First order form of the CJS action [Julia & Silva, JHEP 2000]

$$S = \int_{M^{11}} \mathcal{L}_{11}[E^a, \psi^\alpha, \omega^{ab}, A_3, F_{a_1a_2a_3a_4}]$$

$$\mathcal{L}_{11} = \frac{1}{4} R^{ab} \wedge E_{ab}^{\wedge 9} - D\psi^\alpha \wedge \psi^\beta \wedge \bar{\Gamma}_{\alpha\beta}^{(8)} + \frac{1}{4} \psi^\alpha \wedge \psi^\beta \wedge (T^a + i/2 \psi \wedge \psi \Gamma^a) \wedge E_a \wedge \bar{\Gamma}_{\alpha\beta}^{(6)} + \frac{1}{4} \psi^\alpha \wedge \psi^\beta \wedge (T^a + i/2 \psi \wedge \psi \Gamma^a) \wedge E_a \wedge \bar{\Gamma}_{\alpha\beta}^{(6)} + \frac{1}{4} \psi^\alpha \wedge \psi^\beta \wedge (T^a + i/2 \psi \wedge \psi \Gamma^a) \wedge E_a \wedge \bar{\Gamma}_{\alpha\beta}^{(6)} + \frac{1}{2} E_a \wedge E_a \wedge E_b \wedge E_b \wedge E_a \wedge E_b$$

We have also used the compact notation

$$\bar{\Gamma}_{\alpha\beta}^{(k)} := \frac{1}{k!} E^{a_k} \wedge \dots \wedge E^{a_1} \Gamma_{a_1 \dots a_k \alpha\beta} \quad and$$

$$E_{a_1 \dots a_k}^{\wedge (11-k)} := \frac{1}{k!} \varepsilon_{a_1 \dots a_k b_1 \dots b_{11-k}} E^{b_1} \wedge \dots E^{b_{11-k}} .$$

Ex: to obtain eqs of motion from the first order action

$$\delta_A S = \int \mathcal{G}_8 \wedge \delta A_3 \;, \qquad \frac{\delta S}{\delta A_3} := \mathcal{G}_8 = d(*F_4 + b_7 - A_3 \wedge dA_3) = 0 \;,$$

This can be written as $D_{[c_1}F_{c_2...c_8]} - \frac{7!}{4!4!}F_{[c_1...c_4}F_{c_5...c_8]} = 0$, but includes the (auxiliary) independent field $F_{abcd} = F_{[abcd]}$. However,

$$\delta_F S = \int (dA_3 - a_4 - F_4) \wedge *\delta F_4 ,$$

so that $\delta S/\delta F^{a_1...a_4} = 0$ can be written as $*\frac{\delta S}{\delta F_4} = (dA_3 - a_4 - F_4) = 0$ and identifies

$$F_4 := \frac{1}{4!} E^{a_4} \wedge \ldots \wedge E^{a_1} F_{a_1 \dots a_4} = dA_3 - \frac{1}{2} \psi^{\alpha} \wedge \psi^{\beta} \wedge \bar{\Gamma}_{\alpha\beta}^{(2)}.$$

Equations for the spin connection

$$\frac{\delta S_{11}}{\delta \omega^{ab}} = \frac{1}{4} E^{\wedge 8}_{abc} \wedge (T^c + i\psi^\alpha \wedge \psi^\beta \Gamma^c_{\alpha\beta}) = 0 \quad \Rightarrow$$

$$\Rightarrow$$
 $T^a := DE^a = -i\psi^\alpha \wedge \psi^\beta \Gamma^a_{\alpha\beta}$.

Gravitino equations have a compact form

$$\frac{\delta S_{11}}{\delta \psi^{\alpha}} = 0 \quad \Rightarrow \quad \Psi_{10 \beta} := \hat{\mathcal{D}} \psi^{\alpha} \wedge \bar{\Gamma}_{\alpha\beta}^{(8)} = 0 ,$$

in terms of "connection of generalized holonomy" $w_{\beta}^{\alpha} := \omega_{\beta}^{\alpha} + t_{1\beta}^{\alpha}$

$$\hat{\mathcal{D}}\psi^{\alpha} := d\psi^{\alpha} - \psi^{\beta} \wedge w_{\beta}{}^{\alpha} \equiv d\psi^{\alpha} - \psi^{\beta} \wedge (\omega_{\beta}{}^{\alpha} + t_{1\beta}{}^{\alpha}),$$

$$t_{1\beta}{}^{\alpha} = \frac{i}{18} E^{a} \left(F_{abcd} \Gamma^{bcd}{}_{\beta}{}^{\alpha} + \frac{1}{8} F^{bcde} \Gamma_{abcde}{}_{\beta}{}^{\alpha} \right).$$

