have αs
2L≈αs

2, i.e. Q0≈MH!!
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The "green" integral has the structure

αs
2(αsL

2, αsL, αs
2L4, αs

2L3, αs
2L2, αs

2L)+Q0 suppressed terms

We must collect all terms with any power of L into a Sudakov form factor, if we
want this to hold up to terms of relative order αs

2 near the Sudakov region.

Can we live with less precision? can we tolerate αs
1.5 instead of αs

2?

Well: keep in mind that it is αs
1.5 at best (i.e. only if Sudakov is NLL accurate).

For the purpose of this talk, I define "strict" NLO accuracy to require αs
2 leftovers.
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How to deal with the problem

• Practical approach: close your eyes and do it! Check that Q0 dependency
is small.

• Correct normalization of region below Q0 so that NLO accuracy for the
total inclusive cross section is enforced (UNLOPS method)

• Use highly accurate Sudakov form factors (Geneva)

• MiNLO method
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Current merging approaches:

• SHERPA, [Hoeche, Krauss, Schonherr, Siegert, arXiv:1207.5030], tradi-
tional merging with matching scales.

• FxFx, [Frederix, Frixione, arXiv:1209.6215], traditional merging with
matching scales; check matching scale dependence a posteriori.

• UNLOPS, [Platzer, arXiv:1211.5467], [Lönnblad, Prestel, arXiv:1211.7278],
force unitarity by subtracting appropriate terms (UNLOPS method).

• GENEVA, [Alioli, Bauer, Berggren, Hornig, Tackmann, Vermilion, Walsh,
Zuberi, arXiv:1211.7049], increase precision in LL resummation to reach
formal accurate matching
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Matching using MiNLO

MiNLO (Multiscale-improved NLO) is a method for adding to an NLO amplitude
Sudakov form factors and coupling rescaling without spoiling NLO accuracy.
In other words, it is a method to apply CKKW to an NLO calculation.
The "green line" integrand for HJ yields (for small Higgs pT)

σ0
1

pT
2
(αsL, αs, αs

2L3, αs
2L2, αs

2L, αs
2)+ finite reminder

With MiNLO it becomes

σ0
1

pT
2
(αs, αsL, αs

2L, αs
2) expSMiNLO(f(x1, pT)Q0,MH)

i.e., higher logs are absorbed in the Sudakov form factor.
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On the other hand, NNLL analytic resummation would yield (schematically) a
perfect differential

dσNNLL

dydpT
2

=σ0
d

dqT
2
{f(x1, pT)f(x2, pT) expS(MH, pT)}

NNLL accuracy implies that
∫

dσ

dydpT
2
dpT

2

is NLO accurate. On the other hand:

dσNNLL

dydpT
2

= σ0
1

pT
2
[αs, αsL, αs

2L, αs
2,
 ] expS(MH, pT)

where 
 stands for missing higher order terms, having at most one power of L.

The integral of each αs
nLm/pT

2 term is of order αs

n−
m+1

2 .
Comparing this result with the MiNLO one, it is easy to show that the only missing
term needed to render the MiNLO result NLO accurate upon full integration, is
a B2 term in the MiNLO Sudakov form factor.
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More precisely, the effect of a B2 term is

σ0
1

qT
2 [αS , αS

2 , αSL, αS
2L]× expS ×

{

exp

[

−
∫

qT
2

Q2

dq2

q2
B2αS

2

]

− 1

}

�

1

qT
2 [αS

3 L2]× expS� [αs(Q
2)]

3−
2+1

2 = [αs(Q
2)]1.5

In case of H/W/Z + 1 jet, it is in fact possible to modify the MiNLO Sudakov
form factor by carefully including the B2 term in such a way that integrating over
the radiated jet we achieve NLO accuracy for inclusive H/W/Z distributions.
(Hamilton,Oleari,Zanderighi,P.N. 2012)
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NNLO+PS generators

Given an H-HJ merged generator (accurate at order αs
3 for fully inclusive quanti-

ties, and at order αs
4 for Higgs plus one jet observables), it is easy to prove that

NNLO accuracy can be achieved as follows:

• Generate events with the NLO+PS merged generator

• Reweight the event cross section as a function of yH with the factor

dσNNLO

dyH

dσH−HJ

dyH

so that the Higgs rapidity distribution becomes NNLO accurate
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In order for the proof to work, it is essential that

dσNNLO

dyH

dσH−HJ

dyH

=
σNNLO
(0)

+αsσNNLO
(1)

+αs
2σNNLO

(2)

σ
H−HJ

(0) +αsσH−HJ

(1)
=1+O(αs

2)

i.e. that dσH−HJ/dyH is NLO accurate.

