

Accurate predictions for Higgs Characterisation

Marco Zaro, LPTHE - UPMC Paris VI based on

Artoisenet, de Aquino, Demartin, Frederix, Frixione, Maltoni, Mandal, Mathews, Mawatari, Ravindran, Seth, Torrielli, MZ, arXiv:1306.6464 Maltoni, Mawatari, MZ, arXiv:1311.1829 Demartin, Maltoni, Mawatari, Page, MZ, arXiv:1407.5089

HEFT 2014 @IFT Madrid

September 30, 2014

What is that peak??

Is it THE Higgs boson as expected in the SM?

RESIDENCE PERMI	ZU1234567
NAME Higgs boson DATE OF BIRTH Jul 4th 2012 (presumed) SPIN 0 CP even FERMIONIC COUPLING m_f/v BOSONIC COUPLING $2m_v^2/v$ SELF COUPLING $\lambda = M_H^2/2v^2$	
UK RESIDENCE PERMIT	EU ED EO FO FO FO EU

How to answer the question(s)?

• (at least) Two approaches can be used:

Anomalous couplings (AC)

e.g JHU (arXiv: 1001.3396, 1208.4018)

- Only requirement is Lorentz symmetry
- Agnostic on new physics
- × Non renormalizable

Large number of extra couplings
 Possibly violate unitarity, yet can
 include model dependent form factors

Effective field theory (EFT)

✓ Based on SM symmetries
 X Valid only up to a scale Λ
 ✓ X New physics heavier than the resonance itself
 ✓ Renormalizable (order by order in I/Λ) → can include QCD corrections
 ✓ Reduce number of extra couplings by using symmetries and dimensional

LHCPhenoNet

analyses

The HC-EFT approach

- Use the Higgs dim-6 effective Lagrangian and implement it in FeynRules → UFO model
- Add missing pieces needed for NLO QCD corrections UV/R₂
 SM + Hgg
- Include QCD corrections in the MADGRAPH5_AMC@NLO framework → events (rates & distributions) at NLO in QCD
- Study different production and decay channels, keeping spincorrelations
- Disclaimer: we assume the EFT approach to be valid in all the phase-space

framework

Alwall, Frederix, Frixione, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Hirschi, MZ, arXiv: 1405.0301

Above the EW scale:

D6 Higgs Effective Lagrangian

slide from K. Mawatari@MC4BSM 2014

$$\begin{split} \mathcal{L}_{\text{SILH}} &= \frac{\bar{c}_{\scriptscriptstyle H}}{2v^2} \partial^{\mu} \big[\Phi^{\dagger} \Phi \big] \partial_{\mu} \big[\Phi^{\dagger} \Phi \big] + \frac{\bar{c}_{\scriptscriptstyle T}}{2v^2} \big[\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi \big] \big[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \big] - \frac{\bar{c}_{\scriptscriptstyle 6} \lambda}{v^2} \big[H^{\dagger} H \big]^3 \\ &- \left[\frac{\bar{c}_{\scriptscriptstyle u}}{v^2} y_u \Phi^{\dagger} \Phi \ \Phi^{\dagger} \cdot \bar{Q}_L u_R + \frac{\bar{c}_{\scriptscriptstyle d}}{v^2} y_d \Phi^{\dagger} \Phi \ \Phi \bar{Q}_L d_R + \frac{\bar{c}_{\scriptscriptstyle i}}{v^2} y_\ell \ \Phi^{\dagger} \Phi \ \Phi \bar{L}_L e_R + \text{h.c.} \right] \\ &+ \frac{ig \ \bar{c}_{\scriptscriptstyle W}}{m_{\scriptscriptstyle W}^2} \big[\Phi^{\dagger} T_{2k} \overleftrightarrow{D}^{\mu} \Phi \big] D^{\nu} W_{\mu\nu}^k + \frac{ig' \ \bar{c}_{\scriptscriptstyle R}}{2m_{\scriptscriptstyle W}^2} \big[\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi \big] \partial^{\nu} B_{\mu\nu} \\ &+ \frac{2ig \ \bar{c}_{\scriptscriptstyle HW}}{m_{\scriptscriptstyle W}^2} \big[D^{\mu} \Phi^{\dagger} T_{2k} D^{\nu} \Phi \big] W_{\mu\nu}^k + \frac{ig' \ \bar{c}_{\scriptscriptstyle HB}}{m_{\scriptscriptstyle W}^2} \big[D^{\mu} \Phi^{\dagger} D^{\nu} \Phi \big] B_{\mu\nu} \\ &+ \frac{\bar{g}'^2 \ c_{\scriptscriptstyle \gamma}}{m_{\scriptscriptstyle W}^2} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu} + \frac{\bar{g}_s^2 \ c_g}{m_{\scriptscriptstyle W}^2} \Phi^{\dagger} \Phi G_{\mu\nu}^a G_a^{\mu\nu} \,, \end{split}$$

