RGE of d = 6 Operators in SM EFT

Elizabeth Jenkins

Department of Physics University of California, San Diego

Madrid HEFT2014, September 29, 2014

Papers

- C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, "Renormalization Group Scaling of Higgs Operators and $h \to \gamma \gamma$ Decay," JHEP 1304:016 (2013).
- E.E. Jenkins, A.V. Manohar and M. Trott, "On Gauge Invariance and Minimal Coupling," JHEP 1309:063 (2013).
- E.E. Jenkins, A.V. Manohar and M. Trott, "Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and λ Dependence," JHEP 1310:087 (2013).
- E.E. Jenkins, A.V. Manohar and M. Trott, "Naive Dimensional Analysis Counting of Gauge Theory Amplitudes and Anomalous Dimensions," Phys. Lett. B726 (2013) 697-702.
- E.E. Jenkins, A.V. Manohar and M. Trott, "Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence," JHEP 1401:035 (2014).
- R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, "Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology," JHEP 1404:159 (2014).
- R. Alonso, E.E. Jenkins and A.V. Manohar, "Holomorphy without Supersymmetry in the Standard Model Effective Field Theory," arXiV:1409.0868 [hep-ph].

Generalization of the SM to SM EFT

- Discovery of Higgs boson h with mass 126 GeV at LHC and no other experimental signal of new physics up to energies $\Lambda \sim 1$ TeV implies that SM gives good description of nature up to high energies Λ .
- If no new particles below Λ, it is possible to study effect of arbitrary new physics at high energy Λ on electroweak scale observables by generalizing SM theory to SM EFT containing Lagrangian terms with d > 4. Low-energy fields of SM EFT are SM fields.

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^{d-4}} \sum_{i} C_{i} O_{i}^{(d)}$$

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_i C_i O_i^{(6)} + \cdots$$

Generalization of the SM to SM EFT

- Leading higher dimension operators are d = 6.
- Assuming B and L conservation, there are 59 independent dimension-six operators which form complete basis of d = 6 operators.
- 59 operators divided into eight operator classes.

1:
$$X^3$$
 2: H^6 3: H^4D^2 4: X^2H^2 5: ψ^2H^3
6: ψ^2XH 7: ψ^2H^2D 8: ψ^4

$$X=G_{\mu
u}^{A},W_{\mu
u}^{I},B_{\mu
u}\qquad \psi=q,I,u,d,e$$

Buchmuller & Wyler 1986

Grzadkowski, Iskrzynski, Misiak and Rosiek 2010

Dimension Six Operators

1 : X ³		2:	2 : H ⁶		3: H ⁴ D ²			5 : $\psi^2 H^3 + \text{h.c.}$		
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q _H ($H^{\dagger}H)^{3}$	Q _{H□}	$Q_{H\square}$ $(H^{\dagger}H)\square(H^{\dagger}H)$		Q _{eH}	$(H^{\dagger}H)(\overline{l}_{p}e_{r}H)$		
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$			Q _{HD}	$\left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu$	$H^{\dagger}D_{\mu}H$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$		
Q_W	$\epsilon^{IJK} W_{\mu}^{I u} W_{ u}^{J ho} W_{ ho}^{K\mu}$						Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$		
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$						•			
	4 : X ² H ²	6	δ : ψ ² ΧΗ	+ h.c.			7 : ψ ² H ² L)		
Q _{HG}	$H^{\dagger}HG_{\mu\nu}^{A}G^{A\mu\nu}$	Q _{eW}	$(\bar{l}_p \sigma^{\mu\nu} e$	$e_r)\tau^l HW^l_{\mu u}$,	Q _{HI} ⁽¹⁾	(H†i D	μ H)($\bar{l}_p \gamma^{\mu} l_r$)		
$Q_{H\widetilde{G}}$	$H^\dagger H \widetilde{G}^A_{\mu u} G^{A \mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu i}$	$^{ u}e_{r})HB_{\mu u}$		$Q_{HI}^{(3)}$	(H [†] i D	$(I_p \tau^l \gamma^\mu I_r)$		
Q_{HW}	$H^\dagger H W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A u_r)\widetilde{H} G_\mu^A$	l uv	Q _{He}		$_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{H\widetilde{W}}$	$H^\dagger H \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu})$	$u_r)\tau^I\widetilde{H}W^I_\mu$	ν	$Q_{Hq}^{(1)}$	(H [†] i D	$_{\mu}H)(ar{q}_{p}\gamma^{\mu}q_{r})$		
Q_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu})$	$^{\nu}u_{r})\widetilde{H}B_{\mu\nu}$		$Q_{Hq}^{(3)}$	(H [†] i D ^I _μ	$H)(\bar{q}_p \tau^l \gamma^\mu q_r)$		
$Q_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A d_r) H G_\mu^A$		Q _{Hu}	(H [†] i D	$_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$		
Q _{HWB}	$H^{\dagger} \tau^I H W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}		$(d_r)\tau^I H W_{\mu}^I$		Q_{Hd}	(H [†] i ׁD	$_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{H\widetilde{W}B}$	$H^{\dagger} au^I H \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu})$	$^{ u}d_{r})HB_{\mu u}$	Q _{Hu}	d + h.c.		$(u_p \gamma^\mu d_r)$		