Finally $\delta e^a \Rightarrow$ the Einstein equation for D=11 supergravity

$$M_{10a} := R^{bc} \wedge E_{abc}^{\wedge 8} + 2 \left(i_a F_4 \wedge *F_4 + F_4 \wedge i_a (*F_4) \right) + \mathcal{O}(\psi^{\wedge 2}) = 0
\Leftrightarrow R_{acb}{}^c = -\frac{1}{3} F_{ac_1c_2c_3} F_b{}^{c_1c_2c_3} + \frac{1}{36} \eta_{ab} F_{c_1c_2c_3c_4} F^{c_1c_2c_3c_4} + \mathcal{O}(\psi^{\wedge 2}).$$

SUSY transformations leaving the action invariant can be read of the supergravity constraints

$$T^{a} = -iE^{\alpha} \wedge E^{\beta} \Gamma^{a}_{\alpha\beta} ,$$

$$T^{\alpha} = -\frac{i}{18} E^{a} \wedge E^{\beta} \left(F_{ac_{1}c_{2}c_{3}} \Gamma^{c_{1}c_{2}c_{3}} + \frac{1}{8} F^{c_{1}c_{2}c_{3}c_{4}} \Gamma_{ac_{1}c_{2}c_{3}c_{4}} \right)_{\beta}^{\alpha} + \frac{1}{2} E^{a} \wedge E^{b} T_{ba}{}^{\alpha}(Z) ,$$

$$\mathcal{F}_{4} := dA_{3} = \frac{1}{2}E^{\alpha} \wedge E^{\beta} \wedge \bar{\Gamma}_{\alpha\beta}^{(2)} + \frac{1}{4!}E^{c_{4}} \wedge \ldots \wedge E^{c_{1}}F_{c_{1}...c_{4}}(Z) ,$$

$$\mathcal{F}_{7} := dA_{6} + A_{3} \wedge dA_{3} = \frac{i}{2}E^{\alpha} \wedge E^{\beta} \wedge \bar{\Gamma}_{\alpha\beta}^{(5)} +$$

$$+ \frac{1}{7!}E^{c_{7}} \wedge \ldots \wedge E^{c_{1}}F_{c_{1}...c_{7}}(Z) .$$

Namely

$$\delta e^a = -i\psi^{\alpha}\Gamma^a_{\alpha\beta}\epsilon^{\beta}, \qquad \delta A_3 = \psi^{\alpha} \wedge \bar{\Gamma}^{(2)}_{\alpha\beta}\epsilon^{\beta}, \delta\psi^{\alpha} = \mathcal{D}\epsilon^{\alpha} := D\epsilon^{\alpha} - \epsilon^{\beta}t_{1\beta}{}^{\alpha},$$

where

$$t_{1\beta}{}^{\alpha} = -\frac{i}{18}E^{a} \left(F_{ac_{1}c_{2}c_{3}} \Gamma^{c_{1}c_{2}c_{3}}{}^{\alpha}_{\beta} + \frac{1}{8}F^{c_{1}c_{2}c_{3}c_{4}} \Gamma_{ac_{1}c_{2}c_{3}c_{4}\beta}{}^{\alpha} \right) ,$$

plus suitable transformations of the spin connection.

4.2.-00*

Killing spinor equations

Can purely bosonic solutions be supersymmetric? As

$$\delta\psi_{\mu}{}^{\alpha} = \mathcal{D}_{\mu}\epsilon^{\alpha} := D_{\mu}\epsilon^{\alpha} - \epsilon^{\beta}t_{\mu\beta}{}^{\alpha}$$

$$t_{1\beta}{}^{\alpha} = dx^{\mu}t_{\mu\beta}{}^{\alpha} = -\frac{i}{18}e^{a}\left(F_{a[3]}\Gamma^{[3]}{}^{\alpha}_{\beta} + \frac{1}{8}F^{[4]}\Gamma_{a[4]}{}^{\alpha}_{\beta}\right) ,$$

if $\psi^{\alpha}_{\mu} = 0$, then $(\delta e^a = 0 \text{ and } \delta A_3 = 0 \text{ are satisfied identically while})$ $\delta \psi^{\alpha}_{\mu} = 0$ gives a nontrivial **Killing spinor equation**

$$\mathcal{D}\epsilon^{\alpha} := D\epsilon^{\alpha} - \epsilon^{\beta} t_{1\beta}{}^{\alpha} = 0 \quad . \tag{*}$$

