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Motivation

Matrix models

4 Strong relations to string theory and noncommutative geometry.
Banks, Fischler, Shenker, Susskind ’96; Ishibashi, Kawai, Kitazawa, Tsuchiya ’96

Connes, Douglas, Schwarz ’97; Berenstein, Maldacena, Nastase ’02; etc.

4 Address both conceptual and phenomenological questions.
particle physics models ACh, Steinacker, Zoupanos ’10-’12; Aoki ’10-’13, . . .

cosmology (early and late) Kim, Nishimura, Tsuchiya ’11-’14

4 Notably, address emergence of spacetime.

4 Combine both analytical and numerical techniques.



Motivation

Phase space and (Quantum) Gravity

_ Arguments that quantum gravity requires dynamical theory of phase space.

_ Born reciprocity and string theory. Freidel, Leigh, Minic ’14

_ The gravitational field is encoded in noncommutative phase space:

[x̂a, p̂i ] = i~ea
i (x̂) .

Noncommutative frame formalism. Madore ’00; Buric, Madore ’11

_ In the IIB matrix model: Einstein equations, when matrices are interpreted as
differential operators on commutative space. Hanada, Kawai, Kimura ’05

Is there a matrix model that could capture the dynamics of phase space?



The plan

1 The type IIB matrix model
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The type IIB model
Ishibashi, Kawai, Kitazawa, Tsuchiya ’96

Definition

Matrix path integral

Z =

∫
dAdΨe−S ,

with action

SIIB = − 1
4g2 gMM′

gNN′
Tr [AM ,AN ][AM′ ,AN′ ]− 1

2g2 Tr Ψ̄ΓM [AM ,Ψ] .

AM : 10 N × N Hermitian matrices (large N) .
Ψ: fermionic superpartners.

Such integrals converge for certain dimensions (incl. 10) and gauge groups.
Krauth, Staudacher ’98; Austing, Wheater ’01



Origin

Reduction of 10D sYM to a point. Eguchi, Kawai; Parisi, Zhang; Gross, Kitazawa ’82

Bosonic sector: ∫
d10x Tr F ∧ ?F ,

where
F = 1

2 (∂MAN − ∂NAM + i[AM ,AN ])dxM ∧ dxN ,

and reduction implemented via ∂MAN = 0 .

Regularization of the (Green-Schwarz) IIB superstring action (more later).

Symmetries

_ Translational AM → AM + cM1l , cM ∈ R .

_ Gauge AM → UAMU−1, U ∈ U(N) .

_ Global rotational AM → L N
M AN , L ∈ SO(10) or SO(9, 1) .

_ N = 2 supersymmetry
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Classical solutions

Equations of motion (Ψ = 0):

gMM′
[AM , [AM′ ,AN ]] = 0 .

Moyal type solutions
[AM ,AN ] = iθMN

Classification of Lie type solutions ACh ’11

[AM ,AN ] = iCMNPAP

 no semisimple, but nilpotent (7) and solvable (2) Lie algebras.
Motivated models for the expansion of the universe Kim, Nishimura, Tsuchiya ’11

Solutions with “split noncommutativity”, R3,1 ×θ K . Steinacker ’11

General prescription to find Lorentzian solutions Kim, Nishimura, Tsuchiya ’12

Also, quantized minimal surfaces, e.g. catenoid Arnlind, Hoppe ’12

. . .



Standard interpretations

AM as quantized coordinates, fluctuations as gauge fields
 emergent spacetime and NC Yang-Mills Aoki et al. ’98-’99

AM as noncommutative momenta, differential operator viewpoint.
Connes, Douglas, Schwarz ’97, . . .

Extension of the model that implements both pictures and describes full phase space.



The SO(10,10) matrix model
ACh ’14

Bosonic action of the model:

S = − 1
4 Tr
(

gMM′
gNN′

[AM ,AN ][AM′ ,AN′ ]

+ g̃MM′ g̃NN′ [V M ,V N ][V M′
,V N′

]

+ 2 gMM′
g̃NN′ [AM ,V N ][AM′ ,V N′

]

− 2gMPgM′QbQNbPN′ [AM ,V N ][AM′ ,V N′
]

+ 2gMPgNQbPM′bQN′ [AM ,AN ][V M′
,V N′

]

+ 4gMM′
gNPbN′P [AM ,AN ][AM′ ,V N′

]

+ 4gMP g̃NN′bM′P [AM ,V N ][V M′
,V N′

]

)
.

10 + 10 hermitian matrices AM and V M .

b: antisymmetric (const.) 2-tensor and g̃ = g − bg−1b.

Origin: Reduction of “Generalized Yang-Mills” theory to a point.



Elements of Courant algebroids
Liu, Weinstein, Xu ’95

Algebroids: Merge the notions of algebra and vector bundle.

“Algebras whose structure constants are not constant”.

Courant algebroids merge Drinfel’d doubles and generalized tangent bundles.



