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AdS/CFT correspondence

Type IIB String Theory on

Ne D3 VD N agh VA Soh v~ i Vs
AdS5><S5

| |

N =4 SU(N.) SUSY YM
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AdS/CFT correspondence

Type IIB String Theory on

Ne D3 VD N agh VA Soh v~ i Vs
AdS5><S5

| |

N =4 SU(N.) SUSY YM

°
@ Gubser-Klebanov-Polyakov-Witten formula:

<ef ddX¢0(X)<O(X)>>CFT = Zstring[d)O(X)]
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Adding flavours

Generalizing the correspondence

Nc D3

Nf D7

D7 |- |- |-|-]-]-1-]-
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Adding flavours

Generalizing the correspondence

Nc D3

Nf D7

D3 -1 -1-T-1-1T-1-71-
D7 |- |- [-[-|-[-[--

@ Adding N massive A/ = 2 Hypermultiplets:

mq /d29 QQ —SYM with mg=m/2rd/
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Probe approximation Ny < N,
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@ The probe is described by a Dirac-Born-Infeld action
S [d¢e *\/]|Gap — 2T/ Fap||
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Probe approximation Ny < N,

@ The probe is described by a Dirac-Born-Infeld action
S [d'¢ e ®\/||Gap — 27w/ Fap||

@ The profile of the D-brane encodes the fundamental condensate
of theory. The semi-classical fluctuations correspond to
meson-like excitations.

@ The D-brane gauge field can describe: external electromagnetic
field, chemical potential, electric current etc.

@ Numerous applications: thermal and quantum phase transitions,
chiral symmetry breaking, magnetic catalysis etc.

@ Can we test if AdS/CFT really works in this case?
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Computer simulations of holographic gauge theories

@ Using twisting techniques it seems possible to simulate A/ = 4
SU(N) SYM in 4D [S. Catterall, hep-lat/0503036], so far for small N.
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Computer simulations of holographic gauge theories

@ Using twisting techniques it seems possible to simulate A/ = 4
SU(N) SYM in 4D [S. Catterall, hep-lat/0503036], so far for small N.

@ Not obvious how to generalise these techniques to include N' = 2
flavour hypermultiplet.

@ Consider instead 1D holographic gauge theories, which are super
renormalizable.

@ Natural candidate is the D0/D4 system, T-dual to the D3/D7 and
D3/D5 systems. (Same “class of universality”)

@ The field theory is the Berkooz-Douglas matrix model - a flavoured
version of the BFSS-matrix model.
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The BFSS matrix model

@ ltisthe A= 16 SU(N) 1D SYM theory describing N DO-branes at
low energy.
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The BFSS matrix model

@ ltisthe A= 16 SU(N) 1D SYM theory describing N DO-branes at
low energy.

@ It is conjectured to be a non-perturbative formulation of M-theory
compactified on a circle. [T. Banks, W. Fischler, S. H. Shenker and L.
Susskind: hep-th/9610043]

@ Dimensionally reduce A/ =1 10D SYM to 1D:

1 1 e 1o v 1 1 i
Se = ?/dﬂr{é(ax Y - XX 4 10T D - EwTCw[X,w]} ,
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The BFSS matrix model

@ ltisthe A= 16 SU(N) 1D SYM theory describing N DO-branes at
low energy.

@ It is conjectured to be a non-perturbative formulation of M-theory
compactified on a circle. [T. Banks, W. Fischler, S. H. Shenker and L.
Susskind: hep-th/9610043]

@ Dimensionally reduce A/ =1 10D SYM to 1D:

1 1 : 1 Ui 1 1 i
Se = ?/dTTf{g(DTX )2 — Z[X X+ ET/JTCfa Dy — §¢TC97 (X ,1/11} ;
@ The model enjoys a global SO(9) symmetry and has flat
directions associated to the Cartan modes:

[Xi7 X/] =0
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The BFSS matrix model

@ The effective coupling is ger = g% N U~2 and hence the model is
UV free. A holographic description is only possible at low
energies.
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The BFSS matrix model

@ The effective coupling is ger = g% N U~2 and hence the model is
UV free. A holographic description is only possible at low
energies.

@ The dual geometry is:

ds?/a’ = —H7'2df + H'/2f1dU? + H'/2UPdQ3
e® = /'13/47 C(1) = H 'dt

@ where:
7 7 2
H:%a f:1—%, US—<477T> L'T?, L7 =2407°\, A= Ng?
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The BFSS matrix model

@ The effective coupling is ger = g% N U~2 and hence the model is
UV free. A holographic description is only possible at low
energies.