Buchmuller & Wyler 1986

Grzadkowski, Iskrzynski, Misiak and Rosiek 2010

Dimension Six Operators

	8: $(\bar{L}L)(\bar{L}L)$		8 : (R̄R)(R̄R)		8 : (<i>LL</i>)(<i>RR</i>)			
Q_{II}	$(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$	Qee	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q _{le}	$(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$			
$Q_{qq}^{(1)}$	$(ar{q}_{ ho}\gamma_{\mu}q_{r})(ar{q}_{s}\gamma^{\mu}q_{t})$	Q _{uu}	$(\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t)$	Q_{lu}	$(ar{l}_{p}\gamma_{\mu}l_{r})(ar{u}_{s}\gamma^{\mu}u_{t})$			
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q _{dd}	$(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$			
$Q_{lq}^{(1)}$	$(ar{l}_{p}\gamma_{\mu}l_{r})(ar{q}_{s}\gamma^{\mu}q_{t})$	Q _{eu}	$(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$	Q_{qe}	$(ar{q}_{ ho}\gamma_{\mu}q_{r})(ar{e}_{s}\gamma^{\mu}e_{t})$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q _{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_{p}\gamma_{\mu}q_{r})(ar{u}_{s}\gamma^{\mu}u_{t})$			
		$Q_{ud}^{(1)}$	$(\bar{u}_p\gamma_\mu u_r)(\bar{d}_s\gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p\gamma_\mu T^Aq_r)(\bar{u}_s\gamma^\mu T^Au_t)$			
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t$	$Q_{qd}^{(1)}$	$(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$			
				$Q_{qd}^{(8)}$	$ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
	8 : (<i>L̄R</i>)(<i>R̄</i> I	L) + h.c.	. 8 : (<i>L̄R</i>)(<i>L̄R</i>)	+ h.c.				
	Q_{ledq} $(\bar{l}_p^j e$	$(\bar{d}_s q_{tj})$) $Q_{quqd}^{(1)}$ $(\bar{q}_p^j u_r)e^{i\vec{q}_p}$	$q_s^k(\bar{q}_s^k d_t)$				
			$Q_{quqd}^{(8)} \mid (\bar{q}_p^j T^A u_r) \epsilon$	$_{jk}(\bar{q}_s^kT^A$	$d_t)$			
			$Q_{lequ}^{(1)} \qquad (\bar{l}_p^j e_r) \epsilon_j$	$_{ik}(\bar{q}_s^k u_t)$				
			$Q_{lequ}^{(3)} \mid (\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon$	$_{ik}(ar{q}_s^k\sigma^{\mu u}$	u_t)			

Buchmuller & Wyler 1986

Grzadkowski, Iskrzynski, Misiak and Rosiek 2010

Dimension Six Operators

1:
$$X^3$$
 2: H^6 3: H^4D^2 4: X^2H^2 5: ψ^2H^3
6: ψ^2XH 7: ψ^2H^2D 8: ψ^4

- Operators in classes 1,2,3,4 are flavor singlet
- Operators in classes 5,6,7 have two flavor indices p, r
- Operators in class 8 have four flavor indices p, r, s, t

 $n_g = 1, 2, 3 \Rightarrow$ number of d = 6 operator coefficients is large!

