Investigating the Near-Criticality of the Higgs Boson

Alberto Salvio

Department of Theoretical Physics and Institute of Theoretical Physics Autonomous University of Madrid

September 25, 2014, Physics Challenges in the face of LHC-14, IFT, Madrid

Based on

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio and Strumia, JHEP **1312** (2013) 089, <u>arXiv:1307.3536</u>; updated version: September 22, 2014

Outline

Introduction

Outline

Introduction

The stability bound on the Higgs mass

Outline

Introduction

The stability bound on the Higgs mass

Metastability scenario

Introduction

The stability bound on the Higgs mass

Metastability scenario

Results at the Large Hadron Collider (LHC)

- Discovery of the Higgs boson at CMS and ATLAS in 2012 with a mass M_h = 125.15 ± 0.24 GeV [CMS Collaboration (2013, 2014); ATLAS Collaboration (2013, 2014); naive average from Giardino, Kannike, Masina, Raidal and Strumia (2014)]
- No clear evidence of new physics at the electroweak (EW) scale (supersymmetry (SUSY), composite Higgs, large extra dimensions, ... ?)

Results at the Large Hadron Collider (LHC)

- Discovery of the Higgs boson at CMS and ATLAS in 2012 with a mass M_h = 125.15 ± 0.24 GeV [CMS Collaboration (2013, 2014); ATLAS Collaboration (2013, 2014); naive average from Giardino, Kannike, Masina, Raidal and Strumia (2014)]
- No clear evidence of new physics at the electroweak (EW) scale (supersymmetry (SUSY), composite Higgs, large extra dimensions, ... ?)

The triumph of simplicity?

We do not know: still there is some room for new physics. However, a simple Higgs doublet H with the simple potential

$$V(H) = \lambda \left(|H|^2 - \frac{v^2}{2} \right)^2$$

perfectly fits the data

- Measurements of G_{μ} provides $v = \sqrt{2} \langle |H|
 angle$ (tree level)
- ▶ and $m^2 \equiv 2\lambda v^2 = M_h^2$ (tree level) fixes the last parameter of the SM

Now, we can use the Standard Model (SM) to make predictions up to the Planck scale

Consistency: ok (up to the Planck scale)

- M_h is below the bound to push the Landau pole of λ above the Planck mass $M_{\rm Pl}$
- \blacktriangleright The Landau pole of $g_1\equiv \sqrt{5/3}g_Y$ is at a very high energy: $\sim 10^{42}~{\rm GeV}$
- The measured M_h implies that the EW vacuum expectation value (VEV) is either stable or metastable with a life-time > than the age of the universe (see last part)

Solutions of the renormalization group equations (RGEs) of the most relevant SM parameters (defined in the \overline{MS} scheme ...)

Still there are unsolved problems

The SM is not the final theory: apart from quantum gravity

- Dark matter well-motivated candidates: axion (which also solves the strong CP problem), ...
- (small) neutrino masses well-motivated candidates: heavy Majorana fermions, ...
- Baryon asymmetry Elegant solutions: Leptogenesis (possible with heavy Majorana fermions), ...

Still there are unsolved problems

The SM is not the final theory: apart from quantum gravity

- Dark matter well-motivated candidates: axion (which also solves the strong CP problem), ...
- (small) neutrino masses well-motivated candidates: heavy Majorana fermions, ...
- Baryon asymmetry Elegant solutions: Leptogenesis (possible with heavy Majorana fermions), ...

Origin of inflation is it part of this list?

 \rightarrow One possibility is that inflation is generated by the Higgs field, however, it is known that this is possible essentially only if the stability bound is not violated [Bezrukov, Magnin, Shaposhnikov (2008, 2009); Salvio (2013)] Introduction

The stability bound on the Higgs mass

Metastability scenario

Qualitative origin of the stability bound

$$V_{\text{eff}} = V + V_1 + V_2 + ...$$

 $V(\phi) = \frac{\lambda}{4} \left(\phi^2 - v^2\right)^2, \quad V_1(\phi) = \frac{1}{(4\pi)^2} \sum_i c_i m_i(\phi)^4 \left(\ln \frac{m_i(\phi)^2}{\mu^2} + d_i\right), \quad ...$

where $\phi^2 \equiv 2|\mathcal{H}|^2$ and c_i and d_i are ~ 1 constants

Qualitative origin of the stability bound

$$V_{\text{eff}} = V + V_1 + V_2 + \dots$$
$$V(\phi) = \frac{\lambda}{4} \left(\phi^2 - v^2\right)^2, \quad V_1(\phi) = \frac{1}{(4\pi)^2} \sum_i c_i m_i(\phi)^4 \left(\ln \frac{m_i(\phi)^2}{\mu^2} + d_i\right), \quad \dots$$

where $\phi^2 \equiv 2|\mathcal{H}|^2$ and c_i and d_i are ~ 1 constants

Consider the RG-improved effective potential (bare parameters \rightarrow running ones) ...