$$\begin{aligned} \text{Alloul, Fuks, Sanz, arXiv:1310.515} \\ CP &= \frac{ig \ \tilde{c}_{HW}}{m_W^2} D^{\mu} \Phi^{\dagger} T_{2k} D^{\nu} \Phi \widetilde{W}^k_{\mu\nu} + \frac{ig' \ \tilde{c}_{HB}}{m_W^2} D^{\mu} \Phi^{\dagger} D^{\nu} \Phi \widetilde{B}_{\mu\nu} + \frac{g'^2 \ \tilde{c}_{\gamma}}{m_W^2} \Phi^{\dagger} \Phi B_{\mu\nu} \widetilde{B}^{\mu\nu} \\ &+ \frac{g_s^2 \ \tilde{c}_g}{m_W^2} \Phi^{\dagger} \Phi G^a_{\mu\nu} \widetilde{G}^{\mu\nu}_a + \frac{g^3 \ \tilde{c}_{3W}}{m_W^2} \epsilon_{ijk} W^i_{\mu\nu} W^{\nu j}_{\ \rho} \widetilde{W}^{\rho\mu k} + \frac{g_s^3 \ \tilde{c}_{3G}}{m_W^2} f_{abc} G^a_{\mu\nu} G^{\nu b}_{\ \rho} \widetilde{G}^{\rho\mu c} \end{aligned}$$

$$\begin{split} \mathcal{L}_{G} &= \frac{g^{3} \ \bar{c}_{_{3W}}}{m_{_{W}}^{2}} \epsilon_{ijk} W^{i}_{\ \mu\nu} W^{\nu j}_{\ \rho} W^{\rho\mu k} + \frac{g^{3}_{s} \ \bar{c}_{_{3G}}}{m_{_{W}}^{2}} f_{abc} G^{a}_{\ \mu\nu} G^{\nu b}_{\ \rho} G^{\rho\mu c} + \frac{\bar{c}_{_{2W}}}{m_{_{W}}^{2}} D^{\mu} W^{k}_{\ \mu\nu} D_{\rho} W^{\rho\nu}_{k} \\ &+ \frac{\bar{c}_{_{2B}}}{m_{_{W}}^{2}} \partial^{\mu} B_{\mu\nu} \partial_{\rho} B^{\rho\nu} + \frac{\bar{c}_{_{2G}}}{m_{_{W}}^{2}} D^{\mu} G^{a}_{\ \mu\nu} D_{\rho} G^{\rho\nu}_{a} \ , \end{split}$$

$$\mathcal{L}_{F_{1}} = \frac{i\bar{c}_{HQ}}{v^{2}} [\bar{Q}_{L}\gamma^{\mu}Q_{L}] \left[\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi\right] + \frac{4i\bar{c}_{HQ}'}{v^{2}} [\bar{Q}_{L}\gamma^{\mu}T_{2k}Q_{L}] \left[\Phi^{\dagger}T_{2}^{k}\overleftrightarrow{D}_{\mu}\Phi\right]$$

$$+ \frac{i\bar{c}_{Hu}}{v^{2}} [\bar{u}_{R}\gamma^{\mu}u_{R}] \left[\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi\right] + \frac{i\bar{c}_{Hd}}{v^{2}} [\bar{d}_{R}\gamma^{\mu}d_{R}] \left[\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi\right]$$

$$- \left[\frac{i\bar{c}_{Hud}}{v^{2}} [\bar{u}_{R}\gamma^{\mu}d_{R}] \left[\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi\right] + h.c.\right]$$

$$+ \frac{i\bar{c}_{HL}}{v^{2}} [\bar{L}_{L}\gamma^{\mu}L_{L}] \left[\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi\right] + \frac{4i\bar{c}_{HL}'}{v^{2}} [\bar{L}_{L}\gamma^{\mu}T_{2k}L_{L}] \left[\Phi^{\dagger}T_{2}^{k}\overleftrightarrow{D}_{\mu}\Phi\right]$$

$$+ \frac{i\bar{c}_{HL}}{v^{2}} [\bar{e}_{R}\gamma^{\mu}e_{R}] \left[\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi\right] + \frac{4i\bar{c}_{HL}'}{v^{2}} [\bar{L}_{L}\gamma^{\mu}T_{2k}L_{L}] \left[\Phi^{\dagger}T_{2}^{k}\overleftrightarrow{D}_{\mu}\Phi\right]$$

$$+ \frac{2g' \bar{c}_{eB}}{m_{W}^{2}} y_{\ell} \Phi\bar{L}_{L}\gamma^{\mu\nu}e_{R} B_{\mu\nu} + \frac{4g \bar{c}_{eW}}{m_{W}^{2}} y_{\ell} \Phi(\bar{L}_{L}T_{2k})\gamma^{\mu\nu}e_{R} W_{\mu\nu}^{k} + h.c. \right]$$

