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Solving QCD at large-N is a long standing difficult problem, 
actually a dream ...

An easier problem is to solve it only asymptotically in the 
UV

In a sense we already have an asymptotic solution:
It is standard perturbation theory

But solving the large-N theory, even only asymptotically, is 
much more interesting:

This solution would replace QCD as a theory of gluons and 
quarks, that is strongly coupled in the infrared in 

perturbation theory, with a theory of glueballs and mesons 
that is weakly coupled at all scales
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We have found an asymptotic solution of massless QCD at 
large-N in a sense specified later, by a new purely field-

theoretical method, based on fundamental principles, that we 
call the Asymptotically-Free Bootstrap

It expresses uniquely 2 and 3 point correlators 
of any spin (explicitly for lower spins) in terms of glueball and 

meson propagators, in such a way that the result is 
asymptotic in the UV to RG-improved perturbation theory

It extends to certain primitive r-point correlators and S-
matrix amplitudes to all 1/N orders
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To say it in a nutshell,  the asymptotically free bootstrap is a 
version of the conformal bootstrap, that is based on the 

OPE + conformal symmetry

suitably modified to take into account 

 OPE + asymptotic freedom in the UV

as opposed to the conformal symmetry, 
but combined with the

 Kallen-Lehmann representation 
in the large-N limit of confining asymptotically free theories
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Of course the asymptotically free bootstrap leads to much 
weaker results than the conformal bootstrap

In fact, the asymptotically-free bootstrap constructs 
asymptotic universality classes of massive local gauge-invariant 
correlators in the UV,  for large-N  confining asymptotically-

free gauge theories with no mass scale in perturbation 
theory,  admitting a large-N limit of  ‘t Hooft type 

(for example also large-N  n=1 SUSY  YM)
but it does not provide spectral information

To get spectral information we must lift the asymptotic 
solution to an actual solution. We will discuss ideas in this 
direction, based on a completely new type of topological 

strings, in the second part of the talk
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First and foremost, an asymptotic solution of this kind is a 
guide to find out an actual solution by other methods, either 

field theoretical or string theoretical

Besides, it gives us a rigorous asymptotic estimate for the 
two-point (scalar) correlator that controls the mass gap in 

large-N  Yang-Mills, as we will see

Moreover, it provides an easy way to understand how good 
or bad approximate solutions proposed in the past are 

and to check forthcoming proposed exact solutions (easy 
because based only on fundamental principles of field theory)

Implications of the asymptotic solution 
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Yet, the most fundamental consequence of the 
asymptotically-free bootstrap is the explicit structure of the 

asymptotic  S-matrix in certain sectors

 This puts the strongest constraints on any (string ?) solution 
for the S-matrix of large-N QCD and of n=1 SUSY YM

so explicit, and so strong constraints, that we conjecture that 
they determine uniquely the large-N QCD  S-matrix on the 

string side

 as we will see in the second part of the talk
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What makes possible the Asymptotically-Free 
Bootstrap is a recently-proved 

Asymptotic Theorem
 for large-N two-point correlators

M.B.  Glueball and meson propagators of any 
spin in large-N QCD

Nucl. Phys. B 875 (2013) 621[hep-th/1305.0273] 

Friday, June 5, 15



< O1(x1)O2(x2) · · · On

(x
n

) >

conn

⇠ N

2�n

For example, in the pure glue sector:

thus at the leading 1/N order:

<

1
N

X

↵�

trF

2
↵�(x1)...

1
N

X

↵�

trF

2
↵�(xk) >=

<

1
N

X

↵�

trF

2
↵�(x1) > ... <

1
N

X

↵�

trF

2
↵�(xk) >

The following remarkable simplifications occur

 The large-N limit of (massless) SU(N) QCD: 

(G. ‘t Hooft 1974)

Z =

Z
�A� ̄� e

� N
2g2

R P
↵� Tr

�
F

2
↵�

�
+i

P
f  ̄f�

↵
D↵ f d

4
x

Friday, June 5, 15



Z
hO(s)(x)O(s)(0)i

conn

e

�ip·x
d

4
x =

1X

n=1

P

(s)
�

p

↵

m

(s)
n

� | < 0|O(s)(0)|p, n, s >

0 |2
p

2 + m

(s)2
n

< 0|O(s)(0)|p, n, s, j >= e(s)
j (

p↵

m
) < 0|O(s)(0)|p, n, s >0

X

j

e(s)
j (

p↵

m
)e(s)

j (
p↵

m
) = P (s)

�p↵

m

�

two-point correlators, assuming confinement, are an infinite 
sum of free fields satisfying the the Kallen-Lehmann 

representation                 (A. Migdal, 1977):

At next to leading 1/N order, because 
of the vanishing of the interaction 
associated to 3 and multi-point 
correlators,
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But the large-N correlators have to match perturbation 
theory for large momentum, Migdal (1977), Polyakov book  
“Gauge Fields and Strings” (1987), actually RG-improved 
perturbation theory

What is the large momentum behavior of two-point 
correlators of any integer spin s in pure Yang-Mills, in QCD  
with massless quarks, in n=1 SUSY  YM or in any 
asymptotically free gauge theory massless in perturbation 
theory ?

