A Comprehensive Approach to Non-SM Decays of the 125 GeV Boson:

Exotic Decays of the 125 GeV Higgs Boson

David Curtin,¹ Rouven Essig,¹ Stefania Gori,^{2,3} Prerit Jaiswal,⁴ Andrey Katz,⁵ Tao Liu,⁶ Zhen Liu,⁷ David McKeen,^{8,9} Jessie Shelton,⁵ Matthew Strassler,¹ Ze'ev Surujon,¹ Brock Tweedie,¹⁰ and Yi-Ming Zhong^{1,*} Matt Strassler Harvard 6/13/14

Contains extensive list of references

Exotic Decays of the 125 GeV Higgs Boson

David Curtin,¹ Rouven Essig,¹ Stefania Gori,^{2,3} Prerit Jaiswal,⁴ Andrey Katz,⁵ Tao Liu,⁶ Zhen Liu,⁷ David McKeen,^{8,9} Jessie Shelton,⁵ Matthew Strassler,¹ Ze'ev Surujon,¹ Brock Tweedie,¹⁰ and Yi-Ming Zhong^{1,*} Matt Strassler Harvard 6/13/14

Contains extensive list of references

Ineffective Field Theory [Higgs IFT]

- If particles lighter than h to which the h can decay, effective theory with momentum expansion obviously inappropriate
- What do we really want to know?
 - Does the h have non-SM decays via lighter particles?
- Can study specific models with particular features e.g. NMSSM
 - but risk of missing signatures common in other models
- Best (comprehensive) approach:
 - Systematically list all the options for signatures
 - Design finite # (ideally small!) of LHC searches that cover all the options
- Along the way:
 - Simple benchmark/toy models that produce the signatures
 - Simplified Models (On-Shell "Effective" Theories) for interpreting results

Motivation

- h decays may serve as window to weakly-interacting unknown particles.
 - e.g. discovery of neutrino in beta decay, other neutrinos in muon, tau decay
 - e.g. non-discovery of 4th neutrino, majorons, others in Z decay
- Dark Matter exists;
 - if it is particles, these particles may not carry SU(2) quantum numbers
 - Therefore these particles may have evaded LEP & have mass < 100 GeV</p>
 - So possible that h → DM → invisible decay
 - Difficult to observe for Br < 10%
 - If DM part of low mass dark sector ("hidden valley"), then maybe
 - $h \rightarrow$ dark sector particles \rightarrow visible particles, with or without MET
 - Much easier to observe! Can sometimes reach Br <<< 10%
- H "Portal" easy access to dark/hidden sectors/valleys
 - H operator has dimension 1, |H|² is gauge invariant, dimension 2
 - Coupling to "dark" sector involves low dimension operator

Motivation (2)

- 125 GeV h has very narrow width
 - → small interactions with new sector can generate new decays
 - These decays could have had Br ~ 100%; could still have Br ~ 10%.
- Number of h produced is large, so potential to reach Br ~ 10⁻⁴ or better
 - 10⁶ already produced
 - Approaching 10⁸ in foreseeable future
 - But --- trigger and analysis challenges!
 - 2011-2012 data may still be useful!
- In some theories,
 - h decays are **first** BSM physics discoverable at LHC
 - Or even the **only** BSM physics discoverable at LHC14!
- Same searches might turn up new members of scalar sector (e.g. heavy H) whose decays are dominated by non-SM final states

Urgency? Trigger!

- Higgs has m ~ 125 GeV
- $h \rightarrow 4$ or more partons \rightarrow typical $p_T \sim 30$ GeV or less
 - Very low except for muons!
- ATLAS/CMS: Trigger challenge met for SM 4-body decays
- But not necessarily for non-SM decays with few e's, μ's

Covered in Our Study

h decays

to at most four visible SM partons

Exotic Decays of the $125~{\rm GeV}$ Higgs Boson

David Curtin,¹ Rouven Essig,¹ Stefania Gori,^{2,3} Prerit Jaiswal,⁴ Andrey Katz,⁵ Tao Liu,⁶ Zhen Liu,⁷ David McKeen,^{8,9} Jessie Shelton,⁵ Matthew Strassler,¹ Ze'ev Surujon,¹ Brock Tweedie,¹⁰ and Yi-Ming Zhong^{1,*}

and involving at least one non-SM particle in intermediate step

Not Covered

- Subtleties when particles are collimated
 - We only covered "simple lepton jets" (each jet has 2 leptons, nothing else)
- New long-lived particles: require different treatment
- Higher parton-multiplicity final states