The model file is publicly available. (<u>https://feynrules.irmp.ucl.ac.be/wiki/HEL</u>)

Below the EW scale:

Mapping between the D6 and D5 operators

slide from K. Mawatari@MC4BSM 2014 HC [arXiv: 1306.6464]

$$\mathcal{L}_0^f = -\sum_{f=t,b,\tau} \bar{\psi}_f \big(c_\alpha \kappa_{Hff} g_{Hff} + i s_\alpha \kappa_{Aff} g_{Aff} \gamma_5 \big) \psi_f X_0$$

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{\rm SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] - \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \right\}$$

$$-\frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$$

$$-\frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G^{a}_{\mu\nu} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G^{a}_{\mu\nu} \widetilde{G}^{a,\mu\nu} \right] \\ -\frac{1}{4} \left[c_{\alpha} \kappa_{Hzz} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{Azz} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$-\frac{1}{2}\frac{1}{\Lambda}\left[c_{\alpha}\kappa_{HWW}W_{\mu\nu}^{+}W^{-\mu\nu}+s_{\alpha}\kappa_{AWW}W_{\mu\nu}^{+}\widetilde{W}^{-\mu\nu}\right]$$
$$-\frac{1}{\Lambda}c_{\alpha}\left[t\right]$$
The two approac

 $V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\overline{\nu}}v_{\overline{\mu}} \quad (v = A, Z, vv), \quad v_{\mu\nu} = \overline{2}\epsilon_{\mu\nu\rho\sigma}$

 $G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + g_s f^{abc} G^b_\mu G^c_\nu \,,$

HEL [arXiv: 1310.5150]

$\int \psi_f (c_\alpha \kappa_{Hff} g_{Hff} + i s_\alpha \kappa_{Aff} g_{Aff} \gamma_5) \psi_f X_0$	Eq. (2.25)	Ref. [46]	Section 2.1		
$\begin{bmatrix} 1 \\ -a \end{bmatrix} = \begin{bmatrix} 2 \\ Z \end{bmatrix} \begin{bmatrix} 2\mu \\ +a \end{bmatrix} = \begin{bmatrix} W^+W^{-\mu} \end{bmatrix}$	g_{hgg}	$c_{lpha}\kappa_{Hgg}g_{Hgg}$	$g_H - rac{4ar c_g g_s^2 v}{m_W^2}$		
$s_{M}[\overline{2}^{g_{HZZ}} \mathcal{I}_{\mu} \mathcal{I}^{\nu} + g_{HWW} \mathcal{V}_{\mu} \mathcal{V}^{\nu}]$	$ ilde{g}_{hgg}$	$s_{lpha}\kappa_{Agg}g_{Agg}$	$-rac{4 ilde{c}_g g_s^2 v}{m_W^2}$		
$_{_{H\gamma\gamma}}g_{_{H\gamma\gamma}}A_{\mu\nu}A^{\mu\nu} + s_{lpha}\kappa_{_{A\gamma\gamma}}g_{_{A\gamma\gamma}}A_{\mu\nu}\widetilde{A}^{\mu\nu}\Big]$	$g_{h\gamma\gamma}$	$c_{\alpha}\kappa_{H\gamma\gamma}g_{H\gamma\gamma}$	$a_H - rac{8gar{c}_\gamma s_W^2}{m_W}$		
$a_{\mu\nu} = Z_{\mu\nu} A^{\mu\nu} + s_{\mu} \kappa_{\mu\nu} a_{\mu\nu} = Z_{\mu\nu} \widetilde{A}^{\mu\nu}$	$\tilde{g}_{h\gamma\gamma}$	$s_{\alpha}\kappa_{A\gamma\gamma}g_{A\gamma\gamma}$	$-\frac{8g\tilde{c}\gamma s_W^2}{2m}$		
$HZ_{\gamma}GHZ_{\gamma}Z\mu\nu\Pi + S_{\alpha}R_{AZ\gamma}G_{AZ\gamma}Z\mu\nu\Pi$	$g^{(1)}_{hzz}$	$\frac{1}{\Lambda}c_{lpha}\kappa_{HZZ}$	$\frac{2g}{c_W^2 m_W} \left[\bar{c}_{HB} s_W^2 - 4 \bar{c}_\gamma s_W^4 + c_W^2 \bar{c}_{HW} \right] $		
$_{H_{gg}}g_{H_{gg}}G^{a}_{\mu\nu}G^{a,\mu\nu} + s_{\alpha}\kappa_{A_{gg}}g_{A_{gg}}G^{a}_{\mu\nu}\widetilde{G}^{a,\mu\nu}\Big]$	\tilde{g}_{hzz}	$\frac{1}{\Lambda} s_{lpha} \kappa_{AZZ}$	$\frac{2g}{c_W^2 m_W} \left[\tilde{c}_{HB} \tilde{s}_W - 4 \tilde{c}_\gamma \tilde{s}_W^4 + c_W^2 \tilde{c}_{HW} \right]$		
$\kappa_{\mu\nu} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{\nu} z_{\mu\nu} \widetilde{Z}^{\mu\nu}$	$g^{(2)}_{hzz}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial Z}$	$\frac{g}{c_W^2 m_W} \Big[(\bar{c}_{HW} + \bar{c}_W) c_W^2 + (\bar{c}_B + \bar{c}_{HB}) s_W^2 \Big]$		
	$g^{(3)}_{hzz}$	$c_{\alpha}\kappa_{\mathrm{SM}}g_{HZZ}$	$rac{gm_W}{c_W^2} \Big[1 - rac{1}{2} ar{c}_H - 2 ar{c}_T + 8 ar{c}_\gamma rac{s_W^4}{c_W^2} \Big]$		
$\kappa_{HWW} W^+_{\mu\nu} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W^+_{\mu\nu} W^{-\mu\nu} \Big]$	$g^{(1)}_{\scriptscriptstyle haz}$	$c_{\alpha}\kappa_{HZ\gamma}g_{HZ\gamma}$	$\frac{gs_W}{c_W m_W} \Big[\bar{c}_{HW} - \bar{c}_{HB} + 8 \bar{c}_\gamma s_W^2 \Big]$		
$+8 ilde{c}_{\gamma}s_{W}^{2}$					
The two approaches are equivalent $\left[-\bar{c}_B + \bar{c}_W\right]$					
NLO implementation extendible to HEL					
$C^{a}_{\mu} + a f^{abc} C^{b} C^{c}$	$g^{(2)}_{hww}$	$\frac{1}{\Lambda} c_{\alpha} \kappa_{H \partial W}$	$\frac{g}{m_W}\left[\bar{c}_W + \bar{c}_{HW}\right]$		