@ The dual geometry is:

ds?/o/ = —H7V2d + H'2f1dU? + H'/2U2d02
e® = /'13/47 C(1) = H 'dt

@ where:
7 7 2
H:%a f:1—%, US—<477T> L'T?, L7 =2407°\, A= Ng?

@ Small curvature and string coupling require 1 < gesr < N?.
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@ Lattice simulations (to the best of my knowledge):

o Catterall & Wiseman, 0803.4273
e Kadoh & Kamata, 1503.08499
e Filev & O’Connor, 1506.01366
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@ Lattice simulations (to the best of my knowledge):
o Catterall & Wiseman, 0803.4273
e Kadoh & Kamata, 1503.08499
e Filev & O’Connor, 1506.01366

@ Non-lattice simulations:

o First simulated by Anagnostopoulos, Hanada, Nishimura and
Takeuchi 0707.4454

e The most extensive numerical studies of the BFSS model, providing
non-trivial test of the AdS/CFT correspondence.

@ We focus on the studies performed in reference 1506.01366.
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@ Following Catterall and Wiseman we consider a basis in which
Co = 01 ® 1g and discretise:

wTCQ Dty — (1/’1Tm ) wzrm) ’ (18(D0+)mn 18(%_)mn> . (z;:>

Un,n+1X,l7+1 Un+1,n - Xrly

DX
a

e where (Di W)n = i(Un,r1:|:1 Wi Un:|:1,n - Wn)/a
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@ Following Catterall and Wiseman we consider a basis in which
Co = 01 ® 1g and discretise:

wTCQ Dty — (1/’1Tm ) wzrm) ’ (18(D0+)mn 18(%_)mn> . (z;:>

Un,n+1X,l7+1 Un+1,n - Xrly
a

DX

e where (Di W)n = i(Un,r1:|:1 Wi Un:|:1,n - Wn)/a

@ The resulting lattice theory is free of fermion doubling.
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RHMC

@ We employ the RHMC method [hep-lat/0409133] (Clark et al. 2004).

IPA(M)| = det(MT M)"/* o / DEDge€ (M1 M)~V
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IPA(M)| = det(MT M)"/* o / DEDge€ (M1 M)~V

@ Define Sy = ¢F (M M)~1/4¢ and simulate S = Spos + Spst
@ The idea is to approximate (M M)~1/4 with a partial sum:
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RHMC

@ We employ the RHMC method [hep-lat/0409133] (Clark et al. 2004).

IPA(M)| = det(MT M)"/* o / DEDge€ (M1 M)~V

@ Define Sy = ¢F (M M)~1/4¢ and simulate S = Spos + Spst
@ The idea is to approximate (M M)~1/4 with a partial sum:

#
(M M) =ag+ > ar(MEM + )~
i=1
@ The pseudo fermionic force is then:

aspsf Za,hTaM M),

@ where h; satisfy (M" M + 3;) hj = ¢ and can be obtained by a
multi-shift solver.

V. Filev Testing AdS/CFT with flavours on a computer 11/24



@ We study the following three observables:
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@ We study the following three observables:

8
o Polyakov loop P = J,TrP exp (if tho(t)>
0
B N2
o Extend of space (R?) = ( w5 /[ dtTr (X')
0
o Internal energy E/N? = —3T/N? ((Spos) — SN (N? — 1))

@ At high T we have theoretical predictions form the high T
expansion considered in 0710.2188 (Kawahara et al. 2007)

@ Atlow T only the internal energy can be obtained from AdS/CFT
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@ Plots of the expectation value of the Polyakov loop (|P|) and the extent
of space (R?) as functions of temperature.

@ The dashed curves represent the predictions of the high temperature
expansion.

@ Excellent agreement with the results of 0707.4454 and 1503.08499.
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@ At high T the plot agrees with the predictions of 0710.2188. At low T the
curve represents the AdS/CFT result including o’ corrections:

1 E 02131252 " 1/5 T i 55 T 3
NexA =\ 7g " ) T8N

obtained in 0811.3102 (Hanada et al. 2008)
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Sign Problem

@ There is a special unitary transformation S transforming Cg — 114

@ In this basis M(X) = My + Mper(X) with M}, = — M, and
~/\/lpot(X)Jr = Mpot(X)

@ Since Mpor(—X) = —Mpee(X) it follows that M(—X) = —M(X)' and
therefore Pf(M(—X)) = Pf(M(X))*

@ The symmetry S, [—X] = Syos[X] allows us to write:

Z /DXPf(M)e*SM[X] = /px cos O p¢|[P(M)| &~ SlX]

@ Now as long as —5 < ©p < 7 the cosine is positive and the
effective action defines a true probability distribution

