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First order form of the CJS action [Julia & Silva, JHEP 2000]
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Ex: to obtain eqs of motion from the first order action
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FEquations for the spin connection
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Finally de® = the Einstein equation for D = 11 supergravity
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SUSY transformations leaving the action invariant can be read
of the supergravity constraints
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plus suitable transformations of the spin connection.
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Killing spinor equations

Can purely bosonic solutions be supersymmetric? As
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othy = 0 gives a nontrivial Killing spinor equation
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e If the bosonic solution is such that (*) has no solution = that
bosonic solution is not supersymmetric.

e If the bosonic solution is such that the solution of (*) is non-
trivial, than it is supersymmeric or BPS solution

o If (*) is solved in terms of arbitrary 32 component constant
spinor— the bosonic solution is completely SUSY (solution is
32-parametric); [Figueroa-O'Farrill & Papadopoulos 2002:] all
such solutions of 11D SUGRA are locally isomorphic to

— flat 11D space with Fj = 0,
— Freund-Rubin AdS; x ST and AdS7 x S* solutions,

— Hpp-wave solution

o If the solution of (*) has k arbitrary parameters one says that
bosonic solution has & Killing spinors, or that it is k/32 SUSY
or that it describes k/32 BPS state. The most interesting in
the String/M-theory perspective are 1/2 BPS M2-brane and
Mab-brane solutions.



SUSY conditions and equations of motion

Why it is easier to SUSY solutions? Because for them the Killing

spinor eq | De® .= de® — Eﬁfwﬁ"" = De* — eﬁtma = ( |plays the role

of the "Lax pair’ (associated linear system) for SUGRA equations.
Its selfconsistency ("integrability’) conditions is
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For completely SUSY solutions €” Rap* =0V e’ and hence

32 sSusy = Rabﬁa =0.

= completely SUSY configurations of bosonic fields always solve
the bosonic equations of motion of D=11 supergravity, which, when
1 =0, can be collected in (see hep-th/0501007=PLB2005)
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the Einstein equation and the Az gauge field equations of 11D
SUGRA (by := )™ A PP A Fffé) In other words:
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AdS,; x ST Freund-Rubin solution

The AdSy x ST metric
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others =0, a,b,c 0,1,2,3.

The only nonvanishing component of the dual tensor (of the seven
form flux) is
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Vielbein forms
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The natural vielbbein and spin connection on the S7 sphere is pro-
vided by the set of Cartan forms Qf (such that dsgr = 0l @ Qf )
and &Y = —/T which 7 = (n7) which obey the Maurer-Cartan
equations of the SO(8) group
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1/2 supersymmetric solutions: M2-brane and M5-brane

M2-brane also known as 11D supermembrane

The M2-brane metric (¢,b=0,1,2;1,J =1,...,8)

ds®* = e ® ¢’ Nab — e ® el
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This solution interpolates between AdSy x S7 and flat M [G.
Gibbons & P. Townsend 1993] This is to say it tends to AdS; x S7
when 7 +— 0 (so tha,t 5 >> 1) and to 11D Minkowski spacetime
when 7 — oo (s0 that 4 T << 1)

SUSY preserved by M2-brane (o, 5 = 1, ..., 32)

C=(1+7)%rL &  e%=7%L (2)
is defined with the use of the projector (1 + 4) where
A = é ¢ 6,45120,4T e

has the properties 52 = I, tr(¥) = 0.
We will be back to the origin of this projector...
In a special Lorentz frame 11D 4 = [ T'5I'3 and, with a cer-
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solution the preserved susy is characterized by €2 = ( 0) with

a=1,...,16. Hence 1/2 = 16/32 part of susy is preserved.
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M5-brane solution (also known as 5-brane of M-theory)

M2-brane solution is similar to ’electric charge’ solution in elec-
trodynamics (although it is not a point-like, but rather extended
object).

There is also 1/2 BPS state (=1/2 susy solution of 11D SUGRA)
similar to Dirac monopole (also not a point-like but rather extended
object). The M2-brane metric (¢,0=0,1,...,5,I,J = 1,...,6)

ds® =¢e*® ebmb —el@el =
— (1 + k/ 7‘3) B e @ dL" G — (1 +k/ 7“3) 23 dy" dy" 0,mm

w,v=0,1,...,5, myn=1,...,6. As for the Dirac monopole in d=4,
the 3-form potential of 11D Mb5-brane solution is not well defined,
so that the solution is characterized by the field strength

P
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Fm.nkl = Bke-m.nklpﬁ . others =0 ) (3)

This solution interpolates between AdS; x S* and flat M [G.
Gibbons & P. Townsend 1993] This is to say it tends to AdSy x S*
when 7 — 0 (so that TAG >> 1) and to 11D Minkowski spacetime
when r — oo (so that ?% << 1).
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Mp-branes and most general 11D SUSY algebra

Most general susy algebra in 11D is [Van Holten & Van Proeyen,
J.Phys.A15:3763,1982. |

{Quw Qp} = Pap =T Py + T%75 +iT%5Z, o
where Zgy = —Zpy = Zjay) and Zy,. 0, = Zlay...a5) are so—called ten-
sorial central charges.

They are called central because [Z, P| =0=[Z,Q), [Z, Z] = 0.
'Central” are because they transform nontrivially under the SO(1, 10).
These tensorial central charge can be associated with the exis-
tence of supersymmetric extended objects - M2-brane and M5-brane

in the case of 11D. Schematically, in the presence of M2-brane

ZH = / de'de* ™0 X0, XY, X% = XY, ¢, €Y)
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and in the presence of M5-brane ( X% = X(r, £))
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Preserved susy implies that det(PQ.g) = 0| (otherwise e2P, =

0 has only trivial solution).

Preserved 1/2 of susy: rank(P,s) = 16 which implies that
CP is a projector (CPCP = CP).

Membrane (supermembrane or M2-brane) ground state:
Pt =cc 8T Z% =ox T85Y

{Qa, Qp} = iTT, (6 +il°T' )1 =TT + 7))ag
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Thus €2Qu| M2 >= 0 iff [(I + ¥)© 56 = 0| (the same relation as

follows from Killing spinor equation).