- If the bosonic solution is such that (*) has no solution \Rightarrow that bosonic solution is not supersymmetric.
- If the bosonic solution is such that the solution of (*) is non-trivial, than it is supersymmetric or **BPS solution**
- If (*) is solved in terms of arbitrary 32 component constant spinor— the bosonic solution is completely SUSY (solution is 32-parametric); [Figueroa-O'Farrill & Papadopoulos 2002:] all such solutions of 11D SUGRA are locally isomorphic to
 - flat 11D space with $F_4 = 0$,
 - Freund-Rubin $AdS_4 \times S^7$ and $AdS_7 \times S^4$ solutions,
 - Hpp-wave solution
- If the solution of (*) has k arbitrary parameters one says that bosonic solution has k Killing spinors, or that it is k/32 SUSY or that it describes k/32 BPS state. The most interesting in the String/M-theory perspective are 1/2 BPS M2-brane and M5-brane solutions.

SUSY conditions and equations of motion

Why it is easier to SUSY solutions? Because for them the Killing spinor eq $\mathcal{D}\epsilon^{\alpha} := d\epsilon^{\alpha} - \epsilon^{\beta}w_{\beta}{}^{\alpha} = D\epsilon^{\alpha} - \epsilon^{\beta}t_{1\beta}{}^{\alpha} = 0$ plays the role of the 'Lax pair' (associated linear system) for SUGRA equations.

Its selfconsistency ('integrability') conditions is

$$0 = \mathcal{D}\mathcal{D}\epsilon^{\alpha} = -\epsilon^{\beta}\mathcal{R}_{\beta}{}^{\alpha} ,$$

where
$$\mathcal{R}_{\beta}^{\alpha} := dw_{\beta}^{\alpha} - w_{\beta}^{\gamma} \wedge w_{\gamma}^{\alpha}$$

$$= \frac{1}{4} R^{ab} (\Gamma_{ab})_{\alpha}^{\beta} + Dt_{1\alpha}^{\beta} - t_{1\alpha}^{\gamma} \wedge t_{1\gamma}^{\beta}$$

is the so-called 'curvature of generalized holonomy', and

$$t_{1\beta}{}^{\alpha} = e^{a}t_{a\beta}{}^{\alpha} = \frac{i}{18}e^{a} \left(F_{ac_{1}c_{2}c_{3}} \Gamma^{c_{1}c_{2}c_{3}} + \frac{1}{8}F^{c_{1}c_{2}c_{3}c_{4}} \Gamma_{ac_{1}c_{2}c_{3}c_{4}} \right)_{\beta}{}^{\alpha}.$$

For completely SUSY solutions $\epsilon^{\beta} \mathcal{R}_{ab\beta}{}^{\alpha} = 0 \quad \forall \ \epsilon^{\beta}$ and hence

$$32 susy \Rightarrow \mathcal{R}_{ab\beta}^{\alpha} = 0$$
.

 \Rightarrow completely SUSY configurations of bosonic fields always solve the bosonic equations of motion of D=11 supergravity, which, when $\psi^{\alpha}_{\mu}=0$, can be collected in (see hep-th/0501007=PLB2005)

$$\mathcal{R}_{ab\beta}{}^{\gamma}\Gamma^{b}{}_{\gamma}{}^{\alpha}=0,$$

and when $\psi^{\alpha}_{\mu} \neq 0$ (see hep-th/0501007=PLB2005) in $*\mathcal{M}^{a\beta}_{\alpha} = \mathcal{R}_{bc\alpha}{}^{\gamma}\Gamma^{abc}{}_{\gamma\beta} - 4i((\hat{\mathcal{D}}\psi)_{bc}\Gamma^{[abc})_{\beta} (\psi_{d}\Gamma^{d]})_{\alpha} = 0$ or equiv.