For example: 
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The answer is simple but not completely trivial, as we will 
see momentarily. We have found it by standard methods:
Perturbation Theory +
Asymptotic Freedom +
Renormalization Group +
Some non-trivial subtlety . . .  

up to a polynomial in momentum, i.e. a contact term, i.e. a 
distribution supported at x=0 in coordinate space (this is the 
first subtlety) that must be subtracted;
            is the projector obtained substituting 
in the massive projector of spin s              (this is the second 
subtlety)
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For conserved currents:
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Fundamental question:

Therefore, at the leading large-N order it must hold:

Which are the constraints on the residues and the poles 
that follow from this asymptotic equality ?
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Oddly, neither Migdal, despite he is the father of the 
subject, nor other people found out any answer, 

with the exception of 

J. Mondejar,  A. Pineda [hep-th/0704.1417]
                                [hep-th/0803.3625]

who worked out some particular cases 

In the case of Migdal because he followed a path different 
from his own fundamental idea, for deep reasons 

discussed later

The answer to the fundamental question, after 38 years, 
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 is the following Asymptotic Theorem (M.B.):
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Proof of the RG estimate in the coordinate representation
using the fact that the operator O is multiplicatively 

renormalizable in the coordinate representation, because 
contact terms do not occur for x away from 0
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Proof of the Asymptotic Theorem in momentum 
representation
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It agrees with naive RG estimate in momentum  
representation, assuming the operator O to be 

multiplicatively renormalizable, that is technically falseZ
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Why Migdal did not look for something similar to the 
asymptotic theorem ?

Migdal starting point was that the OPE looks seemingly 
incompatible with (his own) Kallen-Lehmann representation, 

since terms involving Bernoulli numbers, that he argued 
should match the OPE, cannot get logarithmic corrections

implied in general by anomalous dimensions !

In fact, Migdal way out, imposing that there are no power-like 
corrections in the OPE, was dispersion relations and ratios of 

Bessel functions in 1977 !
as AdS/Gauge Theory correspondence found 20 years later !
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Yet Migdal objection to his own Kallen-Lehmann 
representation is in fact void for the first few most relevant 

coefficient functions in the OPE, i.e. asymptotically ...
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But what is in fact the UV asymptotics of the scalar glueball 
correlator, that indeed controls the mass gap in large-N Yang-
Mills, and more generally the mass gap in the scalar glueball 
sector of large-N QCD-like confining asymptotically-free 

theories ?
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Specialize the asymptotic theorem to scalar and pseudoscalar 
glueball propagators (M.B.)
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Perturbative check:  the 3-loop computation by Chetyrkin et 
al.
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Therefore, just as an aside, the asymptotic theorem provides 
a quantitative understanding of how accurate (approximate 
or would-be exact) solutions proposed since Migdal paper 

until our days are ...

In the past years several proposals have been advanced for 
the glueball propagators of QCD-like theories based on the 
the AdS-String /Large-N Gauge Theory Correspondence  
(Witten, Klebanov-Strassler, Maldacena-Nunez, Polchinski-
Strassler, and many followers . . .) 

Friday, June 5, 15



The asymptotic theorem implies that

none of the proposals for the scalar glueball 
propagators based on the AdS String/Large-N Gauge 

Theory correspondence agrees with 
the universal RG estimate in the UV for
 any asymptotically free gauge theory 

perhaps as expected, because the AdS-inspired models in the 
supergravity approximation are in fact strongly coupled in the 

UV
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All the previous results, disagree with asymptotic freedom 
and RG by powers of logarithms
It means that the would-be glueball propagators differ from 
the correct answer in pure YM or in any AF theory for an 
infinite number of poles and/or residues, 
(a fact that raises well motivated doubts on the correctness 
of the AdS-String inspired spectrum at large-N ... In fact, the  
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All the plots and mass formulae from   M.B.    [hep-th/
1308.2925]

and to appear

The lattice data are taken from 
Meyer-Teper SU(8)
  [hep-lat/0409183]
 for glueballs (red)

Bali-Bursa-Castagnini-Collins-Del Debbio-Lucini-Panero
SU(17) [hep-lat/1304.4437] for mesons (yellow)
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Meson and glueball Regge trajectories in massless large-N
 QCD from quenched lattice gauge theory
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Meson and glueball Regge trajectories in massless large-N 
QCD from quenched lattice gauge theory
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The black points in the plots follow from an actual proposal 
for the QCD spectrum and collinear S-matrix, based on a 

twistorial topological string theory (TTST), that we will 
discuss in the second part of the talk
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Why the strong-coupling approximation cannot work  ?
The asymptotic theorem for the scalar glueball propagator 
(that controls the mass gap of large-N Yang-Mills) implies 
that the more the theory becomes weakly coupled in the 

UV, the more massive poles occur, with dimensionless 
residues vanishing in the UV
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Thus dynamical mass generation is not a strong-
coupling phenomenon in large-N QCD-like theories !
Besides, the lowest state, i.e. the mass gap, for very large g,
is on the same order of the cutoff, i.e. strong coupling is 

unreliable in QCD-like AF gauge theories
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The TTST is related to a TFT underlying YM    (M.B.)
Glueball and meson propagators of any spin in large-N QCD

Nucl. Phys. B 875 (2013) 621[hep-th/1305.0273]
and

Yang-Mills mass gap, Floer homology, glueball spectrum
and conformal window in large-N QCD 
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We now look for a vast generalization of the Asymptotic 
Theorem to r-point correlators 

that we call the Asymptotically-Free Bootstrap

The extension to multi-point correlators gives us 
information about the interaction, 

and thus it may suggest appropriate string candidates 
for AF QCD-like theories, as opposed to gauge/

gravity at strong coupling
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The basic idea of the asymptotically-free bootstrap is based 
on the following estimate for 3-point scalar correlators: 
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but the new ingredient is

the  Kallen-Lehmann representation for OPE coefficients
 

 This is the new crucial feature, that extends to OPE the
aforementioned asymptotic theorem for 2-point correlators
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The asymptotic spectral representation of 2 and 3-point
scalar correlators follows:

