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D=10 type II SUPERGRAVITY

Dimensional reduction of 11D SUGRA to D=10.

Type IIA supergravity.

Separate one of 11 coordinates Xµ = (xµ, x#).

Dim. reduction (or compactification on S1 with RS1 7→ 0):

∂#(all fields) = 0

11D fields carrying SO(1, 10) indices 7→ irreps. of SO(1, 9)

eµ
a(x) =

(
eΦ(x)/12eµ

a(x) Aµ(x)

0 e−2Φ(x)/3

)
Φ(x)- dilaton. Powers of dilaton are chosen to have the d = 10

Einstein-Hilbert action without enΦ(x) multipliers (so–called Ein-

stein frame). To resume this and other decompositions:

eµ
a(X) 7→ eµ

a(x), Aµ(x),Φ(x)

Aµνρ(X) 7→ Aµνρ(x), Bµν(x)(= Aµν#(x))

ψµ
α(X) 7→ ψµ

α(x), χα(x) (=∝ ψ#
α(x)) .

10D Majorana spinor is also 32 component. However it can be

decomposed on two irreducible chiral 16 dim. Majorana-Weyl rep-

resentations (of opposite chirality):

ψµ
α(x) = (ψµ

α(x) , ψµα(x)) .



Hence the field content of type IIA supergravity is:

NS −NS sector : eaµ ,Φ(x) , Bµν(x)

Fermions:

gravitini ψα1µ , ψµα
2

and

dilatini χα
1, χα2 ,

as well as

RR sector : R2 = dA1 , R4 = dA3 − A1 ∧H3

where

H3 = dB2 .

One can also introduce dual field strengths

RR∗ sector : R6 = dA5−A3∧H3 , R8 = dA7−A5∧H3

such that R6 = ∗R2 and R8 = ∗R4.

Roman’s massive type IIA SUGRA also include

R10 = dA9 − A7 ∧ dB2 .

This is dual to a 0-form which plays the role of a mass parameter.

Curiously, the type IIA SG allows to add some kind of mass term

to the action. This massive type IIA has no apparent D=11 origin.



Type IIB SUGRA (D=10, N=2 chiral SUGRA)

has no apparent D=11 origin. The field content is

NS −NS sector : eaµ ,Φ(x) , Bµν(x)

THE SAME NS-NS sector as type IIA.

Chiral fermionic sector: gravitini ψα1µ , ψµ
α2 and dilatini χα

1, χ2
α

The RR sector contains even-form potentials; the field strengths are

RR sector : R1 = dA0 , R3 = dA2 − A0H3 ,

R5 = dA4 − A2 ∧H3 , where H3 = dB2

where 5-form field strength is self–dual R5 = dA4−A2∧dB2 = ∗R5

[*This properties during 14 years hampered the way to construct

type IIB SUGRA action. The problem was resolved in 1998 by

Padova collaboration: Dall’Agata, Lechner, Sorokin CQG 1998 and

Dall’Agata, Lechner, Tonin , JHEP 1998].

One can also introduce dual field strengths

RR∗ sector : R7 = dA6−A4∧dB2 , R9 = dA8−A6∧dB2

such that R7 = ∗R3 and R9 = ∗R1. It will be also useful to

introduce A10, although its field strength in 11D spacetime is equal

to zero (*notice that R11 = dA10 −A8 ∧ dB2 in superspace can be

different from zero due to the fermionic vielbein contributions).

Type IIA and type IIB supergravity are related by

the so–called T-duality transformations. Reason: these

SUGRAS are limits of type IIA and type IIB string model and

that T-duality is the relation between these two (in a space with an

isometry direction).



IIA— IIB SUPERGRAVITY T-duality in a
space with one isometry

T-duality rules for the bosonic fields from NS-NS sector were

found by Buscher in 1985:
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(s)
ẑẑ

,
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T-duality for the RR sector – by Bergshjoeff, Hull & Ortin in 1995

and, for higher forms, by Meessen & Ortin in 1999: C(0) = Ĉ
(1)
ẑ ,

C
(2n)
ym̃1...m̃2n−1

= Ĉ
(2n−1)
m̃1...m̃2n−1

+
(2n− 1)

ĝẑẑ
Ĉ

(2n−1)
ẑ[m̃1...m̃2n−2

ĝm̃2n−1]ẑ ,

C
(2n)
m̃1...m̃2n

= Ĉ
(2n+1)
ẑm̃1...m̃2n

+ 2nĈ
(2n−1)
[m̃1...m̃2n−1

B̂m̃2n]ẑ +

+
2n(2n− 1)

ĝẑẑ
Ĉ

(2n−1)
ẑ[m̃1...m̃2n−2

B̂ẑm̃2n−1ĝm̃2n]ẑ .

T-duality for fermionic fields – by Hassan in 2000.

Superfield T-duality rules: [Kulik and Roiban 2002], [I.B. and B.

Julia 2003]. In particular include the superfield (superform) gen-

eralization of the T–duality rules for the RR superform potentials,

which looks quite straightforward

iyC2n = −Ĉ(−)
2n−1 +

Ê#(−)

Ê
#
ẑ

∧ iẑĈ2n−1 , n = 1, 2, 3, 4, 5 ,

C
(−)
2n = iẑĈ2n+1 + iẑB̂2 ∧

(
Ĉ

(−)
2n−1 − Ê#(−)

Ê
#
ẑ

∧ iẑĈ2n−1

)
, n = 0, 1, ..., 4.