If the ratio was 1 + O(αs), distributions like the Higgs transverse momentum,
that have the expansion:

dσ

dpt
=αs

3 dσ
(3)

dpt
+αs

4 dσ
(3)

dpt
so that by reweighting:

(1+O(αs))× dσ

dpt
=αs

3 dσ
(3)

dpt
+αs

4 dσ
(3)

dpt
+αs

3 dσ
(3)

dpt
×O(αs)

�

O(αs
4)

we get spurious terms of order αs
4, spoiling its αs

4 accuracy.
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First result on Higgs production at NNLO+PS:

Zanderighi,Hamilton,Re,P.N. Aug. 2013, reweighting MiNLO generator from
Zanderighi,Hamilton,Oleari,P.N. 2012
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Accuracy: (left) H-HJ MiNLO: ∼30%, (right) NNLO+PS:∼10%

33



Higgs transverse momentum comparison to HqT
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• HqT: dedicated program for NNLO+NNLL calculation of dσH/dpT,
Bozzi,Catani,De Florian,Ferrera,Grazzini,Tommasini

• Good agreement at small/moderate pT

• Large pT: it will be interesting to compare to H +1j NNLO calculation
by Boughezal,Caola,Melnikov,Petriello,Schulze Feb. 2013

• Approach valid in all production processes of colourless massive systems
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Results on Drell-Yan NNLO+PS using the MiNLO Method:
Karlberg,Re,Zanderighi,2014:

Monte Carlo tunes still play an important role.
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Other methods:

NNLO+PS for Drell Yan pair production, Höche,Ye Li,Prestel, May 2014,

based upon the UNLOPS merging method by Lönnblad, Prestel, 2012:
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UNLOPS for Higgs

Höche,Li,Prestel,2014
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UNLOPS method: NLO matching
{
∫

dΦB B̄tc(ΦB)+

∫

tc

dΦ[1−Π0(t, Q)]R(Φ)

}

�

H Born kinematics, no further radiation

+

∫

tc

dΦ[Π0(t, Q)]R(Φ)

�

H+1 parton kinematics+ shower

where tc is a cutoff scale for showering, and

B̄tc(ΦB)=B(ΦB)+V (ΦB)+

∫ tc

dΦradR

In inclusive cross sections: terms multiplied by Π0 cancel, NLO result recovered.
This scheme is pushed to NNLO.
Notice: no Sudakov suppression on the term in curly bracket

In essence, in UNLOPS NLO and NNLO accuracy is restored by contributions that
are added in the no-radiation bin. In this it differs from MC@NLO and POWHEG

methods, where the no-radiation bin is Sudakov suppressed (i.e. suppressed by
more than any power of αs).
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Conclusions

• The MiNLO approach looks very promising, but at present is satisfies the
"strict" NLO requirement only for production of colour neutral systems
(H , W/Z, HZ, HW , etc.), up to 1 jet merging.

• The Geneva approach seems to satisfy the "strict" requirement; needs
more field testing (in my opinion) ...

• Traditional matching (Sherpa, FxFx) fully general (i.e. can be applied
to any process), but relax the requirement of "strict" NLO accuracy,
independent upon the matching scale

• UNLOPS forces "strict" NLO accuracy, but relaxes requirements about the
description of the Sudakov region.

• Geneal problem: LO, NLO NNLO accuracy for inclusive observables with
LL, NLL, NNLL accuracy in reduced phase space regions.

39



Backup
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NNLO+PS: main claim

(Zanderighi, Hamilton, Oleari, P.N. 2013) From 1st-level NLO+PS merging,
NNLO accuracy can be reached by reweighting.