$$\mathcal{M}_{10 \alpha\beta} := \mathcal{R}_{\beta}{}^{\gamma} \wedge E_{abc}^{\wedge 8} \Gamma_{\gamma\alpha}^{abc} + i \hat{\mathcal{D}} \psi^{\delta} \wedge \psi^{\gamma} \wedge E_{a_1...a_4}^{\wedge 7} \Gamma_{\delta\alpha}^{[a_1 a_2 a_3} \Gamma_{\beta\gamma}^{a_4]} = 0.$$

one can show that

$$\mathcal{M}_{10 \alpha\beta} = -3i \left(-2i \Gamma^a_{\beta\alpha} M_{10 a} + \mathcal{G}_8 \wedge \bar{\Gamma}^{(2)}_{\beta\alpha} \right)$$

$$\mathcal{L}_{d(xF_7 - A_3 x dA_3 + b_4) = 0}$$
Ethstein eq. 4 11D SUERA, A3 field eqs.

where

$$M_{10a} := R^{bc} \wedge E_{abc}^{\wedge 8} + 2(i_a F_4 \wedge *F_4 + F_4 \wedge i_a(*F_4)) + \mathcal{O}(\psi^{\wedge 2}) = 0$$

 $\mathcal{G}_8 := d(*F_4 + b_7 - A_3 \wedge dA_3) = 0$,

the Einstein equation and the A_3 gauge field equations of 11D SUGRA $(b_7 := \frac{i}{2}\psi^{\alpha} \wedge \psi^{\beta} \wedge \bar{\Gamma}_{\alpha\beta}^{(5)})$. In other words:

$$M_{10a} = \propto \operatorname{tr}(\Gamma_a \mathcal{M}_{10})$$
,
 $\mathcal{G}_8 \wedge E^a \wedge E^b = \propto \operatorname{tr}(\Gamma^{ab} \mathcal{M}_{10})$.

4.2-13

$AdS_4 \times S^7$ Freund-Rubin solution

The $AdS_4 \times S^7$ metric

$$ds^2 = \left(\frac{r}{R}\right)^4 dx^a \eta_{ab} dx^b - \left(\frac{R}{r}\right)^2 \left(dr^2 + r^2 ds_{s7}^2\right) .$$

Flux

$$F_{\tilde{a}\tilde{b}\tilde{c}\tilde{d}} = rac{3}{R} arepsilon_{\tilde{a}\tilde{b}\tilde{c}\tilde{d}} \; , \qquad others \; = 0 \; , \qquad \tilde{a}, \tilde{b}, \tilde{c}, \tilde{d} = 0, 1, 2, 3 \; .$$

The only nonvanishing component of the dual tensor (of the seven form flux) is

$$(F_7)^{\hat{I}_1...\hat{I}_7} = (*F_4)^{\hat{I}_1...\hat{I}_7} = -\frac{1}{8R} \varepsilon^{\hat{I}_1...\hat{I}_7}$$

****** A BIT MORE DETAILS: *****

Vielbein forms

$$e^a = \left(\frac{r}{R}\right)^2 dx^a$$
, $e^r \equiv e^2 = \frac{R}{r} dr$, $e^{\hat{I}} = R \Omega^{\hat{I}}$,

The natural vielbbein and spin connection on the S^7 sphere is provided by the set of Cartan forms $\Omega^{\hat{I}}$ (such that $ds_{S^7} = \Omega^{\hat{I}} \otimes \Omega^{\hat{I}}$) and $\omega^{\hat{I}\hat{I}} = -\omega^{\hat{I}\hat{I}}$ which $\vec{n} := (n_J)$ which obey the Maurer-Cartan equations of the SO(8) group

$$D\Omega^{\hat{I}} = d\Omega^{\hat{I}} - \Omega^{\hat{J}} \wedge \omega^{\hat{0}\hat{I}\hat{I}} = 0$$
, $d\omega^{\hat{0}\hat{I}\hat{J}} + \omega^{\hat{0}\hat{I}\hat{K}} \wedge \omega^{\hat{0}\hat{K}\hat{J}} = \Omega^{\hat{I}} \wedge \Omega^{\hat{J}}$.