The Lagrangian: Spin-0

$$\mathcal{L}_{0}^{f} = -\sum_{f=t,b,\tau} \bar{\psi}_{f} \left(c_{\alpha} \kappa_{Hff} g_{Hff} + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5} \right) \psi_{f} X_{0}$$

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right.$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \right]$$

$$- \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{2} \frac{1}{4} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right]$$

$$- \frac{1}{4} c_{\alpha} \left[\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} \kappa_{H\partialZ} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \left(\kappa_{H\partialW} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \right\} X_{0}, \qquad (1)$$

The Lagrangian: Spin-0

$$\mathcal{L}_{0}^{f} = -\sum_{f=t,b,\tau} \bar{\psi}_{f} \left(c_{\alpha} \kappa_{Hff} g_{Hff} \right) + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5} \psi_{f} X_{0}$$

$$\mathcal{L}_{0}^{V} = \left(c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right)^{SM}$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \right]$$

$$- \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{2} \frac{1}{4} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right]$$

$$- \frac{1}{4} c_{\alpha} \left[\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \left(\kappa_{H\partialW} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \right\} X_{0}, \quad (1)$$

$$\mathcal{L}_{0}^{f} = -\sum_{f=t,b,\tau} \bar{\psi}_{f} \left(c_{\alpha} \kappa_{Hff} g_{Hff} \right) + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5} \right) \psi_{f} X_{0}$$

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right\}$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \tilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right]$$

$$- \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{2} \frac{1}{4} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right]$$

$$- \frac{1}{4} c_{\alpha} \left[\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} \kappa_{H\partialZ} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \left(\kappa_{H\partialW} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \right\} X_{0}, \quad (1)$$

$$\mathcal{L}_{0}^{f} = -\sum_{f=t,b,\tau} \bar{\psi}_{f} \left[c_{\alpha} \kappa_{Hff} g_{Hff} + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5} \right) \psi_{f} X_{0}$$

$$\mathcal{L}_{0}^{V} = \left[c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right]$$

$$\mathbf{M}$$

$$\mathcal{L}_{0}^{V} = \left[c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right]$$

$$\mathbf{M}$$

$$\mathbf$$

LHCPhenoNet

$$\mathcal{L}_{0}^{f} = -\sum_{f=t,b,\tau} \bar{\psi}_{f} \underbrace{c_{\alpha} \kappa_{Hff} g_{Hff}}_{(c_{\alpha} \kappa_{Hff} g_{Hff})} + \underbrace{is_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5}}_{SM} \psi_{f} X_{0}$$