Let us see how it works in detail ...
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The Asymptotically-Free Bootstrap (for any spin)

1. Conformal invariance of correlators at lowest order of 
perturbation theory. For 2 an 3 point correlators structure is 

fixed uniquely by conformal invariance
2. RG improvement by Callan-Symanzik + asymptyotic 
freedom ; 1+2 imply that 3 point correlators factorize 

asymptotically on products of certain coefficients of OPE
3. Kallen-Lehmann representation of coefficients of OPE;
This is the new crucial feature, that extends to OPE the

aforementioned asymptotic theorem for 2 point correlators 
4.          1+2+3          fix uniquely the glueball and meson 3-

point correlators asymptotically in the UV
5.        primitive r-point correlators follow by iterating the 

OPE
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of perturbation theory. For 2 an 3 point correlators
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Renormalization-group improvement:
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1+2 imply that 3-point correlators
 factorize asymptotically on products of certain 

coefficients of OPE
O(x)O(0) ⇠ C(x)O(0) + · · ·

✓
x · @

@x

+ �(g)
@

@g

+ (D + �(g))

◆
C(x) = 0

C(x) ⇠
( g(x)
g(µ) )

�0
�0

x

D

G

(3)(x1 � x2, x2 � x3, x3 � x1) ⇠ C(x1 � x2)C(x2 � x3)C(x3 � x1)

< O(x1)O(x2)O(x3) >conn

⇠ C(x1 � x2) < O(x2)O(x3) >conn

⇠ C(x1 � x2)G
(2)(x2 � x3)

⇠ C(x1 � x2)C
2(x2 � x3)
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The precise statement being 

or its slightly stronger version

< O(x1)O(x2)O(x3) >conn

⇠ C(x1 � x2) < O(x2)O(x3) >conn

⇠ C(x1 � x2)G
(2)(x2 � x3)

⇠ C(x1 � x2)C
2(x2 � x3)

⇠
( g(x1�x2)

g(µ) )
�0
�0

(x1 � x2)D
( g(x2�x3)

g(µ) )
2�0
�0

(x2 � x3)2D

G(3)(�(x1 � x2),�(x2 � x3),�(x3 � x1))

⇠ C(�(x1 � x2))C(�(x2 � x3))C(�(x3 � x1)) +O(g2(�x0))
Z3(�, g(µ))

�3D
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C2D�D1(x) =
1

x

2D�D1
G2D�D1(g(x))Z

2
OD

(xµ, g(µ))Z�1
OD1

(xµ, g(µ))

O0(x)O0(0) ⇠ C0(x)1 + C(x)O0(0) +
X

i 6=0

Ci(x)Oi(0)

+
X

D0 6=D

CD0(x)OD0(0) +
X

s 6=0

Cs(x)O(s)(0) + · · ·
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3. Kallen-Lehmann (KL) representation of coefficients of OPE;  
This is the new crucial feature, that extends to OPE the

aforementioned asymptotic theorem for 2 point-correlators

C(x1 � x2) ⇠
1X

n=1

1

(2⇡)4

Z
m

D�4
n

Z

n

⇢

�1(m2
n

)

p

2 +m

2
n

e

ip·(x1�x2)
d

4
p

⇠
1X

n=1

1

(2⇡)4

Z
m

D�4
n

( g(mn)
g(µ) )

�0
�0
⇢

�1(m2
n

)

p

2 +m

2
n

e

ip·(x1�x2)
d

4
p

⇠
( g(x1�x2)

g(µ) )
�0
�0

(x1 � x2)D
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4.          1+2+3   fix uniquely the glueball and 
meson 3-point scalar vertices asymptotically in the UV

< O
D,�0(x1)OD,�0(x2)OD,�0(x3) >conn

⇠
1X

n1=1

1

(2⇡)4

Z
mD�4

n1
Z
n1⇢

�1(m2
n1
)

p21 +m2
n1

eip1·(x1�x2)d4p1

1X

n2=1

1

(2⇡)4

Z
mD�4

n2
Z
n2⇢

�1(m2
n2
)

p22 +m2
n2

eip2·(x2�x3)d4p2

1X

n3=1

1

(2⇡)4

Z
mD�4

n3
Z
n3⇢

�1(m2
n3
)

p23 +m2
n3

eip3·(x3�x1)d4p3

at 1/N^3  order (non planar):
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< O(q1)O(q2) >conn

⇠ �(q1 + q2)
1X

n=1

m2D�4
n

Z2
n

⇢�1(m2
n

)

q21 +m2
n

< O
D,�0(q1)OD,�0(q2)OD,�0(q3) >conn

⇠ �(q1 + q2 + q3)
1X

n1=1

1X

n2=1

1X

n3=1

Z
mD�4

n1
Z
n1⇢

�1(m2
n1
)

p2 +m2
n1

mD�4
n2

Z
n2⇢

�1(m2
n2
)

(p+ q2)2 +m2
n2

mD�4
n3

Z
n3⇢

�1(m2
n3
)

(p+ q2 + q3)2 +m2
n3

d4p

5.         r-point asymptotic correlators follow 
by iterating the OPE

< OD,�0(q1)OD,�0(q2)OD,�0(q3) >conn

⇠ �(q1 + q2 + q3)C(q2)G
(2)(q3)

⇠ �(q1 + q2 + q3)
1X

n1=1

mD�4
n1

Zn1⇢
�1(m2

n1
)

q22 +m2
n1

1X

n2=1

m2D�4
n2

Z2
n2
⇢�1(m2

n2
)

q23 +m2
n2

at 1/N^3  order:

at 1/N order:
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< O(x1)O(x2)O(x3)O(x4) >conn

⇠ C(x1 � x2)C(x2 � x3)C(x3 � x4)C(x4 � x2)

⇠ C(x1 � x2)C(x2 � x3)C(x3 � x4)C(x4 � x1)

< O(x1)O(x2) · · · O(xr) >conn

⇠ C(x1 � x2) · · ·C(xr � x1)

C(xi � xj) ⇠ Z((xi � xj)µ, g(µ))
1

(xi � xj)D

But for multi-point correlators these are leading 
contributions for a given anomalous dimension, but not 

necessarily the only ones, as opposed to 3-point correlators

Some higher-order contributions are obtained iterating the 
OPE
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But this is not the whole story !