Counting of Coefficients

Class		N_{op}	CP-even	CP-odd				
			n_g	1	3	n_g	1	3
1		4	2	2	2	2	2	2
2		1	1	1	1	0	0	0
3		2	2	2	2	0	0	0
4		8	4	4	4	4	4	4
5		3	3 <i>n</i> ²	3	27	3 <i>n</i> ²	3	27
6		8	$8n_a^2$	8	72	8 <i>n</i> ² _a	8	72
7		8	$\frac{1}{2}n_g(9n_g+7)$	8	51	$\frac{1}{2}n_g(9n_g - 7)$	1	30
8	: (<i>L</i> L)(<i>L</i> L)	5	$\frac{1}{4}n_g^2(7n_g^2+13)$	5	171	$\frac{7}{4}n_g^2(n_g-1)(n_g+1)$	0	126
8	$: (\overline{R}R)(\overline{R}R)$	7	$\frac{1}{8}n_g(21n_q^3+2n_q^2+31n_g+2)$	7	255	$\frac{1}{8}n_g(21n_g+2)(n_g-1)(n_g+1)$	0	195
8	$: (\overline{L}L)(\overline{R}R)$	8	$4n_q^2(n_q^2+1)$	8	360	$4n_q^2(n_g-1)(n_g+1)$	0	288
8	: (<i>LR</i>)(<i>RL</i>)	1	n_q^4	1	81	n_q^4	1	81
8	: (<i>L̄R</i>)(<i>L̄R</i>)	4	$4n_q^4$	4	324	$4n_q^4$	4	324
8	: All	25	$\frac{1}{8}n_g(107n_g^3+2n_g^2+89n_g+2)$	25	1191	$\frac{1}{8}n_g(107n_g^3 + 2n_g^2 - 67n_g - 2)$	5	1014
Total		59	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 213n_g^2 + 30n_g + 72)$	53	1350	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 57n_g^2 - 30n_g + 48)$	23	1149

Table : Number of *CP*-even and *CP*-odd coefficients in $\mathcal{L}^{(6)}$ for n_g flavors. The total number of coefficients is $(107n_g^4+2n_g^3+135n_g^2+60)/4$, which is 76 for $n_g=1$ and $\frac{2499}{6}$ for $n_g=3$.

SM EFT

• Higher dimensional operators generated at scale $\mu=\Lambda$ by integrating out new physics particles. Analysis model independent.

$$\mathcal{L}^{(6)} = \sum_{i} C_{i}(\Lambda) O_{i}^{(6)}(\Lambda) = \sum_{i} C_{i}(m_{h}) O_{i}^{(6)}(m_{h})$$

- Matrix elements of operators taken at $\mu = m_h$ (electroweak scale) for electroweak observables.
- RG evolution of dimension-six operator coefficients produces interesting mixing. Need to do RG evolution for accurate measurements of h → γγ, h → Zγ, gg → h.
- We have computed full one-loop anomalous dimension matrix γ_{ii} for dimension-six operators!

Structure of Anomalous Dimension Matrix

- Rescale Operators according to Naive Dimensional Analysis: $X \to gX$, and chirality flip operators scaled by Yukawa coupling y: $\psi^2H^3 \to y\psi^2H^3$, $\psi^2XH \to gy\psi^2XH$
- Anomalous dimension entries

$$\widehat{\gamma} \propto \left(\frac{\lambda}{16\pi^2}\right)^{n_{\lambda}} \left(\frac{y^2}{16\pi^2}\right)^{n_y} \left(\frac{g^2}{16\pi^2}\right)^{n_g}, \qquad N = n_{\lambda} + n_y + \frac{n_g}{n_g}$$

$$N = 1 + w_i - w_i$$

W	operators		{2}	$\{3,5,7,8\}$	$\{4,6\}$	{1 }
2	H ⁶	{2}	/ 1	2	3	4 \
1	H^4D^2 , $y\psi^2H^3$, ψ^2H^2D , ψ^4	{3,5,7,8}	0	1	2	3
0	$g^2X^2H^2$, $gy\psi^2XH$	{4,6}	-1	0	1	2
-1	g^3X^3	{1}	_2	-1	0	1 <i>J</i>
		l				