Here we prove this in the example of Higgs production (proof easely extended to
the general case.

Begin with the following (trivial) theorem:

A parton level Higgs boson production generator that is accurate at O(αs
4) for all

IR safe observables that vanish with the maximum transverse momenta of all light

partons, and that also reaches accuracy for the O(αs
4) inclusive Higgs rapidity

distribution, achieves the same level of precision for all IR safe observables, i.e.

it is fully NNLO accurate.
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NLO accuracy by reweighting

Proof: F (Φ) is an IR safe observables; F (yH) is its "Born level" value

〈F 〉=
∫

dΦ
dσ

dΦ
F (Φ)=

∫

dΦ
dσ

dΦ
(F (Φ)−F (yΦ))

�

accurate atO(αs
4) by 1st hypothesis

+

∫

dy
dσ

dy
F (y)

�

O(αs
4) by 2nd hypothesis
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Does the 1st hypothesis apply also to an NLO-PS generator?

The difference with respect to a parton level generator is that the soft and
collinear singularities are spread out over the Sudakov regions. For the Higgs:

NLO result: divergent distribution at low pT;
Negative divergent spike at pT=0, so that

∫
dσNLO

dydpT
dpT=

dσNLO

dy

NLO+PS result: smooth Sudakov shape at
small pT, all positive, with

∫
dσNLO+PS

dydpT
dpT=

dσNLO

dy

(The proof of the 1st hypothesis for a NLO+PS generator can be carried out by
expanding the Sudakov form factors in terms of a normalized "+" distribution
plus higher order terms)
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NNLO generator for Higgs production
(Hamilton,Re,Zanderighi,P.N. 2013)
Variant reweighting schemes

dσ = dσA+dσB

dσA = dσ× h(pT)

dσB = dσ× (1−h(pT))

with

h(pT)=
(βmH)γ

(βmH)γ+ pT
γ ,

and reweight by

W (y, pT)=h(pT)×
∫

dσA
NNLOδ(y− y(Φ))

∫

dσA
MiNLOδ(y− y(Φ))

+ (1−h(pT)),

that yields
∫

dσMiNLOδ(y− y(Φ))W (y, pT)=

(

dσA

dy

)

NNLO

+

(

dσB

dy

)

MiNLO
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We have adopted a further variant that has the advantage of yielding exactly the
NNLO rapidity distribution:

W (y, pT)=h(pT)×
∫

(dσNNLO− dσB
MiNLO)δ(y− y(Φ))

∫

dσA
MiNLOδ(y− y(Φ))

+ (1−h(pT)).

Numerically one needs to compute and store the (one-parameter) functions of
y that appear in the fraction. After that one generates events normally, and
reweights them by the W factor.

The NNLO cross section is computed with HNNLO (Grazzini, 2008)
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Uncertainties
Uncertainties are estimated by the 7 point scale variation

(KR,KF)= (0.5, 0.5), (1, 0.5), (0.5, 1), (1, 1), (2, 1), (1, 2), (2, 2)

that is performed independently in the NNLO calculation and in the MiNLO one.

In other words, we assume conservatively that scale uncertainties in the NNLO
and in the MiNLO results are uncorrelated.

The value of pT in the h function has been taken as the transverse momentum
of the hardest jet.

Central scale for HNNLO: mH/2, in slight tension with the MiNLO choice.

We use γ=2 in the h function, and consider the range 0.5< β <∞.
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Results

By construction, the rapidity distribution is exactly the same in NNLO-PS and
in fixed order
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Left:
Comparison of the high pT distribution with HNNLO, using MH as scales

Right:
Effect of β variation
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HqT and NNLO-PS error bands comparable
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pT spectrum with error bands, β=∞ (left), β=1/2 (right)

Choice of β analogous to the choice of the resummation scale in HqT.
β=1/2 corresponds to Qres=MH/2.
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• JetVHeto: NNLL resummed, µR= µF =mH/2, 7pts band
(Banfi,Monni,Salam,Zanderighi, 2012)

• Fair agreement
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