We want to find the asymptotic effective action and 
asymptotic S-matrix

i.e.     we want to go from

 propagators and correlators

to

 kinetic terms and vertices

this requires some more not-completely-trivial work
as a result we find some surprises for the S-matrix
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Text
The structure of the 1PI effective action for scalar 

correlation functions in massless large-N QCD and n=1 
SUSY YM, asymptotically in the UV 

c(1)3 (N) ⇠ 1

N
for glueballs and gluinoballs

c(1)3 (N) ⇠ 1p
N

for mesons

c(2)3 (N) ⇠ 1

N3
for glueballs and gluinoballs

c(2)3 (N) ⇠ 1p
N3

for mesons

Seff =
1

2!

X

n

Z
dq1dq2�(q1 + q2)m

4�2D
n Z�2

n ⇢(m2
n)�n(q1)(q

2
1 +m2

n)�n(q2)

+
c(1)3 (N)

3!

Z
dq1dq2dq3�(q1 + q2 + q3)

1X

n1=1

m2�D
n1

Z�1
n1

�n1(q1)

m4�D
n1

Z�1
n1

�n1(q2)⇢(m
2
n1
)

1X

n3=1

m�D
n3

Z�1
n3

�n3(q3)

+
c(2)3 (N)

3!

Z
dq1dq2dq3�(q1 + q2 + q3)

Z 1X

n1=1

m2
n1

m�D
n1

Z�1
n1

�n1(q2)

p2 +m2
n1

1X

n2=1

m2
n2

m�D
n2

Z�1
n2

�n2(q3)

(p+ q2)2 +m2
n2

1X

n3=1

m2
n3

m�D
n3

Z�1
n3

�n3(q1)

(p+ q2 + q3)2 +m2
n3

dp

+ · · ·
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Z
dq1dq2 · · · dqr�(q1 + q2 + · · ·+ qr)

Z 1X

n1=1

m2
n1

m�D
n1

Z�1
n1

�n1(q2)

p2 +m2
n1

1X

n2=1

m2
n2

m�D
n2

Z�1
n2

�n2(q3)

(p+ q2)2 +m2
n2

· · ·
1X

nr=1

m2
nr

m�D
nr

Z�1
nr

�nr (q1)

(p+ q2 + · · ·+ qr)2 +m2
nr

dp

higher order r-point asymptotic vertices in the 1PI effective 
action from the OPE  
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< OD,�0(q1)OD,�0(q2)OD,�0(q3) >conn

⇠ �(q1 + q2 + q3)C(q2)G
(2)(q3)

⇠ �(q1 + q2 + q3)
1X

n1=1

mD�4
n1

Zn1⇢
�1(m2

n1
)

q22 +m2
n1

1X

n2=1

m2D�4
n2

Z2
n2
⇢�1(m2

n2
)

q23 +m2
n2

OPE

The asymptotic planar  3-point correlator implied by the 
vertex in the IPI effective action agrees with the OPE 

asymptotically

< OD,�0(q1)OD,�0(q2)OD,�0(q3) >conn

⇠ �(q1 + q2 + q3)
1X

n1=1

1X

n3=1

mD�2
n1

Zn1

q21 +m2
n1

mD�2
n1

Zn1⇢
�1(m2

n1
)

q22 +m2
n1

m2
n1

m2
n3

mD�2
n3

Zn3⇢
�1(m2

n3
)

q23 +m2
n3

⇠ �(q1 + q2 + q3)
1X

n1=1

1X

n3=1

m2D�4
n1

Z2
n1
⇢�1(m2

n1
)

q21 +m2
n1

m2
n1

q22 +m2
n1

mD�4
n3

Zn3⇢
�1(m2

n3
)

q23 +m2
n3
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< O
D,�0(q1)OD,�0(q2)OD,�0(q3) >conn

⇠ �(q1 + q2 + q3)
1X

n1=1

1X

n2=1

1X

n3=1

Z
mD�4

n1
Z
n1⇢

�1(m2
n1
)

p2 +m2
n1

mD�4
n2

Z
n2⇢

�1(m2
n2
)

(p+ q2)2 +m2
n2

mD�4
n3

Z
n3⇢

�1(m2
n3
)

(p+ q2 + q3)2 +m2
n3

d4p

< OD,�0(q1)OD,�0(q2)OD,�0(q3) >conn

⇠ �(q1 + q2 + q3)

Z 1X

n1=1

mD�4
n1

Zn1⇢
�1(m2

n1
)

p2 +m2
n1

m2
n1

q22 +m2
n1

1X

n2=1

mD�4
n2

Zn2⇢
�1(m2

n2
)

(p+ q2)2 +m2
n2

m2
n2

q23 +m2
n2

1X

n3=1

mD�4
n3

Zn3⇢
�1(m2

n3
)

(p+ q2 + q3)2 +m2
n3

m2
n3

q21 +m2
n3

dp

Improved 3-point non-planar correlator 

lim
n!1

m2
n

q2 +m2
n

= 1
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The generating functional of scalar S-matrix amplitudes (1PI) 
in massless large-N QCD and n=1 SUSY YM,

asymptotically in the UV 

The S-matrix depends only on the spectrum but not on the 
anomalous dimensions ! No conventional string theory has 

this S-matrix, since vertices are non-local but very much field 
theoretical (as in super-renormalizable field theories).