Anomalous Dimension Matrix

	H ⁶	H⁴D²	$y\psi^2H^3$	$\psi^2 H^2 D$	ψ^4	$g^2X^2H^2$	$gy\psi^2XH$	g^3X^3
Class	2	3	5	7	8	4	6	1
NDA Weight	2	1	1	1	1	0	0	-1
H ⁶	λ, y^2, g^2	$\lambda^2, \lambda g^2, g^4$	$\lambda y^2, y^4$	$\lambda y^2, \lambda g^2, M^7$	0	$\lambda g^4, g^6$	0	N ģ f
H^4D^2	0	λ, y^2, g^2	W ^A	y^2, g^2	0	b⁴	yA gA	ġ ^Ģ
$y\psi^2H^3$	0	λ, y^2, g^2	$\lambda, \textbf{y}^2, \textbf{g}^2$	$\lambda, \pmb{y^2}, \pmb{g^2}$	λ, y^2	g^4	$g^{\hspace{-2pt} Q} N, g^4, g^2 y^2$	ġ ^Ģ
ψ^2H^2D	0	g^2, y^2	W4	g^2, N, y^2	g^2,y^2	ġ†	ġ ^ą y₁ ^ą	ġ ^Ģ
$-\psi^4$	0	0	0	g^2, y^2	g^2, y^2	0	g^2y^2	ġ ^Ģ
$g^2X^2H^2$	0	11/	0	1/	0	λ, y^2, g^2	y^2	g^4
$gy\psi^2XH$	0	0	11/	1/	1	g ²	g^2, y^2	g^4
g^3X^3	0	0	0	0	0	1/	0	g ²

Table : Form of the one-loop anomalous dimension matrix $\hat{\gamma}_{ij}$ for dimension-six operators \hat{Q}_i rescaled according to naive dimensional analysis. The operators are ordered by NDA weight, rather than by operator class. The possible entries allowed by the one-loop Feynman graphs are shown. The cross-hatched entries vanish.

RGE

- RG running of SM parameters due to d = 6 operators. All corrections calculated.
- RG running of d = 6 operators. All corrections calculated. Formulae are many pages.
- RG mixing of d = 6 operators gives nontrivial implications for flavor structure of BSM physics.
- d = 6 operators affect interpretation of SM parameters at tree level.

 Observation: 1-loop anomalous dimension matrix respects holomorphy to a large extent.

Recall d = 6 Operator Classes

1 :
$$X^3$$
 2 : H^6 3 : H^4D^2 4 : X^2H^2 5 : ψ^2H^3
6 : ψ^2XH 7 : ψ^2H^2D 8 : ψ^4

Divide d=6 Operators into Holomorphic, Antiholomorphic and Non-Holomorphic Operators

$$egin{align} egin{aligned} egin{$$

Definition

The holomorphic part of the Lagrangian, $\mathcal{L}_{\mathfrak{h}}$, is the Lagrangian constructed from the fields X^+ , R, \overline{L} , but none of their hermitian conjugates.

6 :
$$\psi^2 XH + \text{h.c.}$$

$$rac{i}{2}\epsilon^{lphaeta\mu
u}\sigma_{\mu
u}P_{R}=-\sigma^{lphaeta}P_{R}$$

$$\begin{split} Q_{RX} &= \left(\overline{L}\sigma^{\mu\nu}R\right)X^{\mu\nu}\ H = \left(\overline{L}\sigma^{\mu\nu}R\right)X^{+\mu\nu}\ H, \\ Q_{RX}^{\dagger} &= \left(\overline{R}\sigma^{\mu\nu}L\right)X^{\mu\nu}\ H = \left(\overline{R}\sigma^{\mu\nu}L\right)X^{-\mu\nu}\ H, \end{split}$$

$$\mathcal{L}^{d=6} \supset C_{RX}Q_{RX} + C_{RX}^*Q_{RX}^{\dagger}$$

$${\color{red} 6}: \textit{Q}_{\textit{RX}}, \; \textit{Q}_{\textit{RX}}^{\dagger} \; \rightarrow \; \textit{Q}_{\textit{RX}}, \; \textit{Q}_{\textit{RX}}^{\dagger}$$

$$\begin{split} Q_X &= f^{ABC} X_{\mu}^{A\nu} X_{\nu}^{B\rho} X_{\rho}^{C\mu}, \\ Q_{\widetilde{X}} &= f^{ABC} \widetilde{X}_{\mu}^{A\nu} X_{\nu}^{B\rho} X_{\rho}^{C\mu}, \end{split}$$

$$egin{aligned} Q_{X,+} &\equiv rac{1}{2} \left(Q_X - i Q_{\widetilde{X}}
ight) = f^{ABC} X_\mu^{+A
u} X_
u^{+B
ho} X_
\rho^{+C\mu} \ Q_{X,-} &\equiv rac{1}{2} \left(Q_X + i Q_{\widetilde{X}}
ight) = f^{ABC} X_\mu^{-A
u} X_
u^{-B
ho} X_
\rho^{-C\mu} \end{aligned}$$