Also:

- Simple and well-studied final states like $h \rightarrow \tau \mu$
- Decays involving new off-shell particles

Initial Comments

- Some of our paper is indeed literature review
 - Theory studies (some quite old)
 - Experimental results (very few)
- Some of our paper involves new results
 - New theory studies for certain decay channels
 - New interpretation of some ATLAS/CMS results
- And we provide *preliminary prioritization*:
 - Which channels are most promising in the near term?

Main take-away message:

- Need for improved theory studies for a number of channels!
- Need for dedicated experimental studies!
- And then there are many channels we did not study at all

Decays Without MET

New particles with $m < m_h$ must be **neutral** to avoid LEP discovery

With a small loophole

We consider

- Spin 0 "a" [scalar or pseudo-scalar]
- Spin 1 "Z_D" [vector or pseudo-vector]

 $h \rightarrow 2 \rightarrow 4$

- Spin $\frac{1}{2}$ \rightarrow h decay to 6 visible fermions or MET + 4 visible particles
 - e.g. $h \rightarrow$ neutralinos \rightarrow 6 fermions via RPV

Simple Models and Simplified Models

Example:

- $h \rightarrow Z Z_D$ from Vector Boson Z_D mixing through kinetic mixing only
- The Simple Model
 - SM x U(1)', H' charged under U(1) only, Z_D gets a mass m'
 - kinetic mixing ε, V(h') parameters, e'
- Simplify:
 - Most of these parameters do not affect the pheno of $h \rightarrow Z Z_D$
 - In search for $h \rightarrow Z Z_D \rightarrow 4$ leptons (best channel), need m and Br($h \rightarrow Z Z_D$)
 - Limit on Br as function of m
 - Note ε matters directly if lifetime long; then use $\Gamma(Z_D)$ as parameter.
- Thus complete or largely complete many-parameter model reduces to simplified model

 few-observable method for data interpretation

Benchmark Model

SM x U(1)_x

$$\mathcal{L}_X = -\frac{1}{4}\hat{X}_{\mu\nu}\hat{X}^{\mu\nu} + \frac{\chi}{2}\hat{X}_{\mu\nu}\hat{B}^{\mu\nu} \qquad \qquad \chi \to \frac{\epsilon}{\cos\theta_W}$$

$$\mathcal{L}_{\Phi} = |D_{\mu}\Phi_{SM}|^{2} + |D_{\mu}\Phi_{H}|^{2} + \mu_{\Phi_{H}}^{2}|\Phi_{H}|^{2} + \mu_{\Phi_{SM}}^{2}|\Phi_{SM}|^{2} - \lambda |\Phi_{SM}|^{4} - \rho |\Phi_{H}|^{4} - \kappa |\Phi_{SM}|^{2} |\Phi_{H}|^{2},$$

'dark higgs' Φ_H with $U(1)_X$ charge q_X

Br's for Z_D with only kinetic mixing

 $Br(Z_D \rightarrow ee) + Br(Z_D \rightarrow \mu\mu) > 20\%$ (except at ρ,ω); typically 30%

Four e/µ Final State

$h \rightarrow Z Z_{D}$

- Z_{D} produced & decays via kinetic mixing with γ/Z
- 2 parameters: Z_D mass, $\varepsilon \ll 1$

 Z_{D} on-shell, extremely narrow width

ATLAS $20 + 5 \text{ fb}^-$

9/30/2014

16

Published ATLAS/CMS ZZ* data allow us to extract limits

Direct limit

Br(h \rightarrow Z X \rightarrow 4 ℓ) ~ 3 x 10⁻⁵

Including Z decay width to leptons

 $Br(h \rightarrow Z X) Br(X \rightarrow \ell \ell) \sim 5 \times 10^{-4}$

Assuming a Z_{D} with kinetic mixing

- $Br(Z_D \rightarrow \ell \ell) \sim 0.3$
- $Br(h \rightarrow Z Z_D) \sim 2 \times 10^{-3}$

Mass plane when h mixing >> Z kinetic mixing.