Scan =
1

2!

X

n

Z
dq1dq2�(q1 + q2)�n(q1)(q

2
1 +m2

n)�n(q2)

+
c(1)3 (N)

3!

Z
dq1dq2dq3�(q1 + q2 + q3)

1X

n1,n3=1

�n1(q1)�n1(q2)
m2

n1

m2
n3

�n3(q3)⇢
� 1

2 (m2
n3
)

+
c(2)3 (N)

3!

Z
dq1dq2dq3�(q1 + q2 + q3)

Z 1X

n1=1

⇢�
1
2 (m2

n1
)�n1(q2)

p2 +m2
n1

1X

n2=1

⇢�
1
2 (m2

n2
)�n2(q3)

(p+ q2)2 +m2
n2

1X

n3=1

⇢�
1
2 (m2

n3
)�n3(q1)

(p+ q2 + q3)2 +m2
n3

dp+ · · ·
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Thus the (unknown) spectrum determines the 
asymptotic S-matrix

This is the asymptotically-free version

of the old-fashioned bootstrap 

i.e.

the asymptotically-free bootstrap !
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But a different choice of contact terms for C(x) would lead 
to a non-renormalizable asymptotic generating functional of 

the scalar S matrix !

C(x1 � x2) ⇠
1X

n=1

1

(2⇡)4

Z
p

D�4
Z

n

⇢

�1(m2
n

)

p

2 +m

2
n

e

ip·(x1�x2)
dp
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Given the Kallen-Lehmann representation,
 extension of the Asymptotic Theorem to other coefficients 

of OPE is straightforward, 
taking into account different naive dimensions and anomalous 

dimensions of each coefficient,
but in the spectral representation for the coefficient functions 

in the OPE the residues need not to be positive, i.e. the 
spectral sum need not to converge absolutely,

 but everything works asymptotically to the extent the Euler-
McLaurin formula works asymptotically. This is a mathematical 

assumption ... that requires that residues do not oscillate 
wildly. In the latter case our statements hold for the inclusive 
meson and glueball S-matrix for fixed spin, rather than for 

individual amplitudes; thus at worse by the asymptotically-free 
bootstrap we get a version of gluon-quark/ glueball-meson 

duality
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< j

a
R↵1�̇1

(x)jb
R↵2�̇2

(0) >⇠ �

ab
x↵1�̇2

x↵2�̇1

x

8

< j

a↵1�̇1

V (x1)j
b↵2�̇2

V (x2)j
c↵3�̇3

V (x3) >

⇠< j

a↵1�̇1

V (x1)j
b↵2�̇2

A (x2)j
c↵3�̇3

A (x3) >

⇠ f

abc(
x

↵1�̇2
12

x

4
12

x

↵2�̇3
23

x

4
23

x

↵3�̇1
31

x

4
31

� x

↵1�̇3
13

x

4
13

x

↵3�̇2
32

x

4
32

x

↵2�̇1
21

x

4
21

)

< j

a↵1�̇1

A (x1)j
b↵2�̇2

A (x2)j
c↵3�̇3

A (x3) >

⇠< j

a↵1�̇1

A (x1)j
b↵2�̇2

V (x2)j
c↵3�̇3

V (x3) >

⇠ d

abc(
x

↵1�̇2
12

x

4
12

x

↵2�̇3
23

x

4
23

x

↵3�̇1
31

x

4
31

+
x

↵1�̇3
13

x

4
13

x

↵3�̇2
32

x

4
32

x

↵2�̇1
21

x

4
21

)

For vector and axial flavor currents (or gluinoball (flavor-
singlet) chiral currents) in spinor notation

< j

a↵1�̇1
� (x1)j

b↵2�̇2
� (x2)j

c↵3�̇3
� (x3) >

⇠ �Tr(T c
T

b
T

a)
x

↵1�̇2
12

x

4
12

x

↵2�̇3
23

x

4
23

x

↵3�̇1
31

x

4
31

� Tr(T b
T

c
T

a)
x

↵1�̇3
13

x

4
13

x

↵3�̇2
32

x

4
32

x

↵2�̇1
21

x

4
31
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< j

a

R↵1�̇1
(x)jb

R↵2�̇2
(0) >

⇠ �

ab

X

n

1

(2⇡)4

Z �
✏

↵1↵2✏
�̇1�̇2

+
p

↵1�̇1
p

↵2�̇2

m

2
Rn

)
m

2
Rn

Z

2
Rn

⇢

�1
1R(m

2
Rn

)

p

2 +m

2
Rn

e

ip·x
dp

= �

ab

1

(2⇡)4

Z
p

2
�
✏

↵1↵2✏
�̇1�̇2

�
p

↵1�̇1
p

↵2�̇2

p

2
)
X

n

Z

2
Rn

⇢

�1
1R(m

2
Rn

)

p

2 +m

2
Rn

e

ip·x
dp+ · · ·

2- point planar, and 3- point non-planar correlators 

< j

a↵1�̇1

R (q1)j
b↵2�̇2

R (q2)j
c↵3�̇3

R (q3) >

⇠ 1

N

g

Z
dq1dq2dq3�(q1 + q2 + q3)Tr

(R)(a, b, c)