$$\implies \frac{\partial V_{\text{eff}}}{\partial \mu} = 0 \quad \text{and one is free to choose } \mu \text{ to improve perturbation theory}$$

Since at large fields, $\phi \gg v$, we have $m_i(\phi)^2 \propto \phi^2$, we choose $\mu^2 = \phi^2$, then
 $V_{\text{eff}}(\phi) = \frac{\lambda(\phi)}{4} (\phi^2 - v(\phi)^2)^2 + ... = -\frac{m(\phi)^2}{2} \phi^2 + \lambda(\phi) \phi^4 + ...$

Qualitative origin of the stability bound

$$V_{\text{eff}} = V + V_1 + V_2 + \dots$$
$$V(\phi) = \frac{\lambda}{4} \left(\phi^2 - v^2\right)^2, \quad V_1(\phi) = \frac{1}{(4\pi)^2} \sum_i c_i m_i(\phi)^4 \left(\ln \frac{m_i(\phi)^2}{\mu^2} + d_i\right), \quad \dots$$

where $\phi^2 \equiv 2|H|^2$ and c_i and d_i are ~ 1 constants

Consider the RG-improved effective potential (bare parameters \rightarrow running ones) ...

$$\implies \frac{\partial V_{\text{eff}}}{\partial \mu} = 0 \quad \text{and one is free to choose } \mu \text{ to improve perturbation theory}$$

Since at large fields, $\phi \gg v$, we have $m_i(\phi)^2 \propto \phi^2$, we choose $\mu^2 = \phi^2$, then
 $V_{\text{eff}}(\phi) = \frac{\lambda(\phi)}{4} (\phi^2 - v(\phi)^2)^2 + ... = -\frac{m(\phi)^2}{2} \phi^2 + \lambda(\phi) \phi^4 + ...$

So for $\phi \gg v$

$$V_{
m eff}(\phi)\simeq rac{\lambda(\phi)}{4}\phi^4$$

- M_h contributes positively to $\lambda \rightarrow$ lower bound on M_h
- ▶ y_t contributes negatively to the running of $\lambda \rightarrow$ upper bound on M_t

Procedure to extract the stability bound

Steps of the procedure:

- $V_{\rm eff}$, including relevant parameters
- RGEs of the relevant couplings
- Values of the relevant parameters (also called *threshold corrections* or *matching conditions*) at the EW scale (e.g. at M_t) ...

Finally impose that $V_{\rm eff}$ at the EW vacuum is the absolute minimum!

Procedure to extract the stability bound

Steps of the procedure:

- $ightarrow V_{
 m eff}$, including relevant parameters
- RGEs of the relevant couplings

Values of the relevant parameters (also called *threshold corrections* or *matching conditions*) at the EW scale (e.g. at M_t) ...

Finally impose that $V_{\rm eff}$ at the EW vacuum is the absolute minimum!

State of the art loop calculation:

- Two loop V_{eff} including the leading couplings = { $\lambda, y_t, g_3, g_2, g_1$ } [Martin (2002); Ford, Jack (2002)]
- Three loop RGEs for {λ, y_t, g₃, g₂, g₁} and one loop RGE for {y_b, y_τ}... [Mihaila, Salomon, Steinhauser (2012); Chetyrkin, Zoller (2012, 2013); Bednyakov, Pikelner, Velizhanin (March 19 and 21, 2013)]
- Two loop values of $\{\lambda, y_t, g_3, g_2, g_1\}$ at $M_t \dots [New! (2014)]$

Procedure to extract the stability bound

Steps of the procedure:

- $ightarrow V_{
 m eff}$, including relevant parameters
- RGEs of the relevant couplings

Values of the relevant parameters (also called *threshold corrections* or *matching conditions*) at the EW scale (e.g. at M_t) ...

Finally impose that $V_{\rm eff}$ at the EW vacuum is the absolute minimum!