Pink:

8-fermion final states dominate

Black contours:

Values of κ required for Br(non-SM h decays) =10%.

Four e/µ Final State

$h \rightarrow Z_D Z_D$

- Z_D produced via mixing of h with h_D
- Z_D decays via mixing with γ/Z

 $h \xrightarrow{\theta}{h_D} \xrightarrow{Z_D} \underbrace{\ell}{\ell}$ $h \xrightarrow{\theta}{h_D} \xrightarrow{\xi_D} \underbrace{\ell}{\ell}$ $h \xrightarrow{0}{2 \rightarrow 4}$

Why doesn't $h \rightarrow Z Z^*$ take care of this?

- Incorrectly pair leptons in almost all eeee, μμμμ events
- Eliminate most $ee\mu\mu$ events for $m_{\ell\ell} < 40 \text{ GeV}$
- Still we can extract limits (CMS h→ZZ*, ATLAS non-resonant Z*Z*)

Direct limit

• Br(h \rightarrow X X \rightarrow 4 ℓ) ~ 5 x 10⁻⁵

Assuming a Z_D with kinetic mixing

• Br(h \rightarrow Z_D Z_D) ~ 5 x 10⁻⁴

We think ATLAS/CMS could do factor of 2 - 8 better <u>now</u>, especially at low mass

Other MET-less 4-body Decays

- h → aa
 - bb bb
 - bb ττ
 - bb μμ
 - ττ ττ
 Trilepton search
 - ττ μμ
 Trilepton search + dimuon resonance
 - γγ γγ
 - γγ gg
- $h \rightarrow a Z_D, a a'$

Decays with MET

With MET, # of processes, parameters grows rapidly

- Any final state can arise from many decay chains
 - Need multiple simplified models
- Studies needed!
 - Experimental issues are subtle
- Most promising final states
 - 1 or more photons + MET
 - 1 or more lepton pairs + MET

No evidence yet that other final states are feasible at high MET

• Maybe resonant bb + MET at 300 fb⁻¹?

Recently: Huang et al. '14

Recently: Gabrielli et al. '14

Challenges (1)

Often multiple possible decay chains with different kinematics

- Need several simplified models to cover kinematics
- Typically have 3 or more parameters (multiple masses, Br's)

Challenges (2)

- High MET: MET is useful in bkgd reduction, but γ/ℓ soft, inefficient
 - MET-based search, plus soft visible objects to reduce backgrounds
 - Possible kinematic features in the visible objects
- Low MET: harder γ/ℓ , but MET useless; just changes kinematics
 - Visible parton-based search, but with relaxed kinematic constraints

Example: 4 leptons + MET

- High MET: use VBF + MET search
 - + require 3 soft ℓ or + 2 SS ℓ ?
- Low MET: use 4-lepton search
 - Require all 4 l detectable
 - Do **not** demand $m_{4\ell} = 125 \text{ GeV}$
 - Look for resonances or edges in l+l- pairs

(alternate: use trilepton search, look for Z_D resonance?)

NMSSM versus Simpler Theories?

- NMSSM
 - R-sym limit of NMSSM: light R-axion to which h can decay
 - PQ-sym limit of NMSSM: light PQ-axion, scalar and singlino;
 - h→ fermions dominates, e.g. bino + singlino
 - Common: bino \rightarrow singlino + a :
- In NMSSM, a \rightarrow heaviest fermion
- Outside NMSSM, more general 2 doublet + 1 singlet model
 - a → leptons may dominate
 - $a \rightarrow$ up-type quarks may dominate

This has dramatic effects on searches

Need general framework, motivated by but not constrained by NMSSM

In absence of superpartners, important to remain agnostic

Recent Studies: Huang et al. '12,'13,'14

Different Branching Fractions for a

Should not restrict searches to NMSSM-motivated scenario!