Z 1X

n1=1

p↵1�̇2
m

�2
Rn1

z

�1
Rn1

⇢

�1
1R(m

2
Rn1

)

p

2 +m

2
Rn1

m

2
n1

q

2
2 +m

2
n1

1X

n2=1

(p+ q2)↵2�̇3
m

�2
Rn2

z

�1
Rn2

⇢

�1
1R(m

2
Rn2

)

(p+ q2)2 +m

2
Rn2

m

2
n2

q

2
3 +m

2
n2

1X

n3=1

(p+ q2 + q3)↵3�̇1
m

�2
Rn3

z

�1
Rn3

⇢

�1
1R(m

2
Rn3

)

(p+ q2 + q3)2 +m

2
Rn3

m

2
n3

q

2
1 +m

2
n3

dp

+opposite orientation
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�1R =
1

2

X

n

Z
dq1dq2�(q1 + q2)m

�2
RnZ

�2
Rn⇢1R(m

2
Rn)�ab

�a↵1�̇1

Rn (q1)
�
✏↵1↵2✏�̇1�̇2

(q21 +m2
Rn)� q1↵1�̇1

q1↵2�̇2

�
�b↵2�̇2

Rn (q2)

+
1

3Ng

Z
dq1dq2dq3�(q1 + q2 + q3)Tr

(R)(a, b, c)

Z 1X

n1=1

p↵1�̇2
m�2

Rn1
z�1
Rn1

�a↵1�̇1

Rn1
(q2)

p2 +m2
Rn1

1X

n2=1

(p+ q2)↵2�̇3
m�2

Rn2
z�1
Rn2

�b↵2�̇2

Rn2
(q3)

(p+ q2)2 +m2
Rn2

1X

n3=1

(p+ q2 + q3)↵3�̇1
m�2

Rn3
z�1
Rn3

�c↵3�̇3

Rn3
(q1)

(p+ q2 + q3)2 +m2
Rn3

dp+ · · ·

1PI Effective action  (no planar 3-point vertex depicted)

lim
n!1

ZRn = 1
X

n

z�1
Rnm

�2
Rn⇢

�1
1 (m2

Rn) = cR

Tr(+)(a, b, c) = Tr(T aT bT c)

Tr(�)(a, b, c) = �Tr(T cT bT a)

Tr(V )(a, b, c) = fabc

Tr(A)(a, b, c) = dabc
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1PI S-matrix generating functional (no planar 3-point vertex 
depicted)

In the s=1 sector the theory looks renormalizable 
by power counting but not super-renormalizable

S1R =
1

2

X

n

Z
dq1dq2�(q1 + q2)�ab�

a↵1�̇1

Rn (q1)
�
✏↵1↵2✏�̇1�̇2

(q21 +m2
Rn)� q1↵1�̇1

q1↵2�̇2

�
�b↵2�̇2

Rn (q2)

+
C

3Ng

Z
dq1dq2dq3�(q1 + q2 + q3)Tr

(R)(a, b, c)

Z 1X

n1=1

p↵1�̇2
ZRn1z

�1
Rn1

m�1
Rn1

⇢
� 1

2
1R (m2

Rn1
)�a↵1�̇1

Rn1
(q2)

p2 +m2
Rn1

1X

n2=1

(p+ q2)↵2�̇3
ZRn2z

�1
Rn2

m�1
Rn2

⇢
� 1

2
1R (m2

Rn2
)�b↵2�̇2

Rn2
(q3)

(p+ q2)2 +m2
Rn2

1X

n3=1

(p+ q2 + q3)↵3�̇1
ZRn3z

�1
Rn3

m�1
Rn3

⇢
� 1

2
1R (m2

Rn3
)�c↵3�̇3

Rn3
(q1)

(p+ q2 + q3)2 +m2
Rn3

dp+ · · ·
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Possible applications

3-point current correlators:   pion form factor

and

vector dominance

4-point vector current correlator :    light by light scattering 
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The main limitation of the asymptotically-free bootstrap is 
that it does not contain spectral information,

but in fact it provides a guide to find out an exact large-N 
solution,

perhaps only for the spectrum and S-matrix

by other methods, 

say a String Solution for the spectrum and the S-matrix
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Tr3 log(1�
c0

N
((��+M2

)

�1⇢
� 1

2
0 �)) =

ˆTr3 log(1�
c0

N
tr((��+M2

)

�1⇢
� 1

2
0 �))

In the pure-glueball sector of positive charge 
conjugation of large-N QCD the higher-order 
contributions to the 1PI effective action can be 
re-summed into a functional determinant, that is 

compatible with the planar local 3-point vertex, in 
the sense that the functional determinant arises 

by the (one-loop) quantization of the purely local 
Phi^3 theory !

S =

1

2

tr

Z
�(��+M

2
)� d

4
x+

c

0

3!N

Z
tr(�

2
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2
)tr(

�
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2
⇢

� 1
2

0 ) d

4
x

+



2

logDet3(��+M

2
+

c

0
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⇢

� 1
2

0 �⌦)
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Can we lift the asymptotic structure of the S-matrix to an 
actual String solution ?
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Holomorphic Chern-Simons on twistor space= String of n=4 
SUSY YM Witten (2004):  massless particles = Dolbeault

cohomology thanks to Penrose construction 
Nair (1987) Boels, Mason, Skinner (2006)

Conjecturally: Complex Chern-Simons on Lagrangian 
submanifolds of non-commutative twistor space=

String of large-N  YM: 
massive glueball Regge  trajectories = infinite non-Abelian 

Non-commutative Hodge structure 

S(A) =

1

2⇡

Z
⌦ ^ tr(A ^ ¯@A+

2

3

A ^A ^A)� 

Z
dµ log det

⇣
(

¯@ +A)

L(x�,✓̃)

⌘

S(B) =

1

2⇡

Z
tr(B ^ dB +

2

3

B ^B ^B)� 

Z
dµ log det (d+B�)

Neitzke-Vafa (2004), M.B. (2008)
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Why does the Topological String Theory have chances 
to work ?

