The spectrum of Large-N gauge theories

Biagio Lucini

eNLarge Horizons, UAM, Madrid, 3rd June 2015

- SU(N) Gauge Theories on the lattice
- 2 The spectrum at fixed UV cutoff
- Towards the continuum limit
- 4 Conclusions

Lattice action

Path integral

$$Z = \int (\mathcal{D}U_{\mu}(i)) \left(\det M(U_{\mu})\right)^{N_f} e^{-S_g(U_{\mu\nu}(i))}$$

with

$$U_{\mu}(i) = extit{Pexp}\left(ig\int_{i}^{i+a\hat{\mu}} extit{A}_{\mu}(x) \mathrm{d}x
ight) \;,\; U_{\mu
u}(i) = U_{\mu}(i)U_{
u}(i+\hat{\mu})U_{\mu}^{\dagger}(i+\hat{
u})U_{
u}^{\dagger}(i)$$

Gauge part

$$S_g = eta \sum_{i,\mu} \left(1 - rac{1}{N} {\cal R} \mathrm{e} \ \mathrm{Tr}(\mathrm{U}_{\mu
u}(\mathrm{i}))
ight) \qquad , \qquad ext{\it with } eta = 2N/g_0^2$$

Invariance under SU(N) gauge transformations

$$ilde{U}_{\mu}(i) = G^{\dagger}(i)U_{\mu}(i)G(i+\hat{\mu})$$

Wilson fermions

Take the naive Dirac fermions and add an irrelevant term that goes like the Laplacian

$$M_{\alpha\beta}(ij) = (m + \frac{4r}{\delta_{ij}}\delta_{\alpha\beta} - \frac{1}{2}\left[(r - \gamma_{\mu})_{\alpha\beta}U_{\mu}(i)\delta_{i,j+\mu} + (r + \gamma_{\mu})_{\alpha\beta}U_{\mu}^{\dagger}(j)\delta_{i,i-\mu}\right]$$

This formulation breaks explicitly chiral symmetry

Define the hopping parameter

$$\kappa = \frac{1}{2(m+4r)}$$

Chiral symmetry recovered in the limit $\kappa \to \kappa_c$ (κ_c to be determined numerically)

Quenched approximation

For an observable \mathcal{O}

$$\langle \mathcal{O} \rangle = rac{\int \left(\mathcal{D} U_{\mu}(i) \right) \left(\det M(U_{\mu}) \right)^{N_f} f(M) e^{-S_g(U_{\mu\nu}(i))}}{\int \left(\mathcal{D} U_{\mu}(i) \right) \left(\det M(U_{\mu}) \right)^{N_f} e^{-S_g(U_{\mu\nu}(i))}}$$

Assume det $M(U_{\mu}) \simeq 1$ i.e. fermions loops are removed from the action

The approximation is exact in the $m \to \infty$ and $N \to \infty$ limit (g^2N) is fixed)

 \hookrightarrow the large N spectrum is quenched for $m \neq 0$

As *N* increases, unquenching effects are expected for smaller quark masses

Extracting the spectrum

Trial operators $\Phi_1(t), \dots, \Phi_n(t)$ with the quantum numbers of the state of interest

$$C_{ij}(t) = \langle 0 | (\Phi_{i}(0))^{\dagger} \Phi_{j}(t) | 0 \rangle$$

$$= \langle 0 | (\Phi_{i}(0))^{\dagger} e^{-Ht} \Phi_{j}(0) e^{Ht} | 0 \rangle$$

$$= \sum_{n} \langle 0 | (\Phi_{i}(0))^{\dagger} | n \rangle \langle n | e^{-Ht} \Phi_{j}(0) e^{Ht} | 0 \rangle$$

$$= \sum_{n} e^{-\Delta E_{n}t} \langle 0 | (\Phi_{i}(0))^{\dagger} | n \rangle \langle n | \Phi_{j}(0) | 0 \rangle = \sum_{n} c_{in}^{*} c_{jn} e^{-\Delta E_{n}t}$$

Masses can be extracted from diagonal correlators

$$C_{ii} = \sum_{n} |c_{in}|^2 e^{-am_n t} \underset{t \to \infty}{\to} |c_{i1}|^2 e^{-am_1 t}$$

Variational calculations

Using the information of the whole correlation matrix allows us to better control the groundstate mass and to determine masses of excitations with a variational procedure

Find the eigenvector v that minimises

$$am_1(t_d) = -\frac{1}{t_d} \log \frac{v_i^* C_{ij}(t_d) v_j}{v_i^* C_{ij}(0) v_j}$$

for some t_d

- 2 Fit v(t) with the law Ae^{-m_1t} to extract m_1
- **③** Find the complement to the space generated by v(t)
- Repeat 1-3 to extract m_2, \ldots, m_n