Recommend use of at least two benchmark models:

- 1. NMSSM-like model
- 2. Leptonic-dominated quark-suppressed 2DHM+S model

Collimated Objects

- Simple lepton jets (2 particles) vs Complex lepton jets (>2 particles)
 - Preliminary searches for h decays to dielectron, dimuon exist
 - Very preliminary searches for multi-electron, multi-muon
 - Little for both e and mu
 - Nothing for e, mu and pions,
 - Challenge of multiple mass scales
- Multi-jets
 - Boosted $h \rightarrow 4$ jets has been studied
 - What if $h \rightarrow s s$ and $s \rightarrow collimated quarks or gluons?$
 - What if $h \rightarrow$ neutralino \rightarrow RPV decays to jets?
 - Very challenging searches

This is still a frontier for thinking: how to be comprehensive?

- Simplest models are same as before with small masses or splittings
- But higher-multiplicity models have more (relevant) parameters

Long Lifetimes

Take any of previous decays; there are models with long lifetimes

- Commonly there is a symmetry that is restored at infinite lifetime
 - So long lifetime is technically natural
 - And in many models it is common due to natural suppression
 - e.g. non-abelian dark vector → kinetic mixing higher-dim op
 - e.g. composite dark vector → mixing suppressed by compositeness

So we can use the same theories, but very different experimental situation

- No SM background unless kinematics & lifetime near B,D mesons
- Detector backgrounds
 - cannot be simulated by theorists
 - but are often very small
- Trigger and reconstruction challenges are unique

ATLAS, CMS, LHCb making slow, unsteady but significant progress

Long Lifetimes: Experimental Methods

How is it done?

Look for various non-SM "objects"

- Bottom-like jet with vertex unusually displaced/massive/high-multiplicity
- Reconstructed tracks with vertex in pixel detector
- Apparently track-less jet, with vertex visible with special track reco.
- Vertex in HCAL: narrow "tau-like" jet with no ECAL energy
- Tracks in ATLAS muon system with no jet or ordinary tracks behind it

Many tricks

- Use displaced muon as special pointer.
- Displaced muon pairs are special;
 - Can be found even in calorimeter or outer tracker

Typically use specialized triggers (but overused?)

Long Lifetimes

ATLAS, CMS, LHCb searches

Sometimes can focus on a single object

- Displaced lepton pair + X in the tracker
- Displaced jet pair + X in the tracker

Often need two to beat backgrounds

- Two displaced jet pairs in the muon system ATLAS
- Two displaced vertices in the HCAL ATLAS

Two Decays in Hadronic Calorimeter

Single-Vertex Searches

Several at CMS, not at ATLAS

- CMS searches very powerful
 - For di-lepton vertex in tracker
 - For di-jet vertex in tracker
 - Many theorists still don't realize how devastating this search was!
 - CMS needs to extend reach to 125 GeV h, to longer/shorter lifetime

Importance of single vertex detection at ATLAS!!

- Needed for access to long-lifetime limit
 - ATLAS is bigger and can use its muon system as a tracker
- But should be able to use
 - VBF jets + vertex,
 - lepton + vertex
 - MET + vertex [EXTREMELY IMPORTANT for long lifetimes!]

Displaced Dilepton Pair

Long Lifetimes and High Multiplicity

- This "Embarrassment of Riches" is unfortunately technically difficult from all perspectives
 - Many parameters (masses, lifetimes) play a role in the phenomenology
 - If multiple displaced vertices, each vertex may ruin isolation of others
 - E.g. a vertex in the tracker may have a "jet" in the HCAL
 - E.g. a vertex in the HCAL may have ECAL energy from another vertex
 - E.g. a vertex in the ECAL ruins isolation of a vertex in muon system

Summary

Need a comprehensive approach to non-SM h decays

- Could be the only new physics at the LHC
- We do not have a strong theoretical bias as to what it will look like
- Comprehensive low-multiplicity no-MET case exists now
- Comprehensive low-multiplicity MET case is harder, partially exists
- Need to improve collimated case, especially transition to uncollimated
- Long lifetimes more powerful searches needed
- Higher multiplicity poses many problems

NEED MORE THEORY/EXPT. STUDIES for high-priority channels

- e.g. bbµµ, γ + MET, γγ + MET (for varying cascades, mass ranges)
- Still a little time left to influence trigger choices in 2015!