Because S-matrix amplitudes for topological strings 
arise by summing on D-branes, as in Witten  
Topological Twistor String of n=4 SUSY YM

or by summing on world-sheet instantons as in the 
Twistorial A-model that is dual to the TFT (M.B.)

and not by summing on Riemann surfaces, as for 
conventional strings, that in general implies very soft 

behavior in the UV, more soft than in 
super-renormalizable field theories

In Witten topological string the field theoretical MHV 
amplitudes of n=4 YM are exactly reproduced, i.e. 

they are hard in the UV
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Twistor Wilson loops are first defined in U(N) YM on non-
commutative space-time, for large non-commutativity:

TrN (

ˆB�;Lww) =

TrNP exp i

Z

Lww

(

ˆAz + � ˆDu)dz + (

ˆAz̄ + ��1
ˆDū)dz̄

z = x0 + ix1

z̄ = x0 � ix1
û = x̂2 + ix̂3

ˆ̄
u = x̂2 � ix̂3

NC YM in the limit of large non-commutativity is equivalent 
to SU(N)YM in large N limit on commutative space-time

D̂u = @̂u + iÂu

[@̂u, @̂ū] = ✓�11

[û, ˆ̄u] = ✓1

The TTST is related  to a TFT underlying 
pure large-N YM
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V.e.v. of  twistor Wilson loops is trivial

<
1
N TrN (B̂�;Lww) > = <

1
N TrN (B̂1;Lww) >

lim
✓!1

<
1
N TrN (B̂�;Lww) > = 1

 Hint: at lowest order in perturbation theory

< TrN
� Z

Lww

(Âz + �D̂u)dz + (Âz̄ + ��1D̂ū)dz̄

Z

Lww

(Âz + �D̂u)dz + (Âz̄ + ��1D̂ū)dz̄
�

>

= 2
Z

Lww

dz

Z

Lww

dz̄(< TrN (ÂzÂz̄) > +i2 < TrN (ÂuÂū) >)

= 0
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NC twistor loops are gauge equivalent for large theta to the 
following loops of the large-N commutative gauge theory

< TrN exp i

Z

Lww

(Az(z, z̄, i�z, i��1z̄) + i�Au(z, z̄, i�z, i��1z̄))dz

+(Az(z, z̄, i�z, i��1z̄) + i��1Au(z, z̄, i�z, i��1z̄))dz̄ >

Thus they are supported on Lagrangian submanifolds of
twistor space of complexification of Euclidean space-time
Triviality proof is based on vanishing of coefficients of 
propagators:

ż ˙̄z + i2�ż��1 ˙̄z = 0
żz̄ + i2�ż��1 ˙̄z = 0
z ˙̄z + i2�z��1 ˙̄z = 0
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Wilson loop in NC YM theory, translations can be 
reabsorbed by gauge transformations = modern Eguchi-
Kawai reduction

1

N tr

N

Tr
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=

ˆ

U(x)

ˆ

@

↵

ˆ

U(x)

�1

 (

ˆ

A;L

yz

) = P exp i

Z

Lyz

(�i

ˆ

@

↵

+

ˆ

A

↵

)dx

↵
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NC EGUCHI-KAWAI REDUCTION
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Eguchi-Kawai reduction (1982), Gonzalez Arroyo - Korthals 
Altes (1983), Minwalla-Ramsdonk-Seiberg (1999), Makeenko 
(2000), Szabo (2001), Douglas-Nekrasov (2001), Dhar-
Kitazawa (2001), Alvarez-Gaume’-Barbon (2002)... NC YM is 
equivalent to a matrix model with rescaled action, because 
translations can be absorbed into gauge transformations 
Operator/function correspondence:

[x̂

↵

, x̂

�

] = i✓

↵�
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ˆ
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d

d
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2
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↵

x

✓
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�

y

)g(y)|
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n

(x

n

) =
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exp(

i

2

@

↵

x
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↵�
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�

x

k)f1(x1)...fn

(x

n

)

[@̂↵, @̂� ] = i✓�1
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e

a@̂�̂(x)e�a@̂ = �̂(x+ a)
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2
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2
Pf(✓)T̂ r(�̂(x)�̂(y)) = �

d(x� y)Z
d

d
x(f ? g)(x) =

Z
d

d
xf(x)g(x)

Friday, June 5, 15



e

a@̂�̂(x)e�a@̂ = �̂(x + a)

@̂

i(x̂j) = �

ij1

(2⇡)
d
2
Pf(✓)T̂ rf̂ =

Z
d

d
xf(x)

(2⇡)
d
2
Pf(✓)T̂ r(�̂(x)�̂(y)) = �

d(x� y)Z
d

d
x(f ? g)(x) =

Z
d

d
xf(x)g(x)

N

2g

2

Z
d

d
xtrN (F↵� ? F↵�)(x)