Elements of Courant algebroids
Liu, Weinstein, Xu ’95

The simplest such structure: standard Courant algebroid:

(T M = TM⊕ T?M, [·, ·]C , 〈·, ·〉, ρ : T M→ TM)

Sections: X ∈ Γ(T M): X = X + η ,

Courant bracket: [X1,X2]C = [X1,X2]Lie + LX1η2 − LX2η1 − 1
2 d
(
X1(η2)− X2(η1)

)
.

Pairing: 〈X1,X2〉 = 1
2

(
X1(η2) + X2(η1)

)
.

Anchor: ρ(X) = X .



Connection (gauge field) and curvature (field strength)

Generalized connection:

D = d + A + V = ∂M dxM + AM dxM + V M∂M .

Curvature defined as usual:

F(X1,X2) = [DX1 ,DX2 ]−D[X1,X2] .

For the generalized connection in question:

F = F + DV + [V ,V ] ,

where we use the notation

F = 1
2 FMNdxM ∧ dxN ,

DV = (∂MV N + i[AM ,V N ])dxM ∧ ∂N ,

[V ,V ] = i
2 [V M ,V N ]∂M ∧ ∂N ,

the bracket being the gauge commutator.



An issue and two solutions

We face a problem in defining YM theory

The Courant bracket does not satisfy the Jacobi identity.

Elements of ∧•T M, such as F , do not transform as tensors.

Two ways out

4 Use Dirac structures Courant ’90, i.e. subbundles L ⊂ T M such that

dimL = 1
2 dimT M, 〈XL,YL〉 = 0, [XL,YL] ∈ Γ(L), ∀ XL,YL ∈ Γ(L) .

ACh, Gautason ’14; cf. Fournel, Lazzarini, Masson ’12

4 New idea: Reduce to a point.

Consider the Lagrangian: 1
4H

MM′
HNN′

FMNFM′N′ ,

formed with the generalized metric on T M: H =

(
g − bg−1b bg−1

−g−1b g−1

)
.

Its point reduction yields the SO(d ,d) matrix model.



Back to the matrix model

Symmetries

Translational and gauge symmetries for both AM and V M .

Extended rotational SO(10, 10).

Note the symmetry: AM → VM and VM → −AM .

Equations of motion

�AM = 0 , �V M = 0 ,

where we defined the generalized Laplacian operator

�· = gMM′
[AM , [AM′ , ·]] + (g − bg−1b)MM′ [V M , [V M′

, ·]]

+gMPbM′P
(
[AM , [V M′

, ·]] + [V M′
, [AM , ·]]

)
.

Solutions?



Emergent phase space

For b = 0 a large class of solutions is obtained from the vacuum Ansatz

Aa = e i
a (x̂)p̂i , V a = x̂a , a = 1, . . . , 2m, 2m ≤ d ,

A2m+1 = · · · = Ad = V 2m+1 = · · · = V d = 0 ,

with phase space algebras of the general form:

[x̂a, x̂b] = iθab ,

[x̂a, p̂i ] = i~ea
i ,

[p̂i , p̂j ] = Mij + N k
ij p̂k + Pkl

ij p̂k p̂l ,

with known coefficients M,N,P.

Agreement with general result of noncommutative frame formalism. Madore ’00

 Non-commutative spaces with a nontrivial frame ei
a(x̂). cf. the work of Burić, Madore



A class of nontrivial examples - Nilmanifolds

Associated to nilpotent Lie algebras.

Compact case: Iterated toroidal fibrations.

Nipotency step ∼ fiber iteration.
Step 1→ torus (Kähler nilmanifold).

Benson, Gordon ’88

Step 2 to d-1→ non-Kähler, often symplectic.

∃ global basis ei  parallelizable.

Classical frame components:

ei
a = δi

a + 1
2 f i

abxb +O(x2) .

T dn �
� // Md=

∑
i di

��
.
.
.

��
T d3
� � // Md1+d2+d3

��
T d2
� � // Md1+d2

��
Td1

Explicit nontrivial examples with quadratic phase space algebra do exist.



Revisiting the origin of the model

Recall that the IIB model is obtained as “regularization” of the Green-Schwarz action:

SGS = −T
∫

d2σ
√
−G

Schild’s trick
−−−−−−−−→

∫
d2σ
√

g 1
4{X

µ,Xν}2 + . . .
Q/C correspondence
−−−−−−−−→ SIIB

work in progress

The SO(10,10) model is related to the T-duality symmetric worldsheet action: Hull ’04

S = −T
∫
HMNdXM ∧ ?dX N ,

written in the context of the doubled formalism and being closely related to Tseytlin’s
formulation of closed superstrings. Tseytlin ’90
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Take-home messages

The SO(10,10) matrix model is a well motivated theory.

_ Originates from a generalized YM theory on a Courant algebroid by reduction.

_ It is related to T-duality symmetric formulations of closed string theory.

_ Noncommutative phase spaces with nontrivial frame as classical solutions.

_ It should address the dynamics of full phase space, not just spacetime.

Several open issues.

_ Frame is encompassed, but how does gravity emerge? Einstein equations?

_ General solutions and effective action?

_ Quantization?

The best is yet to come
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