Need a good overlap with the state of interest

Fermionic operators

For isotriplet states (flavour index $\alpha \neq \beta$):

Particle	Bilinear	JPC
a ₀ π ρ a ₁	$egin{array}{c} ar{\psi}_{lpha}\psi_{eta} \ ar{\psi}_{lpha}\gamma_5\psi_{eta}, ar{\psi}_{lpha}\gamma_0\gamma_5\psi_{eta} \ ar{\psi}_{lpha}\gamma_i\psi_{eta}, ar{\psi}_{lpha}\gamma_0\gamma_i\psi_{eta} \ ar{\psi}_{lpha}\gamma_5\gamma_i\psi_{eta} \ ar{\psi}_{lpha}\gamma_i\gamma_j\psi_{eta} \end{array}$	0 ⁺⁺ 0 ⁻⁺ 1 1 ⁺⁺

Flavour singlet states more difficult to study

Glueball operators

- Using traced Wilson loops of various shapes, build operators O_i(t) that are eigenstates of P and C and under the (discrete) group of rotations transform according to irreducible representations
- Examples of basic contours used

 Continuous spin reconstructed by looking the decomposition of the irreducible representations of the diedric group in irreps of SO(3)

String tension

Confining potential: $V = \sigma R$

Polyakov loop
$$P_k(i)=rac{1}{N} {
m Tr} \prod_{j=0}^L U_k(i+j\hat{k})$$
 $P(t)=\sum_{ec{n},k} P_k(ec{n},t)$ $C(t)=\langle (P(0))^\dagger P(t) \rangle = \sum_j |c_j|^2 e^{-am_j t} \mathop{\to}_{t o \infty} |c_l|^2 e^{-am_l t}$ $am_l \simeq a^2 \sigma L - rac{\pi (D-2)}{6I}$

Building extended operators

Starting from links, we can built extended loop operators via

Smearing

Blocking

For mesons, extended operators can be built by smearing source and sink operators over a few lattice spacings with a weight function (e.g. Gaussian smearing, wall smearing etc.)

Large N limit on the lattice

The lattice approach allows us to go beyond perturbative and diagrammatic arguments. For a given observable

- Continuum extrapolation
 - Determine its value at fixed a and N
 - Extrapolate to the continuum limit
 - Extrapolate to $N \to \infty$ using a power series in $1/N^2$
- Fixed lattice spacing
 - Choose a in such a way that its value in physical units is common to the various N
 - Determine the value of the observable for that a at any N
 - Extrapolate to $N \to \infty$ using a power series in $1/N^2$

Study performed for various observables both at zero and finite temperature for $2 \le N \le 8$ (and N = 17!)

$m_{ ho}$ vs. m_{π}^2 at $N=\infty$

[L. Del Debbio, B. Lucini, A. Patella and C. Pica, JHEP 0803 (2008) 062]

m_{π} vs. m_{ρ} - fixing σ

[G. Bali and F. Bursa, JHEP 0809 (2008) 110]

Computing the lowest-lying isotriplet spectrum

- Aims: determining the mesonic spectrum (including some excitations) and decay constants
- 2 Calculations performed for $2 \le N \le 7$ and N = 17
- 3 β fixed across the various n by imposing $a\sqrt{\sigma}=0.2093$, implying $a\simeq 0.093$ fm (or $a^{-1}\simeq 2.1$ GeV)
- **4** Range of κ down to $m_\pi \simeq 0.5 \sqrt{\sigma}$ for $N \geq 5$ and $m_\pi \simeq 0.75 \sqrt{\sigma}$ for $N \leq 4$
- Size $24^3 \times 48$ for $N \neq 17$, $12^3 \times 24$ for N = 17 (finite size effects negligible at large N)
- **10** 200 configurations (80 configurations for N = 17)

[G. Bali, F. Bursa, L. Castagnini, S. Collins, L. Del Debbio, B. Lucini and M. Panero, arXiv:1304.4437]

The PCAC mass

PCAC mass and chiral limit

Putting together large-N and χ PT predictions

$$a\,m_{ exttt{PCAC}} = rac{Z_P}{Z_A Z_S} \left(1 + A\,a\,m_{ exttt{PCAC}}
ight) rac{1}{2} \left(rac{1}{\kappa} - rac{1}{\kappa_c}
ight),$$

with A, K and $\frac{Z_P}{Z_AZ_S}$ expected to have $1/N^2$ corrections in the large-N limit:

$$\frac{Z_P}{Z_A Z_S} = 0.8291(20) - \frac{0.699(45)}{N^2},$$

$$A = 0.390(13) + \frac{2.73(26)}{N^2},$$

$$\kappa_C = 0.1598555(33)(447) - \frac{0.028242(68)(394)}{N^2}$$

The pseudoscalar

Fit results for the pseudoscalar

Ansatz:

$$(am_{\pi})^{2} = A(am_{q})^{\frac{1}{1+\delta}} + B(am_{q})^{2}$$

Results:

$$A = 11.99(0.10) - \frac{8.7(1.6)}{N^2}$$

$$B = 2.05(0.13) + \frac{5.0(2.2)}{N^2}$$

$$\delta = \frac{0.056(19)}{N} + \frac{0.94(21)}{N^3}$$

The vector

Fit results for the vector

Ansatz:

$$m_{
ho} = A + Bm_q^{1/2} + Cm_q + Dm_q^{3/2}$$

Results:

$$A = 1.504(51) + \frac{2.19(75)}{N^2}$$

$$B = -\frac{2.47(94)}{N}$$

$$C = 3.08(53) + \frac{16.8(8.2)}{N^2}$$

$$D = -0.84(31) - \frac{9.4(4.8)}{N^2}$$

Other states

$$\begin{split} \frac{m_{a_1}}{\sqrt{\sigma}} &= \left(2.860(21) + \frac{0.84(36)}{N^2}\right) + \left(2.289(35) - \frac{2.02(61)}{N^2}\right) \frac{m_{\text{PCAC}}}{\sqrt{\sigma}} \\ \frac{m_{b_1}}{\sqrt{\sigma}} &= \left(2.901(23) + \frac{1.07(40)}{N^2}\right) + \left(2.273(38) - \frac{2.83(72)}{N^2}\right) \frac{m_{\text{PCAC}}}{\sqrt{\sigma}} \\ \frac{m_{a_0}}{\sqrt{\sigma}} &= \left(2.402(34) + \frac{4.25(62)}{N^2}\right) + \left(2.721(53) - \frac{6.84(96)}{N^2}\right) \frac{m_{\text{PCAC}}}{\sqrt{\sigma}} \end{split}$$

Excited states

$$\begin{split} \frac{m_{\pi^*}}{\sqrt{\sigma}} &= \left(3.392(57) + \frac{1.0(1.1)}{N^2}\right) + \left(2.044(80) - \frac{1.2(1.6)}{N^2}\right) \frac{m_{\text{PCAC}}}{\sqrt{\sigma}} \\ \frac{m_{\rho^*}}{\sqrt{\sigma}} &= \left(3.696(54) + \frac{0.23(55)}{N^2}\right) + \left(1.782(67) - \frac{1.30(54)}{N^2}\right) \frac{m_{\text{PCAC}}}{\sqrt{\sigma}} \\ \frac{m_{a_0^*}}{\sqrt{\sigma}} &= \left(4.356(65) + \frac{1.8(1.4)}{N^2}\right) + \left(1.902(98) - \frac{2.9(2.1)}{N^2}\right) \frac{m_{\text{PCAC}}}{\sqrt{\sigma}} \\ \frac{m_{a_1^*}}{\sqrt{\sigma}} &= \left(4.587(75) + \frac{1.2(1.2)}{N^2}\right) + \left(1.76(12) - \frac{2.1(19)}{N^2}\right) \frac{m_{\text{PCAC}}}{\sqrt{\sigma}} \\ \frac{m_{b_1^*}}{\sqrt{\sigma}} &= \left(4.609(99) + \frac{1.7(1.5)}{N^2}\right) + \left(1.87(15) - \frac{2.5(2.2)}{N^2}\right) \frac{m_{\text{PCAC}}}{\sqrt{\sigma}} \end{split}$$

Pion decay constant

Fit
$$f_{\pi}^{\mathrm{lat}}/\sqrt{N\sigma} = A + B \cdot m_{\scriptscriptstyle \mathsf{PCAC}}/\sqrt{\sigma} + C \cdot m_{\scriptscriptstyle \mathsf{PCAC}}^2/\sigma$$

ρ decay constant

Fit
$$f_{
ho}^{
m lat}/\sqrt{N\sigma} = \textit{A} + \textit{B} \cdot \textit{m}_{ exttt{PCAC}}/\sqrt{\sigma} + \textit{C} \cdot \textit{m}_{ exttt{PCAC}}^2/\sigma$$

Approaching $N = \infty$

Chiral condensate

Fit
$$\langle \overline{\psi} \psi
angle^{lat}/(\textit{N}\sigma^{3/2}) = \textit{A} + \textit{B} \cdot \textit{m}_{\scriptscriptstyle \sf PCAC}/\sqrt{\sigma}$$

The A⁺⁺ glueball channel

Lattice spacing fixed by requiring $aT_c = 1/6$

The glueball spectrum at $aT_c = 1/6$

[B. Lucini, A. Rago and E. Rinaldi, JHEP 1008 (2010) 119]

Continuum meson spectrum – SU(7)

Comparison with QCD

 $\sqrt{\sigma}$ fixed from the condition $\hat{F}_{\infty}=85.9~{
m MeV},\,m_{ud}$ from $m_{\pi}=138~{
m MeV}$

The strange meson spectrum

$$m_s$$
 fixed from $m_\pi(m_s) = (m_{K^\pm}^2 + m_{k^0}^2 - m_{\pi^\pm}^2)^{1/2} = 686.9 \text{ MeV}$

What do we learn?