=
N

2g

2
(2⇡)

d
2
Pf(✓)trN T̂ r(�i[@̂↵ + iÂ↵, @̂� + iÂ� ] + ✓
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The TTST is a blackboard talk 
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In the TTST the Hodge structure implies (half-)integer 
valued spectrum in units of 1/2 Lambda_QCD^2

m

(s)2
k = (k +

s

2
)⇤2

QCD ; s even; k = 1, 2, · · ·

m

(s)2
k = 2(k +

s

2
)⇤2

QCD ; s odd; k = 1, 2, · · ·

m

(s)2
n =

1

2
(n+ s)⇤2

QCD ; s = 0, 1, · · ·

m

(s)2
n =

1

2
(n+ s� 1

2
)⇤2

QCD ; s = 1, · · ·
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Meson and glueball Regge trajectories in massless large-N
 QCD from quenched lattice gauge theory
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Meson and glueball Regge trajectories in massless large-N 
QCD from quenched lattice gauge theory
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All the plots and mass formulae from   M.B.    [hep-th/
1308.2925]

and to appear

The lattice data are taken from 
Meyer-Teper SU(8)
  [hep-lat/0409183]
 for glueballs (red)

Bali-Bursa-Castagnini-Collins-Del Debbio-Lucini-Panero
SU(17) [hep-lat/1304.4437] for mesons (yellow)

Friday, June 5, 15



Meson and glueball Regge trajectories in massless large-N
 QCD from quenched lattice gauge theory

Friday, June 5, 15



Meson and glueball Regge trajectories in massless large-N
 QCD from quenched lattice gauge theory
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From the TTST spectrum and the lattice data it 
follows that there are two different slopes in 

the glueball sector

This is incompatible with the universally 
accepted picture that glueballs are vibrations of 

closed string only 

but it might be explained by the TTST, since it 
contains both an open

and a closed string sector

 Meson slope is twice larger (open strings in 
the TTST interpretation) than the largest 

glueball slope: usual interpretation, fundamental 
versus adjoint strings
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Infrared test: SU(8) lattice YM by Meyer-Teper (state of the 
art = presently smallest gauge coupling)

rs = rps =
p

2 = 1.4142 · · ·
TFT:

Witten model:

rs = 1.5860
rps = 1.2031

r2 = 1

rs =
m0++⇤

m0++

rps =
m0�+

m0++

rs = 1.7388
rps = 2.092
r2 = 1.7388

rs = rps = 1.42

r2 =
m2++

m0++

= 1.40

The lowest Kaluza-Klein (KK) mass=cutoff is lower than the 
would-be mass gap. Otherwise, ignoring the KK, the scalar 

mass gap is degenerate with spin 2 = qualitative 
disagreement with lattice gauge theory and actual PDG 

spectrum 
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rs = 1.64; r2 = 1.48
rs = 1.83; r2 = 1.56

rs = 2.19; rps = 1.25; r2 = 1.2

rs =
r

3
2

= 1.2247 · · ·

Soft Wall:

Hard Wall (Polchinski-Strassler):

D
N
S
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SU(3) unflavored I=1 meson Regge trajectories, 
and strange-meson Regge trajectories, PDG(2014) 
      Lambda_QCD=1505 MeV
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SU(3) unflavored I=1 meson Regge trajectories, and strange-
meson Regge trajectories, PDG(2014) 
      Lambda_QCD=1505 MeV

Friday, June 5, 15



The actual glueball (purple and blue) and meson leading 
Regge trajectories for any flavor (other colors) implied by 
Particle Data Group and BES collaboration versus theTTST

m2
s,n �m2

PGB =
1

2
⇤2
QCD(n+ s� 1

2
)

mf0(2100)

mf0(1500)
= 1.397(008)

Friday, June 5, 15



Prediction for glueball masses

f_0(2100)  th 2128  exp 2103  err 1%

f_2(2150)  th 2128  exp 2157 err 1%

X_1(?)(2632) th 2607  exp 2633  err 1%

X_3(?)(3350) th 3365  exp 3350  err 1 %

Friday, June 5, 15



Name JPC m
exp

(MeV) m
th

(MeV) Error (%)

⇡0

0

�+

134.98 0 �
⇢(770)0 1

��
775.26 753 3.0

a
0

(980) 0

++

990 1064 7.0

b
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+�
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a
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++
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�+

1300 1505 13.6

a
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++
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��
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a
0
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++
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��
1570 1683 6.7

⌘
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++

1617 1683 3.9

a
1
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++

1647 1683 2.1

⇡
2

(1670) 2

�+

1672.2 1683 0.6

⇢
3

(1690) 3

��
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⇢(1700) 1

��
1720 1683 2.2

a
2

(1700) 2

++

1732 1683 2.9

⇡(1800) 0

�+

1812 1843 1.7

⌘
2

(1870) 2

++

1842 1991 7.5

⇢(1900) 1

��
1880 1991 5.6

⇡(1880) 0

�+

1895 1843 2.8

⇢
3

(1990) 3

��
1982 1991 0.4

a
4

(2040) 4

++

1996 1991 0.3

⇡
2

(2100) 2

�+

2090 1991 5.0

⇢(2150) 1

��
2155 2258 4.5

⇢
3

(2250) 3

��
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⇢
5

(2350) 5

��
2350 2258 4.1

a
6

(2450) 6

++

2450 2496 1.8
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SU(3) unflavored I=1 meson Regge trajectories,
 Lambda_YM=1505 MeV
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SU(3) strange-meson Regge trajectories,
 Lambda_YM=1505 MeV
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SU(3) QCD unflavored I=1 meson spectrum
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SU(3) QCD strange-meson spectrum
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s
The actual glueball (green) and meson leading Regge 

trajectories for any flavor (other colors) implied by Particle 
Data Group and BES collaboration versus the TFT theory 

(black)
⇤2
W

= (1505 MeV)2

mf0(2100)

mf0(1500)
= 1.397(008)

m2
s,n �m2

PGB =
1

2
⇤2
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(n+ s� 1

2
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Does the Twistorial A-model on non-commutative twistor 
space solve really QCD in ‘t Hooft limit,

 only for the spectrum and the collinear S-matrix  ?

We will see ... (to appear shortly)
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