$$\mathcal{L}_{0}^{V} = \underbrace{\left[c_{\alpha} \kappa_{SM} \left[\frac{1}{2}g_{Hzz} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu}\right]\right]}_{\left[-\frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu}\right]}_{\left[-\frac{1}{2} \left[c_{\alpha} \kappa_{Hz\gamma} g_{Hz\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{Az\gamma} g_{Az\gamma} Z_{\mu\nu} \tilde{A}^{\mu\nu}\right]}_{\left[-\frac{1}{4} \left[c_{\alpha} \kappa_{Hzg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu} + s_{\alpha} \kappa_{Azg} g_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu}\right]}_{\left[-\frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{Hzz} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{Azz} Z_{\mu\nu} \tilde{Z}^{\mu\nu}\right]}_{\left[-\frac{1}{2} \frac{1}{4} \left[c_{\alpha} \kappa_{Hww} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{Aww} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu}\right]}_{\left[-\frac{1}{2} \frac{1}{4} \left[c_{\alpha} \kappa_{Hww} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{Aww} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu}\right]}_{\left[-\frac{1}{4} \frac{1}{4} c_{\alpha} \left[\kappa_{H\partial\nu\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} \kappa_{H\partial z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \left(\kappa_{H\partialw} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c.\right)\right]\right\} X_{0}, \quad (1)$$

$$LHCPhenoNet$$

$$\mathcal{L}_{0}^{f} = -\sum_{f=t,b,\tau} \bar{\psi}_{f} \left(c_{\alpha} \kappa_{Hff} g_{Hff} + is_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5} \right) \psi_{f} X_{0}$$

$$\mathcal{L}_{0}^{V} = \left(c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right)$$

$$\left(-\frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right] - \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right] - \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \right] 0^{-} - \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] - \frac{1}{2} \frac{1}{4} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] - \frac{1}{2} \frac{1}{4} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] + \left(\kappa_{H\partial W} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] X_{0}, \qquad (1)$$

Marco Zaro, 30-09-2014

The Lagrangian: Spin-I

[K. Hagiwara, R.D. Peccei, D. Zeppenfeld, Nuclear Physics B282 (1987)]

$$\mathcal{L}_{1}^{f} = \sum_{f=q,b,t,\ell,\tau} \bar{\psi}_{f} \gamma_{\mu} (\kappa_{f_{a}} a_{f} - \kappa_{f_{b}} b_{f} \gamma_{5}) \psi_{f} X_{1}^{\mu}, \quad \mathcal{L}_{1}^{Z} = -\kappa_{V_{3}} X_{1}^{\mu} (\partial^{\nu} Z_{\mu}) Z_{\nu} \\ -\kappa_{V_{5}} \epsilon_{\mu\nu\rho\sigma} X_{1}^{\mu} Z^{\nu} (\partial^{\rho} Z^{\sigma}).$$

$$\begin{aligned} \mathcal{L}_{1}^{W} &= + i \kappa_{V_{1}} g_{WWZ} (W_{\mu\nu}^{+} W^{-\mu} - W_{\mu\nu}^{-} W^{+\mu}) X_{1}^{\nu} \\ &+ i \kappa_{V_{2}} g_{WWZ} W_{\mu}^{+} W_{\nu}^{-} X_{1}^{\mu\nu} \\ &- \kappa_{V_{3}} W_{\mu}^{+} W_{\nu}^{-} (\partial^{\mu} X_{1}^{\nu} + \partial^{\nu} X_{1}^{\mu}) \\ &+ i \kappa_{V_{4}} W_{\mu}^{+} W_{\nu}^{-} \widetilde{X}_{1}^{\mu\nu} \\ &- \kappa_{V_{5}} \epsilon_{\mu\nu\rho\sigma} [W^{+\mu} (\partial^{\rho} W^{-\nu}) - (\partial^{\rho} W^{+\mu}) W^{-\nu}] X_{1}^{\sigma}, \end{aligned}$$

The Lagrangian: Spin-I

[K. Hagiwara, R.D. Peccei, D. Zeppenfeld, Nuclear Physics B282 (1987)]

$$\mathcal{L}_{1}^{f} = \sum_{f=q,b,t,\ell,\tau} \overline{\psi}_{f} \gamma_{\mu} (\kappa_{f_{a}} a_{f}) - \kappa_{f_{b}} b_{f} \gamma_{5}) \psi_{f} X_{1}^{\mu}, \quad \mathcal{L}_{1}^{Z} = -\kappa_{V_{3}} X_{1}^{\mu} (\partial^{\nu} Z_{\mu}) Z_{\nu} - \kappa_{V_{5}} \epsilon_{\mu\nu\rho\sigma} X_{1}^{\mu} Z^{\nu} (\partial^{\rho} Z^{\sigma})$$