$$egin{align} \mathcal{L}^{d=6} \supset C_X Q_X + C_{\widetilde{X}} Q_{\widetilde{X}} &= C_{X,+} Q_{X,+} + C_{X,-} Q_{X,-} \ & C_{X,\pm} \equiv ig(C_X \pm i C_{\widetilde{X}} ig) \ & 1: Q_X, \ Q_{\widetilde{X}} \
ightarrow \ Q_{X,+}, \ Q_{X,-} \ \end{matrix}$$

$$4: X^2H^2$$

$$\begin{split} Q_{HX} &= X_{\mu\nu} X^{\mu\nu} \ H^\dagger H, \\ Q_{H\widetilde{X}} &= X_{\mu\nu} \widetilde{X}^{\mu\nu} \ H^\dagger H, \end{split}$$

$$Q_{HX,+} \equiv X^{+2} H^{\dagger} H = \frac{1}{4} \left(X - i \widetilde{X} \right)^2 H^{\dagger} H$$

$$Q_{HX,-} \equiv X^{-2} H^{\dagger} H = \frac{1}{4} \left(X + i \widetilde{X} \right)^2 H^{\dagger} H$$

$$egin{aligned} \mathcal{L}^{d=6} \supset C_{HX}Q_{HX} + C_{H\widetilde{X}}Q_{H\widetilde{X}} &= C_{HX,+}Q_{HX,+} + C_{HX,-}Q_{HX,-} \ C_{HX,\pm} &\equiv \left(C_{HX} \pm iC_{H\widetilde{X}}
ight) \end{aligned}$$

$$egin{aligned} oldsymbol{4} : Q_{HX}, \;\; Q_{H\widetilde{X}} \;\;
ightarrow \;\; Q_{HX,+}, \;\; Q_{HX,-} \end{aligned}$$

$$8: \psi^{4} = (\overline{L}R) (\overline{L}R), (\overline{R}L) (\overline{R}L)$$

$$Q_{LRLR'} = (\overline{L}^{j}R) \epsilon_{jk} (\overline{L}^{k}R'),$$

$$Q_{LRLR'}^{\dagger}$$

$$\mathcal{L}^{d=6} \supset C_{LRLR'} Q_{LRLR'} + C_{LRLR'}^{*} Q_{LRLR'}^{\dagger}$$

$$8: Q_{LRLR'}, Q_{LRLR'}^{\dagger} \rightarrow Q_{LRLR'}, Q_{LRLR'}^{\dagger}$$

$$Holomorphic + Antiholomorphic$$

$$egin{aligned} \mathbf{8} : \psi^4 &= (\overline{L}R) \ (\overline{R}L) \end{aligned}$$
 $Q_{ledq} &= \left(\overline{l}^j e
ight) \left(\overline{d}q_j
ight), \ Q_{ledq}^\dagger \ \mathcal{L}^{d=6} \supset C_{ledq} Q_{ledq} + C_{ledq}^* Q_{ledq}^\dagger \ \mathbf{8} : Q_{ledq}, \ Q_{ledq}^\dagger
ightarrow Q_{ledq}, \ Q_{ledq}^\dagger \ Non-holomorphic \end{aligned}$

8:
$$\psi^{4} = JJ = (\overline{L}\gamma^{\mu}L) (\overline{L}\gamma_{\mu}L) , (\overline{R}\gamma^{\mu}R) (\overline{R}\gamma_{\mu}R) , (\overline{L}\gamma^{\mu}L) (\overline{R}\gamma^{\mu}R)$$
2: $H^{6} = (H^{\dagger}H)^{3}$
3: $H^{4}D^{2} = (H^{\dagger}H) \Box (H^{\dagger}H) , (H^{\dagger}D_{\mu}H)^{*} (H^{\dagger}D_{\mu}H)$

Self - Hermitian

Non – holomorphic

$$egin{aligned} \mathbf{5} &: \psi^2 H^3 + ext{h.c.} \ Q_{RH} &= \left(H^\dagger H\right) \left(\overline{L}R\right) H, \ Q_{RH}^\dagger &= \left(H^\dagger H\right) \left(\overline{R}L\right) H^\dagger \ \mathcal{L}^{d=6} &\supset C_{RH} Q_{RH} + C_{RH}^* Q_{RH}^\dagger \ Non - holomorphic \end{aligned}$$