can be constructed from the so-called spherical harmonic variables $\vec{u}^{\hat{I}} := (u_J^{\hat{I}}), J = 1, \dots, 8, \hat{I} = 1, \dots, 7$

$$\Omega^{\hat{I}} = \vec{n} d \vec{u}^{\hat{I}} \; , \qquad \omega^{\hat{I}\hat{J}} = - \vec{u}^{\hat{I}} d \vec{u}^{\hat{J}} \; ,$$

$$(\vec{n}, \vec{u}^{\hat{I}}) := (n_J, u_J^{\hat{I}}) \in SO(8) \quad \leftrightarrow \quad \begin{cases} \vec{n}\vec{n} = 1, \\ \vec{n}\vec{u}^{\hat{J}} = 0, \\ \vec{u}^{\hat{I}}\vec{u}^{\hat{J}} = \delta^{\hat{I}\hat{J}} \end{cases}$$

1/2 supersymmetric solutions: M2-brane and M5-brane

M2-brane also known as 11D supermembrane

The M2-brane metric (a, b = 0, 1, 2; I, J = 1, ..., 8)

$$ds^{2} = e^{a} \otimes e^{b} \eta_{ab} - e^{I} \otimes e^{I} =$$

$$= (1 + k/r^{6})^{-2/3} dx^{\mu} \otimes dx^{\nu} \eta_{\mu\nu} - (1 + k/r^{6})^{-1/3} dy^{m} dy^{n} \delta_{mn} ,$$

$$\mu, \nu = 0, 1, 2, m, n = 1, ..., 8.$$

$$A_{\mu\nu\rho} = \epsilon_{\mu\nu\rho} \left(1 + \frac{k}{r^6} \right)^{-2/3} , \quad others = 0 , \qquad (1)$$

This solution interpolates between $AdS_4 \times S^7$ and flat M^{11} [G. Gibbons & P. Townsend 1993] This is to say it tends to $AdS_4 \times S^7$ when $r \mapsto 0$ (so that $\frac{k}{r^6} >> 1$) and to 11D Minkowski spacetime when $r \mapsto \infty$ (so that $\frac{k}{r^6} << 1$).

SUSY preserved by M2-brane ($\underline{\alpha}, \underline{\beta} = 1, ..., 32$)

$$\varepsilon^{\underline{\alpha}} = (1 + \bar{\gamma})^{\underline{\alpha}}_{\underline{\beta}} \kappa^{\underline{\beta}} \qquad \Leftrightarrow \qquad \varepsilon^{\underline{\alpha}} = \bar{\gamma}^{\underline{\alpha}}_{\underline{\beta}} \varepsilon^{\underline{\beta}} \tag{2}$$

is defined with the use of the projector $(1 + \bar{\gamma})$ where

$$\bar{\gamma} := \frac{i}{3!} \; \epsilon^{abc} \delta_a{}^{\underline{a}} \delta_b{}^{\underline{b}} \delta_c{}^{\underline{c}} \Gamma_{\underline{abc}}$$

has the properties $\bar{\gamma}^2 = I$, $tr(\bar{\gamma}) = 0$.

We will be back to the origin of this projector...

In a special Lorentz frame 11D $\bar{\gamma}=i\Gamma_1\Gamma_2\Gamma_3$ and, with a certain Γ matrix representation $\bar{\gamma}=\begin{pmatrix}I_{16\times 16}&0\\0&-I_{16\times 16}\end{pmatrix}$ so that the solution the preserved susy is characterized by $\varepsilon^{\alpha}=\begin{pmatrix}\epsilon^{\alpha}\\0\end{pmatrix}$ with $\alpha=1,...,16$. Hence 1/2=16/32 part of susy is preserved.

M5-brane solution (also known as 5-brane of M-theory)

M2-brane solution is similar to 'electric charge' solution in electrodynamics (although it is not a point-like, but rather extended object).

There is also 1/2 BPS state (=1/2 susy solution of 11D SUGRA) similar to Dirac monopole (also not a point-like but rather extended object). The M2-brane metric (a, b = 0, 1, ..., 5; I, J = 1, ..., 6)

$$ds^{2} = e^{a} \otimes e^{b} \eta_{ab} - e^{I} \otimes e^{I} =$$

$$= (1 + k/r^{3})^{-1/3} dx^{\mu} \otimes dx^{\nu} \eta_{\mu\nu} - (1 + k/r^{3})^{2/3} dy^{m} dy^{n} \delta_{mn} ,$$

 $\mu, \nu = 0, 1, ..., 5, m, n = 1, ..., 6$. As for the Dirac monopole in d=4, the 3-form potential of 11D M5-brane solution is not well defined, so that the solution is characterized by the field strength

$$F_{mnkl} = 3k\epsilon_{mnklp}\frac{y^p}{r^5}$$
. $others = 0$, (3)

This solution interpolates between $AdS_7 \times S^4$ and flat M^{11} [G. Gibbons & P. Townsend 1993] This is to say it tends to $AdS_7 \times S^4$ when $r \mapsto 0$ (so that $\frac{k}{r^6} >> 1$) and to 11D Minkowski spacetime when $r \mapsto \infty$ (so that $\frac{k}{r^6} << 1$).