$$\mathcal{L}_{1}^{W} = + i \kappa_{V_{1}} g_{WWZ} (W_{\mu\nu}^{+} W^{-\mu} - W_{\mu\nu}^{-} W^{+\mu}) X_{1}^{\nu} + i \kappa_{V_{2}} g_{WWZ} W_{\mu}^{+} W_{\nu}^{-} X_{1}^{\mu\nu} - \kappa_{V_{3}} W_{\mu}^{+} W_{\nu}^{-} (\partial^{\mu} X_{1}^{\nu} + \partial^{\nu} X_{1}^{\mu}) + i \kappa_{V_{4}} W_{\mu}^{+} W_{\nu}^{-} \widetilde{X}_{1}^{\mu\nu} - \kappa_{V_{5}} \epsilon_{\mu\nu\rho\sigma} [W^{+\mu} (\partial^{\rho} W^{-\nu}) - (\partial^{\rho} W^{+\mu}) W^{-\nu}] X_{1}^{\sigma},$$

▶ 1⁻ in parity-conserving scenarios

The Lagrangian: Spin-I

[K. Hagiwara, R.D. Peccei, D. Zeppenfeld, Nuclear Physics B282 (1987)]

$$\mathcal{L}_{1}^{f} = \sum_{f=q,b,t,\ell,\tau} \overline{\psi}_{f} \gamma_{\mu} (\kappa_{f_{a}} a_{f} - \kappa_{f_{b}} b_{f} \gamma_{5}) \psi_{f} X_{1}^{\mu}} \mathcal{L}_{1}^{Z} = -\kappa_{V_{3}} X_{1}^{\mu} (\partial^{\nu} Z_{\mu}) Z_{\nu} - \kappa_{V_{5}} \epsilon_{\mu\nu\rho\sigma} X_{1}^{\mu} Z^{\nu} (\partial^{\rho} Z^{\sigma})$$

$$\mathcal{L}_{1}^{W} = + i \kappa_{V_{1}} g_{WWZ} (W_{\mu\nu}^{+} W^{-\mu} - W_{\mu\nu}^{-} W^{+\mu}) X_{1}^{\nu} + i \kappa_{V_{2}} g_{WWZ} W_{\mu}^{+} W_{\nu}^{-} X_{1}^{\mu\nu} - \kappa_{V_{3}} W_{\mu}^{+} W_{\nu}^{-} (\partial^{\mu} X_{1}^{\mu} + \partial^{\nu} X_{1}^{\mu}) - \kappa_{V_{3}} W_{\mu}^{+} W_{\nu}^{-} (\partial^{\mu} X_{1}^{\nu} + \partial^{\nu} X_{1}^{\mu}) + i \kappa_{V_{4}} W_{\mu}^{+} W_{\nu}^{-} \widetilde{X}_{1}^{\mu\nu} - (\partial^{\rho} W^{-\nu}) - (\partial^{\rho} W^{+\mu}) W^{-\nu}] X_{1}^{\sigma} ,$$

▶ 1⁻ in parity-conserving scenarios

▶ 1⁺ in parity-conserving scenarios

$$\mathcal{L}_{2} = \frac{1}{\Lambda} \sum_{i=V,\gamma,g,\psi} k_{i} \mathcal{T}_{\mu\nu}^{i} X^{\mu\nu}$$

$$\mathcal{T}_{\mu\nu}^{V} = \frac{1}{4} \eta_{\mu\nu} F^{\rho\sigma} F_{\rho\sigma} - F_{\mu}^{\ \rho} F_{\nu\rho}$$

$$\mathcal{T}_{\mu\nu}^{\psi} = -\eta_{\mu\nu} \left(\bar{\psi} \, i \, \gamma^{\rho} D_{\rho} \psi - m \bar{\psi} \, \psi \right) + \frac{1}{2} \bar{\psi} \, i \, \gamma_{\mu} D_{\nu} \psi +$$

$$+ \frac{1}{2} \bar{\psi} \, i \, \gamma_{\nu} D_{\mu} \psi + \frac{1}{2} \eta_{\mu\nu} \partial^{\rho} (\bar{\psi} \, i \, \gamma_{\rho} \psi) - \frac{1}{4} \partial_{\mu} (\bar{\psi} \, i \, \gamma_{\nu} \psi) \frac{1}{4} \partial_{\nu} (\bar{\psi} \, i \, \gamma_{\mu} \psi)$$

The minimal spin-2 particle is graviton like (2+) Higher dimension operators and 2- available

HC in the various production channels

Marco Zaro, 30-09-2014

- Differences in shape are due to the different dominant initial state $(q\overline{q} \text{ for } X^{I}, gg \text{ for } X^{0}, X^{2})$
- MLM distributions are harder (as expected), otherwise agreement is quite good