7 :
$$\psi^2 H^2 D$$

$$egin{aligned} Q_{HL} &= \left(H^\dagger i \overleftrightarrow{D}_\mu H
ight) \left(\overline{L} \gamma^\mu L
ight), \ Q_{HR} &= \left(H^\dagger i \overleftrightarrow{D}_\mu H
ight) \left(\overline{R} \gamma^\mu R
ight) \end{aligned}$$

$$\begin{split} Q_{Hud} &= i \left(\widetilde{H}^\dagger D_\mu H \right) \left(\overline{u} \gamma^\mu d \right), \\ Q_{Hud}^\dagger &= i \left(\widetilde{H}^\dagger D_\mu H \right) \left(\overline{d} \gamma^\mu u \right) \end{split}$$

Self – Hermitian (except Q_{Hud}) Non – holomorphic

$$\begin{split} \mathcal{L}^{d=6} &= \mathcal{L}_{\mathfrak{h}} + \mathcal{L}_{\overline{\mathfrak{h}}} + \mathcal{L}_{\mathfrak{n}} = \textit{C}_{\mathfrak{h}}\textit{Q}_{\mathfrak{h}} + \textit{C}_{\overline{\mathfrak{h}}}\textit{Q}_{\overline{\mathfrak{h}}} + \textit{C}_{\mathfrak{n}}\textit{Q}_{\mathfrak{n}} \\ \\ \textit{Q}_{\mathfrak{h}} &\subset \left\{ \textit{X}^{+3}, \, \textit{X}^{+2}\textit{H}^2, \, \left(\overline{\textit{L}}\sigma^{\mu\nu}\textit{R} \right) \, \textit{X}^{+}\textit{H}, \, (\overline{\textit{L}}\textit{R})(\overline{\textit{L}}\textit{R}) \right\} \\ \\ \textit{Q}_{\overline{\mathfrak{h}}} &\subset \left\{ \textit{X}^{-3}, \, \textit{X}^{-2}\textit{H}^2, \, \left(\overline{\textit{R}}\sigma^{\mu\nu}\textit{L} \right) \, \textit{X}^{-}\textit{H}, \, (\overline{\textit{R}}\textit{L})(\overline{\textit{R}}\textit{L}) \right\} \\ \\ \textit{Q}_{\mathfrak{n}} &\subset \left\{ \textit{H}^6, \, \textit{H}^4\textit{D}^2, \, \psi^2\textit{H}^3, \, \psi^2\textit{H}^2\textit{D}, \, (\overline{\textit{L}}\textit{R})(\overline{\textit{R}}\textit{L}), \, \textit{JJ} \right\} \end{split}$$

Definition

The holomorphic part of the Lagrangian, $\mathcal{L}_{\mathfrak{h}}$, is the Lagrangian constructed from the fields X^+ , R, \overline{L} , but none of their hermitian conjugates.

$$\dot{C}_i \equiv 16\pi^2 \mu rac{\mathrm{d}}{\mathrm{d}\mu} C_i = \sum_{j=\mathfrak{h},\overline{\mathfrak{h}},\mathfrak{n}} \gamma_{ij} C_j \;, \qquad \qquad i=\mathfrak{h},\overline{\mathfrak{h}},\mathfrak{n}$$

$$\left(\begin{array}{ccc} \gamma_{\mathfrak{h}\mathfrak{h}} & \gamma_{\mathfrak{h}\overline{\mathfrak{h}}} & \gamma_{\mathfrak{h}\mathfrak{n}} \\ \gamma_{\overline{\mathfrak{h}}\mathfrak{h}} & \gamma_{\overline{\mathfrak{h}}\overline{\mathfrak{h}}} & \gamma_{\overline{\mathfrak{h}}\mathfrak{n}} \\ \gamma_{\mathfrak{n}\mathfrak{h}} & \gamma_{\mathfrak{n}\overline{\mathfrak{h}}} & \gamma_{\mathfrak{n}\mathfrak{n}} \end{array} \right) = \left(\begin{array}{ccc} \gamma_{\mathfrak{h}\mathfrak{h}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \gamma_{\mathfrak{h}\mathfrak{h}}^* & \mathbf{0} \\ \gamma_{\mathfrak{n}\mathfrak{h}} & \gamma_{\mathfrak{n}\mathfrak{h}}^* & \gamma_{\mathfrak{n}\mathfrak{n}} \end{array} \right)$$