State of the art loop calculation:

- Two loop V_{eff} including the leading couplings = { $\lambda, y_t, g_3, g_2, g_1$ } [Martin (2002); Ford, Jack (2002)]
- Three loop RGEs for {λ, y_t, g₃, g₂, g₁} and one loop RGE for {y_b, y_τ}... [Mihaila, Salomon, Steinhauser (2012); Chetyrkin, Zoller (2012, 2013); Bednyakov, Pikelner, Velizhanin (March 19 and 21, 2013)]
- Two loop values of $\{\lambda, y_t, g_3, g_2, g_1\}$ at $M_t \dots [New! (2014)]$

Previous calculations: [...; Sher (1989); Casas, Espinosa, Quiros (1994, 1996); Bezrukov, Kalmykov, Kniehl, Shaposhnikov (2012); Degrassi, Di Vita, Elias-Miró, Espinosa, Giudice, Isidori, Strumia (2012); ...]

Input values of the SM observables

(used to fix the relevant parameters: λ , m, y_t , g_2 , g_Y)

$$\begin{array}{rcl} M_W &=& 80.384 \pm 0.014 \; {\rm GeV} & {\rm Mass \ of \ the \ W \ boson \ [1]} \\ M_Z &=& 91.1876 \pm 0.0021 \; {\rm GeV} & {\rm Mass \ of \ the \ Z \ boson \ [2]} \\ M_h &=& 125.15 \pm 0.24 \; {\rm GeV} & ({\rm source \ already \ quoted}) \\ M_t &=& 173.34 \pm 0.76 \pm 0.3 \; {\rm GeV} & {\rm Mass \ of \ the \ top \ quark \ [3]} \\ V &\equiv (\sqrt{2}G_{\mu})^{-1/2} &=& 246.21971 \pm 0.00006 \; {\rm GeV} \\ \alpha_3(M_Z) &=& 0.1184 \pm 0.0007 & {\rm SU(3)}_c \; {\rm coupling \ (5 \ flavors) \ [5]} \end{array}$$

[1] TeVatron average: FERMILAB-TM-2532-E. LEP average: CERN-PH-EP/2006-042

[2] 2012 Particle Data Group average, pdg.lbl.gov

[3] ATLAS, CDF, CMS, D0 Collaborations, arXiv:1403.4427. Plus an uncertainty $O(\Lambda_{\rm QCD})$ because of non-perturbative effects [Alekhin, Djouadi, Moch (2013)]

[4] MuLan Collaboration, arXiv:1211.0960

[5] S. Bethke, arXiv:1210.0325

Precise running of λ and its β -function

RGE evolution of λ and its β -function varying M_t , $\alpha_3(M_Z)$, M_h by $\pm 3\sigma$.

Result for the stability bound

$$M_h > 129.6\,{\rm GeV} + 2.0(M_t - 173.34\,{\rm GeV}) - 0.5\,{\rm GeV}\,\frac{\alpha_3(M_Z) - 0.1184}{0.0007} \pm 0.3\,{\rm GeV}$$

Combining in quadrature the experimental and theoretical uncertainties we obtain

 $M_h > (129.6 \pm 1.5) \,\mathrm{GeV}$

ightarrow vacuum stability of the SM up to the Planck scale is excluded at 2.8σ

Result for the stability bound

$$M_h > 129.6\,{\rm GeV} + 2.0(M_t - 173.34\,{\rm GeV}) - 0.5\,{\rm GeV}\,\frac{\alpha_3(M_Z) - 0.1184}{0.0007} \pm 0.3\,{\rm GeV}$$

Combining in quadrature the experimental and theoretical uncertainties we obtain

 $M_h > (129.6 \pm 1.5) \,\mathrm{GeV}$

ightarrow vacuum stability of the SM up to the Planck scale is excluded at 2.8σ

 Λ_I = scale (field value) at which $V_{\rm eff}$ becomes smaller than its value at the EW scale

The SM phase diagram in terms of Planck scale couplings

$y_t(M_{ m Pl})$ versus $\lambda(M_{ m Pl})$

"Planck-scale dominated" corresponds to $\Lambda_I > 10^{18}~{\rm GeV}$

"No EW vacuum" corresponds to a situation in which λ is negative at the EW scale

Interpretations of the near criticality

Why is $\lambda(M_{\rm Pl})$ small?

Interpretations of the near criticality

Why is $\lambda(M_{\rm Pl})$ small?

It could be the matching with some high energy theory close to $M_{\rm Pl}$:

- High scale SUSY with tan β = 1 [Hall, Nomura (2009); Giudice, Strumia (2014); Cabrera, Casas, Delgado (2012); Arbey, Battaglia, Djouadi, Mahmoudi, Quevillon (2012); Ibañez, Valenzuela (2013); Hebecker, Knochel, Weigand (2013)]
- Partial N = 2 SUSY insuring D-flatness [Fox, Nelson, Weiner (2006); Benakli, Goodsell, Staub (2012)]
- An approximate Goldstone or shift symmetry [Hebecker, Knochel, Weigand (2012); Redi, Strumia (2012)]
- No-scale scenario (Agravity) together with a Z₂ symmetry: if the mirror Higgs is the field that generates M_{P1}, its VEV is at the Planck scale and the corresponding potential has to be nearly vanishing (to have a small cosmological constant Λ) [Salvio, Strumia (2014)]

Interpretations of the near criticality

Why is $\lambda(M_{\rm Pl})$ small?