Angles defined in Bolognesi et al. arXiv:1208.4018

Marco Zaro, 30-09-2014

Chapter 2:

LHCPhenoNet

HD effects in the VVH interactions

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha}\kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right\} SM$$

$$\mathsf{HD}$$

$$\stackrel{-\frac{1}{4} \left[c_{\alpha}\kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha}\kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right]}{-\frac{1}{2} \left[c_{\alpha}\kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha}\kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right]}{-\frac{1}{4} \left[c_{\alpha}\kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha}\kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \right]}{-\frac{1}{4} \frac{1}{4} \left[c_{\alpha}\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha}\kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]}{-\frac{1}{2} \frac{1}{4} \left[c_{\alpha}\kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha}\kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right]} - \frac{1}{4} c_{\alpha} \left[\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \left(\kappa_{H\partial W} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \right\} X_{0}, \qquad (1)$$

VBF

- SM case shows a softer behaviour (not for M_{jj})
- NLO and PS effects are important (in particular for jetrelated observables)

VBF

- SM case shows a softer behaviour (not for M_{jj})
- NLO and PS effects are important (in particular for jetrelated observables)

Marco Zaro, 30-09-2014

VBF

- In SM case jets are more forward: HD scenarios feature a different signature
- Jet correlations $\Delta\varphi, \Delta\eta$ are sensitive to the HVV structure

(with extra M_{jj} cut):

VBF

- The extra M_{jj} cut pushes jets to be more separated
- No dramatic effects on angular correlations

- SM is softer, HD harder, HDder much harder (contact interaction)
- QCD effects are less important than for VBF
- Similar features for WH

Chapter 3: CP properties of the top Yukawa

Demartin, Maltoni, Mawatari, Page, MZ, arXiv: 1407.5089

$$\mathcal{L}_{0}^{\text{loop}} = \begin{cases} -\frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} \right] & \mathbf{0}^{+} \\ + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \right] & \mathbf{0}^{-} \\ -\frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} \right] \\ + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ -\frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} \right] \\ + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right] X_{0} \end{cases}$$
$$\mathcal{L}_{0}^{t} = -\bar{\psi}_{t} \left(c_{\alpha} \kappa_{Htt} g_{Htt} \right) \left(is_{\alpha} \kappa_{Att} g_{Att} \gamma_{5} \right) \psi_{t} X_{0}$$

let correlations in X₀jj

let correlations in X₀jj

Spin correlation effects

Do it yourself!

- The code for the shown processes can be automatically generated with MADGRAPH5_AMC@NLO (available at <u>http://amcatnlo.cern.ch</u>)
- The HC-NLO model (with UV/R2 counterterms) is publicly available on the FeynRules database https://feynrules.irmp.ucl.ac.be/wiki/HiggsCharacterisation
- E.g. $t \overline{t} X_0$:

Do it yourself!

- The code for the shown processes can be automatically generated with MADGRAPH5_AMC@NLO (available at <u>http://amcatnlo.cern.ch</u>)
- The HC-NLO model (with UV/R2 counterterms) is publicly available on the FeynRules database https://feynrules.irmp.ucl.ac.be/wiki/HiggsCharacterisation
- E.g. $t \overline{t} X_0$:
 - > import model HC-NLO
 - > generate p p > X0 t t~ [QCD]

Conclusions

- After the discovery of the Higgs boson, huge efforts have been set up in order to tell wether it is the SM Higgs
- EFT is a powerful tool for understanding the spin/CP/ coupling nature of the Higgs
 - No hypotheses on the NP
 - Can be improved beyond the LO
- HC-EFT approach applied to all the main Higgs production channels, including NLO+PS QCD corrections
- Model publicly available and easy to use with MADGRAPH5_AMC@NLO
- The best is yet to come! (aka let's wait for LHCI3 data)

Thank you for your attention!

Backup slides

NLO: how to?

- Warning! Real emission ME is divergent!
 - Divergences cancel with those from virtuals (in D=4-2eps)
 - Need to cancel them before numerical integration (in D=4)

- Warning! Real emission ME is divergent!
 - Divergences cancel with those from virtuals (in D=4-2eps)
 - Need to cancel them before numerical integration (in D=4)
- Structure of divergences is universal:

$$p + k)^{2} = 2E_{p}E_{k}(1 - \cos\theta_{pk})$$
$$\lim_{p//k} |M_{n+1}|^{2} \simeq |M_{n}|^{2} P^{AP}(z)$$

$$\lim_{k \to 0} |M_{n+1}|^2 \simeq \sum_{ij} |M_n^{ij}|^2 \frac{p_i p_j}{p_i k \ p_j k}$$

Marco Zaro, 30-09-2014

- Add local counterterms in the singular regions and subtract its integrated finite part (poles will cancels against the virtuals)
- The *n* and *n*+1 body integral now are finite in 4 dimension
 - Can be integrated numerically

- Add local counterterms in the singular regions and subtract its integrated finite part (poles will cancels against the virtuals)
- The *n* and *n*+1 body integral now are finite in 4 dimension
 - Can be integrated numerically

How to do this in an efficient way?