Mp-branes and most general 11D SUSY algebra

Most general susy algebra in 11D is [Van Holten & Van Proeyen, J.Phys.A15:3763,1982.]

$$\{Q_{\underline{\alpha}},Q_{\underline{\beta}}\} = \mathcal{P}_{\underline{\alpha}\underline{\beta}} = i\Gamma^{\underline{a}}_{\underline{\alpha}\beta}P_{\underline{a}} + \Gamma^{\underline{a}\underline{b}}_{\underline{\alpha}\beta}Z_{\underline{a}\underline{b}} + i\Gamma^{\underline{a}_1...\underline{a}_5}_{\underline{\alpha}\beta}Z_{\underline{a}_1...\underline{a}_5}$$

where $Z_{\underline{ab}} = -Z_{\underline{ba}} = Z_{[\underline{ab}]}$ and $Z_{\underline{a}_1...\underline{a}_5} = Z_{[\underline{a}_1...\underline{a}_5]}$ are so-called tensorial central charges.

They are called central because [Z, P] = 0 = [Z, Q], [Z, Z] = 0. 'Central' are because they transform nontrivially under the SO(1, 10).

These tensorial central charge can be associated with the existence of supersymmetric extended objects - M2-brane and M5-brane in the case of 11D. Schematically, in the presence of M2-brane

$$Z^{\underline{a}\underline{b}} = \propto \int_{\mathbb{R}^2} d\xi^1 d\xi^2 \epsilon^{0mn} \partial_m \hat{X}^{\underline{a}} \partial_n \hat{X}^{\underline{b}}, \qquad \hat{X}^{\underline{a}} = \hat{X}^{\underline{a}}(\tau, \xi^1, \xi^2)$$

and in the presence of M5-brane ($\hat{X}^{\underline{a}} = \hat{X}^{\underline{a}}(\tau, \vec{\xi})$)

$$Z^{\underline{a}_1...\underline{a}_5} = \propto \int_{B^5} d\xi^1 d\xi^2 d\xi^3 d\xi^4 d\xi^5 \epsilon^{0m_1...m_5} \partial_{m_1} \hat{X}^{\underline{a}_1}...\partial_{m_5} \hat{X}^{\underline{a}_5} ,$$

Preserved susy implies that $det(\mathcal{P}_{\underline{\alpha}\underline{\beta}}) = 0$ (otherwise $\epsilon^{\underline{\alpha}}\mathcal{P}_{\underline{\alpha}\underline{\beta}} = 0$ has only trivial solution).

Preserved 1/2 of susy: $rank(\mathcal{P}_{\underline{\alpha}\underline{\beta}}) = 16$ which implies that $C\mathcal{P}$ is a projector $(C\mathcal{P}C\mathcal{P} = \propto C\mathcal{P})$.

Membrane (supermembrane or M2-brane) ground state:

$$P^{\underline{a}} = \propto \delta_0^{[\underline{a}} T Z^{\underline{a}\underline{b}} = \propto T \delta_1^{[\underline{a}} \delta_2^{\underline{b}]}$$

$$\{Q_{\underline{\alpha}},Q_{\underline{\beta}}\} = iT\Gamma^0_{(\underline{\alpha}\underline{\gamma}}(\delta + i\Gamma^0\Gamma^1\Gamma^2)\underline{\gamma}_{\underline{\beta}}) = iT(\Gamma^0(I + \bar{\gamma}))\underline{\alpha}\underline{\beta}$$

Thus $\epsilon^{\underline{\alpha}}Q_{\underline{\alpha}}|M2>=0$ iff $[(I+\bar{\gamma})^{\underline{\alpha}}_{\underline{\beta}}\epsilon^{\underline{\beta}}=0]$ (the same relation as follows from Killing spinor equation).