- Lowest-lying mesons broadly compatible with QCD, excitations off by 20% (however, excitations less controlled in our calculation)
- The calculated large-N masses $m_{\rho}=753(14)~{
 m MeV}$ and of the $m_{\phi}=981(44)~{
 m MeV}$ are remarkably close to their experimental values $m_{\rho}=775$ and $m_{\phi}=1019~{
 m MeV}$
- Observed degeneracy of (ρ, a_0) and (a_1, π^*) (predicted by χ PT)

Glueballs in the continuum limit

Example
Glueball masses in SU(4)

[B. Lucini and M. Teper, JHEP 0106 (2001) 050]

Large-N extrapolation of glueball masses

[B. Lucini, M. Teper and U. Wenger, JHEP 0406 (2004) 012]

Glueball masses at $N = \infty$

$$0^{++} \qquad \frac{m}{\sqrt{\sigma}} = 3.28(8) + \frac{2.1(1.1)}{N^2}$$

$$0^{++*} \qquad \frac{m}{\sqrt{\sigma}} = 5.93(17) - \frac{2.7(2.0)}{N^2}$$

$$\frac{m}{\sqrt{\sigma}} = 4.78(14) + \frac{0.3(1.7)}{N^2}$$

Accurate $N = \infty$ value, small $\mathcal{O}(1/N^2)$ correction

Topological observables

Topological charge
$$Q = \frac{1}{32\pi^2} \int \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \, \mathrm{d}^4 x = \int q(x) \, \mathrm{d}^4 x$$

Topological susceptibility

$$\chi_t = \frac{\langle Q^2 \rangle - \langle Q \rangle^2}{V}$$

Witten-Veneziano formula (large-N result) $\hookrightarrow \chi$ finite at large N

$$\chi_t = \frac{m_{\eta'}^2 f_{\eta'}^2}{2N_f}$$

From lattice calculations

$$\frac{\chi_t}{\sigma^{1/4}} = 0.397(7) + \frac{0.35(13)}{N^2} - \frac{1.32(41)}{N^4}$$

[BL, M. Teper and U. Wenger, Nucl. Phys. B715 (2005) 461]

Large-*N* limit of χ_t – An example

[BL and M. Teper, JHEP 0106 (2001) 050]

Monte Carlo history of Q - SU(3)

$$V=16^4$$
, $\beta=6.0$

Monte Carlo history of Q - SU(5)

$$V=16^4$$
, $\beta=17.45$

Decorrelating the topological charge

- At large N small size instantons are suppressed and this explains why the topology does not change
- Open Boundary Conditions (OBC) in time have been proposed as a way to push instantons into the lattice
- OBC have shown to be better than Periodic Boundary Conditions (PBC) in time at decorrelating topology in QCD

Does this mechanism also work at large N?

Periodic vs Open BC: a case study

- Gauge group: SU(7)
- Lattice spacing: $a\sqrt{\sigma} \sim 0.21$
- Lattice sizes: $16^3 \times N_t$, $N_t = 32, 48, 64$
- Statistics: ~ 500 configurations, separated by 200 composite sweeps (1 composite sweep is 1 hb + 4 overrelax)
- Purpose: comparing results with PBC and OBC at fixed lattice parameters in a case where there is a severe ergodicity problem
- Observables: Q, gluonic correlators in the 0⁺⁺ and 0⁻⁺ channels and instantons
- Both cooling and Wilson Flow used to filter UV modes

Monte Carlo history of Q

[A. Amato, G. Bali and B. Lucini, in progress]

Significantly better decorrelation for OBC

Distribution of Q

OBC seem to cure the problem of ergodicity

Conclusions

- Good progress has been made in computing the spectrum of SU(N) gauge theories in the large-N limit, with precise results available at fixed lattice spacing
- Extrapolation to the continuum limit still in progress
- First results show little (and controlled) lattice spacing dependency on most groundstate masses (with noticeable exceptions, e.g. a₀
- Slow topological modes produce a systematic error that is hard to quantify
- OBC are being explored for a more controlled continuum extrapolation