The FKS subtraction

Frixione, Kunszt, Signer, arXiv:hep-ph/9512328

- Soft/collinear singularities arise in many PS regions
- Find parton pairs *i*, *j* that can give collinear singularities
- Split the phase space into regions with one collinear sing
 - Soft singularities are split into the collinear ones

$$|M|^{2} = \sum_{ij} S_{ij} |M|^{2} = \sum_{ij} |M|^{2}_{ij} \qquad \sum S_{ij} = 1$$
$$S_{ij} \to 1 \text{ if } k_{i} \cdot k_{j} \to 0 \qquad S_{ij} \to 0 \text{ if } k_{m\neq i} \cdot k_{n\neq j} \to 0$$

- Integrate them independently
 - Parallelize integration
 - Choose ad-hoc phase space parameterization
- Advantages:
 - # of contributions ~ n^2
 - Exploit symmetries: 3 contributions for X Y > ng

Loops: the OPP Method

Ossola, Papadopoulos, Pittau, arXiv:hep-ph/0609007 & arXiv:0711.3596

- Passarino & Veltman reduction:
 - Write the amplitude at the integral level as linear combination of I-...-4-point scalar integrals

$$\begin{aligned} A(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3) \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} c(i_0 i_1 i_2) C_0(i_0 i_1 i_2) \\ &+ \sum_{i_0 < i_1}^{m-1} b(i_0 i_1) B_0(i_0 i_1) \\ &+ \sum_{i_0}^{m-1} a(i_0) A_0(i_0) \\ &+ R \end{aligned}$$

• Do this at the integrand level

Loops: the OPP Method

Ossola, Papadopoulos, Pittau, arXiv:hep-ph/0609007 & arXiv:0711.3596

$$\begin{split} A(\bar{q}) &= \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}} \quad N(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \\ &+ \tilde{P}(q) \prod_{i=1}^{m-1} D_i . \end{split}$$

- Sample the numerator at complex values of the loop momenta in order to reconstruct the *a,b,c,d* coefficients and part of the rational terms (RI)
- Use CutTools: fed with the loop numerator outputs the coefficients of the scalar integrals and CC rational terms (RI)
- Add R2-rational terms/UV counterterms
 - Model dependent but process-independent

Loop ME evaluation: MadLoop

Hirschi et al. arXiv:1103.0621

- Load the NLO UFO model
- Generate Feynman diagrams to evaluate the loop ME
- Add R2/UV renormalisation counter terms
- Interface to CutTools or to tensor reduction programs (in progress)
- Check PS point stability (and switch to QP if needed)
- Improved with the OpenLoops method Cascioli, Maierhofer, Pozzorini
- And much more (can be used as standalone or external OLP via the BLHA, handle loop-induced processes, ...)

arXiv:1111.5206

Matching in MC@NLO

• Use suitable counterterms to avoid double counting the emission from shower and ME, keeping the correct rate at order α_s :

 $\frac{d\sigma_{MC@NLO}}{dO} = \left(\mathcal{B} + \mathcal{V} + \int d\Phi_1 MC\right) d\Phi_n \ I_{MC}^n(O) + \left(\mathcal{R} - MC\right) d\Phi_n \ d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) d\Phi_n \ d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) d\Phi_n \ d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) d\Phi_n \ d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) d\Phi_n \ d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) d\Phi_n \ d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) d\Phi_n \ d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) d\Phi_n \ d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) + \left(\mathcal{R} - MC\right) d\Phi_1 \ I_{MC}^{n+1}(O) + S-events\right) + \left(\mathcal{R} - MC\right) + \left(\mathcal{R} - MC\right)$

• MC depends on the PSMC's Sudakov:

$$MC = \left| \frac{\partial \left(t^{MC}, z^{MC}, \phi \right)}{\partial \Phi_1} \right| \frac{1}{t^{MC}} \frac{\alpha_s}{2\pi} \frac{1}{2\pi} P\left(z^{MC} \right) \mathcal{B}$$

- Available for Herwig6, Pythia6 (virtuality-ordered), Herwig++, Pythia8 (in the new release)
- MC acts as local counterterm
- Some weights can be negative (unweighting up to sign)
 - Only affects statistics

Marco Zaro, 30-09-2014