It could be the matching with some high energy theory close to $M_{\rm Pl}$:

- High scale SUSY with tan β = 1 [Hall, Nomura (2009); Giudice, Strumia (2014); Cabrera, Casas, Delgado (2012); Arbey, Battaglia, Djouadi, Mahmoudi, Quevillon (2012); Ibañez, Valenzuela (2013); Hebecker, Knochel, Weigand (2013)]
- Partial N = 2 SUSY insuring D-flatness [Fox, Nelson, Weiner (2006); Benakli, Goodsell, Staub (2012)]
- An approximate Goldstone or shift symmetry [Hebecker, Knochel, Weigand (2012); Redi, Strumia (2012)]
- No-scale scenario (Agravity) together with a Z₂ symmetry: if the mirror Higgs is the field that generates M_{P1}, its VEV is at the Planck scale and the corresponding potential has to be nearly vanishing (to have a small cosmological constant Λ) [Salvio, Strumia (2014)]

... or some property of the multiverse (not necessarily the anthropic selection)

 $\lambda(M_{\rm Pl})$ small is explained if critical points in the multiverse are attractors

The SM phase diagram in terms of Planck scale couplings

Gauge coupling g_2 at $M_{\rm Pl}$ versus $\lambda(M_{\rm Pl})$

Left: $g_1(M_{\rm P1})/g_2(M_{\rm P1}) = 1.22$ as in the SM, while $y_t(M_{\rm P1})$ and $g_3(M_{\rm P1})$ are kept to the SM value

Right: a common rescaling factor is applied to g_1, g_2 and g_3 . $y_t(M_{\rm Pl})$ are kept to the SM value

The SM phase diagram in terms of Higgs potential parameters

For $\lambda(M_{\text{Pl}}) < 0$ there is an upper bound on m by requiring a Higgs vacuum at the EW scale. This bound is, however, much weaker than the anthropic bound of [Agrawal, Barr, Donoghue, Seckel (1997); Schellekens (2014)]

Introduction

The stability bound on the Higgs mass

Metastability scenario

If $V_{\rm eff}$ becomes negative much before the Planck scale

- ▶ If M_h is close to the measured central value, Higgs inflation is not possible and V_{eff} becomes negative much before M_{Pl}
- If so, is this evidence for new physics? Yes, in the sense that at least the inflaton seems to be missing in the SM

If $V_{\rm eff}$ becomes negative much before the Planck scale

- If M_h is close to the measured central value, Higgs inflation is not possible and V_{eff} becomes negative much before M_{Pl}
- If so, is this evidence for new physics? Yes, in the sense that at least the inflaton seems to be missing in the SM

Rate of quantum tunnelling

It is given by the probability of nucleating a bubble of true VEV in a spacetime volume dV dt [Kobzarev, Okun, Voloshin (1975); Coleman (1977); Callan, Coleman (1977)]

$$d\wp = dt \, dV \, \Lambda_B^4 \, e^{-S(\Lambda_B)}$$

 $S(\Lambda_B) \equiv$ the action of the bounce of size $R = \Lambda_B^{-1}$, given by

$$S(\Lambda_B) = rac{8\pi^2}{3|\lambda(\Lambda_B)|}$$

Vacuum life-time

Left: The probability that EW vacuum decay happened in our past light-cone, taking into account the expansion of the universe.

Right: The life-time of the EW VEV, with two different assumptions for future cosmology: universes dominated by the cosmological constant (ACDM) or by dark matter (CDM) ...

Conclusions

- ▶ We have presented the stability bound at full next-to-next-to-leading order
- Comparing the result obtained with the experimental values of the relevant parameters we have found some tension, which we have quantified (2.8σ)
- Data vaguely indicate that the EW VEV is metastable (the life-time is > than the age of the universe) and that Higgs inflation is not possible
- Absolute stability, however, is not excluded now as the measured M_h and M_t are close to the bound once the uncertainties are taken into account
- The works we have discussed call for a better determination of M_t and $\alpha_3(M_Z)$
- We appear to live very close to the boundary between stability and metastability (near-criticality)

Extra slides

Step 1: effective potential

RG-improved tree level potential (V): classical potential with couplings replaced by the running ones