$$\left(\begin{array}{cc} \gamma_{\mathfrak{h}\mathfrak{h}} & \gamma_{\mathfrak{h}\mathfrak{n}} \\ \gamma_{\mathfrak{n}\mathfrak{h}} & \gamma_{\mathfrak{n}\mathfrak{n}} \end{array}\right) = \left(\begin{array}{cc} \gamma_{\mathfrak{h}\mathfrak{h}} & \mathbf{0} \\ \gamma_{\mathfrak{n}\mathfrak{h}} & \gamma_{\mathfrak{n}\mathfrak{n}} \end{array}\right)$$

$$\dot{\pmb{C}}_{\mathfrak{h}} = \sum_{\pmb{i}=\pmb{h}} \gamma_{\pmb{\mathfrak{h}}\pmb{j}} \pmb{C}_{\pmb{j}}$$

	$(X^{+})^{3}$	$(X^+)^2H^2$	$\psi^2 X^+ H$	$(\overline{L}R)(\overline{L}R)$	$(\overline{L}R)(\overline{R}L)$	JJ	$\psi^2 H^3$	H^6	H^4D^2	$\psi^2 H^2 D$
$(X^{+})^{3}$	h	$\rightarrow 0$	0	0	0	0	0	0	0	0
$(X^+)^2H^2$	ħ	ħ	h	0	0	∄	0	0	$\rightarrow 0 \\$	$\rightarrow 0 \\$
$\psi^2 X^+ H$	ħ	ħ	h	\mathfrak{h}_F	ightarrow 0	$\rightarrow 0 \\$	$\rightarrow 0$	0	∄	$\rightarrow 0 \\$
$(\overline{L}R)(\overline{L}R)$	→ 0	∄	\mathfrak{h}_F	\mathfrak{h}_F	$Y_u^\dagger Y_{e,d}^\dagger$	$Y_u^\dagger Y_{e,d}^\dagger$	∄	∄	∄	→ 0
$(\overline{L}R)(\overline{R}L)$	→ 0	∄	$\rightarrow 0 \\$	$Y_uY_d,Y_u^\dagger Y_e^\dagger$	\mathfrak{h}_F	*	∄	∄	∄	$\rightarrow 0 \\$
JJ	→ 0	∄	$\rightarrow 0 \\$	$Y_u Y_{e,d}$	*	*	∄	∄	∄	*
$\psi^2 H^3$	→ 0	$Y_{u,d,e}^{\dagger}$	h	h	*	*	*	∄	*	*
H^6	→ 0	*	∄	∄	∌	∄	*	*	*	*
H^4D^2	→ 0	$\rightarrow 0 \\$	$\rightarrow 0 \\$	∄	∌	∄	$\rightarrow 0$	∄	*	*
$\psi^2 H^2 D$	→ 0	$\rightarrow 0 \\$	$\rightarrow 0 \\$	$\rightarrow 0$	\rightarrow 0	*	$\rightarrow 0$	∄	*	*

Table : Form of the one-loop anomalous dimension matrix for d=6 operators. Y is a Yukawa coupling. The first 4 rows and columns involve holomorphic operators (and their conjugates), and the rest involve non-holomorphic operators. The RGE for the rows can depend on the C of each column, or their conjugates. Entries which must vanish by NDA are denoted by 0, those for which there is no one-loop diagram (after taking equations of motion into account) are denoted by $\frac{\pi}{2}$, and those which vanish by explicit computation are denoted by \rightarrow 0. Entries with $\frac{\pi}{2}$ are non-zero, and satisfy holomorphy, i.e. they depend on C but not C^* . Entries with $\frac{\pi}{2}$ restricts with $\frac{\pi}{2}$ are non-zero, but not holomorphic. The red entries violate holomorphy.

Summary

- Complete RGE of dimension-six operators of SM EFT computed for first time.
- Contribution of dimension-six operators to running of SM parameters calculated for first time.
- RG evolution of dimension-six operators important for Higgs boson production gg → h and decay h → γγ and h → Zγ, which occur at one loop in SM.
- Significant constraints on flavor structure of SM EFT. Test of MFV hypothesis.
- Approximate holomorphy of 1-loop anomalous dimension matrix of dimension-six operators.