V. Filev Testing AdS/CFT with flavours on a computer 15/24



100~ ‘ _ -
3 3 - - i
i g =
098} s
bos
& 096
g
094}
092}
0.0 05 10 5 20
T

@ A plot of cos ©p for N = 3 and A = 4. The phase remains small for all T,
but drops at very low temperatures possibly due to strong lattice effects.
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Berkooz-Douglas matrix model

@ Original motivation to introduce Ms brane density to the BFSS matrix
model hep-th/9610236 (Berkooz & Douglas 1996).
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Berkooz-Douglas matrix model

@ Original motivation to introduce Ms brane density to the BFSS matrix

model hep-th/9610236 (Berkooz & Douglas 1996).
@ Obtained by reducing the D5/D9 system (Van Raamsdonk, 2002):

1

1 1 i s i
L = ?Tr <§D0XaDoXa + EATPDO)\p + 500X Do Xy + 59*P009p)

1 = .
+Etr (Do¢pDo¢p + IXJr DOX) + Line
where:
1 1 b b 1 vop 1 Yok BB
Lo = 20 (DX X4 JIXXIX X] = IR XX X, ]

—étr (&7(X* — mA)(X* — m*)s,)

—Q—étr (6“[)‘(56‘,Xad]¢ﬁ + %6”‘%@5% — <T>“¢a&>5¢ﬁ)

1 1< 1 R,
+?Tr (Evya[xa, Aol + 50 1X%, 04] — V2ieas 0% Xsa, /\a])

+étr ()‘('ya(Xa —m)x + V2icas XAa®s — V2icas @a/_\gx)
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Quenched versus dynamical

2 = XN~ 1N, X X.A
ST~ 1/N. N JO~N, \+ A%~ N,
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@ We conclude that we cannot quench the fundamental fermionic
determinant.
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Quenched versus dynamical

@ We conclude that we cannot quench the fundamental fermionic
determinant.
@ We have two options:

e Ignore the backreaction of the flavours on the adjoint fields and
reweigh the fundamental determinant. Advantage: there is no extra
sign problem. Disadvantage: it is computationally very expensive.

o Consider a full dynamical simulation. Advantage: easier to
implement and execute. Disadvantage: There might be an extra
sign problem.

@ We were able to show that in a dynamical simulation the path
integral again depends only on cos © pf, which is an encouraging
sign.
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Holographic description
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Holographic description

@ In the probe approximation and at zero bare mass we obtain:

3\ 1/5 /3.\8/5 1 T \8/5
N o /3
== (40> < 7 ) e A </\‘/3>
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@ At finite bare mass one has to obtain a numerical solution for the
profile of the D4-brane.
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Holographic description

@ In the probe approximation and at zero bare mass we obtain:

3\ 1/5 /3.\8/5 1 T \8/5
N o /3
== (40) < 7 ) e A <A1/3>

@ At finite bare mass one has to obtain a numerical solution for the
profile of the D4-brane.

@ The fact that the D0O/D4 system lifts to a Ms membrane with a
KK-monopole suggests that a localised backreacted solution
might be possible in analogy to the Cherkis-Hashimoto solution for
the backreacted D2/D6 system.
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High temperature expansion

@ This is work in progress with D. O’Connor and Samuel Kovacik.

V. Filev Testing AdS/CFT with flavours on a computer 21 /24



High temperature expansion

@ This is work in progress with D. O’Connor and Samuel Kovacik.

@ The first step is to expand the fields in furrier modes and scale the
modes:

Xo— B Xy, A BIA,
(X, 0)n = B2(X,®)n, (M 0,x)n — 82N 0, x)n

treating the non-zero modes as fluctuations. In the extreme
T — oo limit only the zero modes survive and their action is given
by the flavoured bosonic IKKT model.
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High temperature expansion

@ This is work in progress with D. O’Connor and Samuel Kovacik.
@ The first step is to expand the fields in furrier modes and scale the

modes:

Xo— 74Xy, A— BTEA,

(X, ®)n = B2(X,®)n ., (A,0,X)n = BN, 0,)n
treating the non-zero modes as fluctuations. In the extreme

T — oo limit only the zero modes survive and their action is given
by the flavoured bosonic IKKT model.

@ For the energy one obtains:
E = Ny NPT 4+ 4,72

where # is a number that has to be determined from simulations
of the flavoured bosonic IKKT model.
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@ We considered different types of flavoured holographic gauge
theories.
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@ We considered different types of flavoured holographic gauge
theories.

@ We concluded that the most promising directions is to simulate the
Berkooz-Douglas model.

@ We performed independent lattice simulation of the BFSS model,
confirming the results of previous such studies.

@ We argued that for the BFSS model the integrant in the partition
function remains positive.

@ We found that the probe limit Ny << N does not suppress the
fundamental determinant.

@ We obtained the leading order behaviour of the energy at high and
low T.
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Thank youl!
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