One loop (V_1): $V_{\rm eff}$ depends mainly on the top, W, Z, Higgs and Goldstone squared masses in the classical background ϕ : in the Landau gauge ... they are

$$t \equiv \frac{y_t^2 \phi^2}{2}, \ w \equiv \frac{g_2^2 \phi^2}{4}, \ z \equiv \frac{(g_2^2 + 3g_1^2/5)\phi^2}{4}, \ h \equiv 3\lambda \phi^2 - m^2, \ g \equiv \lambda \phi^2 - m^2$$

ightarrow (4 π)² V_1 is (in the $\overline{\mathrm{MS}}$ scheme)

$$\frac{3w^2}{2}\left(\ln\frac{w}{\mu^2} - \frac{5}{6}\right) + \frac{3z^2}{4}\left(\ln\frac{z}{\mu^2} - \frac{5}{6}\right) - 3t^2\left(\ln\frac{t}{\mu^2} - \frac{3}{2}\right) + \frac{h^2}{4}\left(\ln\frac{h}{\mu^2} - \frac{3}{2}\right) + \frac{3g^2}{4}\left(\ln\frac{g}{\mu^2} - \frac{3}{2}\right)$$

In order to keep the logarithms in the effective potential small we choose

$$\mu = \phi$$

Indeed, t, w, z, h and g are $\propto \phi^2$ for $\phi \gg m$

Two loop (V_2 **):** is very complicated, but always depend on t, w, z, h, g plus g_i

Step 2: running couplings

For a generic coupling $\boldsymbol{\theta}$ we write the RGE as

$$\frac{d\theta}{d\ln\mu^2} = \frac{\beta_{\theta}^{(1)}}{(4\pi)^2} + \frac{\beta_{\theta}^{(2)}}{(4\pi)^4} + \dots$$

They were computed before in the literature up to three loops

(very long and not very illuminating expressions at three loops)

One loop RGEs for λ, y_t^2, g_i^2 and m^2

$$\begin{split} \beta_{\lambda}^{(1)} &= \lambda \left(12\lambda + 6y_t^2 - \frac{9g_2^2}{2} - \frac{9g_1^2}{10} \right) - 3y_t^4 + \frac{9g_2^4}{16} + \frac{27g_1^4}{400} + \frac{9g_2^2g_1^2}{40}, \\ \beta_{y_t^2}^{(1)} &= y_t^2 \left(\frac{9y_t^2}{2} - 8g_3^2 - \frac{9g_2^2}{4} - \frac{17g_1^2}{20} \right), \\ \beta_{g_1^2}^{(1)} &= \frac{41}{10}g_1^4, \quad \beta_{g_2^2}^{(1)} = -\frac{19}{6}g_2^4, \quad \beta_{g_3^2}^{(1)} = -7g_3^4, \\ \beta_{m^2}^{(1)} &= m^2 \left(6\lambda + 3y_t^2 - \frac{9g_2^2}{4} - \frac{9g_1^2}{20} \right) \end{split}$$

Step 3: threshold corrections

$$\begin{split} \lambda(M_t) &= 0.12604 + 0.00206 \left(\frac{M_h}{\text{GeV}} - 125.15\right) - 0.00004 \left(\frac{M_t}{\text{GeV}} - 173.34\right) \pm 0.00030_{\text{th}} \\ \frac{m(M_t)}{\text{GeV}} &= 131.55 + 0.94 \left(\frac{M_h}{\text{GeV}} - 125.15\right) + 0.17 \left(\frac{M_t}{\text{GeV}} - 173.34\right) \pm 0.15_{\text{th}} \\ y_t(M_t) &= 0.93690 + 0.00556 \left(\frac{M_t}{\text{GeV}} - 173.34\right) - 0.00042 \frac{\alpha_3(M_Z) - 0.1184}{0.0007} \pm 0.00050_{\text{th}} \\ g_2(M_t) &= 0.64779 + 0.00004 \left(\frac{M_t}{\text{GeV}} - 173.34\right) + 0.00011 \frac{M_W - 80.384 \text{ GeV}}{0.014 \text{ GeV}} \\ g_Y(M_t) &= 0.35830 + 0.00011 \left(\frac{M_t}{\text{GeV}} - 173.34\right) - 0.00020 \frac{M_W - 80.384 \text{ GeV}}{0.014 \text{ GeV}} \\ g_3(M_t) &= 1.1666 + 0.00314 \frac{\alpha_3(M_Z) - 0.1184}{0.0007} - 0.00046 \left(\frac{M_t}{\text{GeV}} - 173.35\right) \end{split}$$

The theoretical uncertainties on the quantities are much lower than those used in previous determinations of the stability bound