D=10 type IIB SUPERGRAVITY in
superspace [Howe& West 84]

Type IIB superspace Σ(10|16+16) with local coordinates ZM =

(xµ, θα̌) is supplied by the bosonic and fermionic supervielbein 1-

forms,

EA = (Ea, Eα1, Eα2) = dZMEA
M(Z) , a = 0, 1, ..., 9, α = 1, ..., 16 ,

and SO(1,10) connection (ωab = −ωba , ωβα = 1
4ω

abσabβ
α)

ωB
A = diag(ωb

a, ωβ
α, ωβ

α) = dZMωMB
A(Z) ,

These are subject to the SSP constraints. The most important is

T a = −iEα1 ∧ Eβ1σaαβ − iEα2 ∧ Eβ2σaαβ

which implies the standard transformation rule for 10D graviton:

δϵe
a(x) = iϵT

a|
θ=0

= −2i(ψ1σaϵ
1 + ψ2σaϵ

2)

Notice that this constraints essentially determines the dynamics

of SUGRA. Other constraints are conventional and the equations

of motion follow from the constraints.

Actually all the fields of type II SG are collected in the dilaton

superfield Φ(Z) which enters the fermionic torsion 2-forms

T α1 = −Eα1 ∧ Eβ1∇β1e
−Φ + 1

2E
1σa ∧ E1 σ̃αβa ∇β1e

−Φ+ ∝ Ea ,

T α2 = −Eα2 ∧ Eβ2∇β2e
−Φ + 1

2E
2σa ∧ E2 σ̃αβa ∇β2e

−Φ+ ∝ Ea .

One can also introduce the NS-NS 2-form potential and RR po-

tentials. The NS-NS 3-form field strength satisfies the constraints

H3 = −iEa ∧ (E1 ∧ σaE1 − E2 ∧ σaE2) +
1

3!
Ec3 ∧ Ec2 ∧ Ec1Hc1c2c3 .

from which one can extract the SUSY transformations

δϵB2(x) = iϵH3|θ=0
= −2iea ∧ (ψ1σaϵ

1 − ψ2σaϵ
2) .



RR superform potentials of type IIB SG and their field strength

superforms can be collected in the formal sum of even forms

C = C0 ⊕ C2 ⊕ C4 ⊕ C6 ⊕ C8 ⊕ C10

C2n =
1

2n!
dZM2n ∧ . . . ∧ dZM1C

(2n)
M1...M2n

(Z) .

Their field strength superforms, which can be collected in the formal

sum

R = dC − C ∧H3 = R1 ⊕R3 ⊕R5 ⊕R7 ⊕R9 ,

R2n+1 =
1

(2n + 1)!
dZM2n+1 ∧ . . . ∧ dZM1R

(2n+1)
M1...M2n+1

(Z) ,

are subject to the constraints

R2n+1 = 2ie−ΦEα2 ∧ Eβ1 ∧ σ̄(2n−1)
αβ −

−e−Φ
(
E2 ∧ σ̄(2n)∇1Φ− (−)nE1 ∧ σ̄(2n)∇2Φ

)
+

+
1

(2n + 1)!
Ea2n+1 ∧ ... ∧ Ea1Ra1... a2n+1 .

Notice the universal dependence on dilaton superfield Φ(Z).

The above constraints are on-shell as the set of their conse-

quences include all the equations of motion. For the 4-form po-

tential equations have the from of self-duality condition

Ra1...a5 = (∗R)a1...a5 := 1
5!ε a1...a5b1...b5R

b1...b5

When the higher superforms are introduced, the other RR equations

acquire the form of duality conditions

Ra1...a9−2n =
(−)n

(2n+1)! ε a1...a9−2nb1...b2n+1R
b1...b2n+1 ,

Ra1...a9 = ε a1...a9bR
b , Ra1...a7 = − 1

3!ε a1...a7b1...b3R
b1...b3 .

Ex.: To extract the SUSY transformations for the RR fields

from the above superspace constraints.



Studying BIs one finds (β := (βI) = 1, ..., 32, β = 1, ..., 16, etc.)

DβDγe
−Φ = iσaβγDae

−Φ − i(R/(1)iτ2)βγ +
i

2
(R/(3)τ1)βγ +

i

2
(H/(3)τ3)βγ ,

where τ1, τ2, τ3 are Pauli matrices, R/(1) = Raσ̃
aβγ = DaC0σ

a
βγ,

R/(3) = 1
3!Rabcσ

abc
βγ , (R̃/(3)τ1)βγ =

(
1
3!0 Rabcσ̃

abc
βγ

1
3!Rabcσ̃

abc
βγ 0

)
etc.

Notice −1
2Tβγ

αDαe
−Φ = 0, due to thestructuire of dim 1/2 tor-

sion

Tβ̂γ̂
αDα =

(
−2
(
δ(β

αDγ)1e
−Φ − 1

2σ
a
βγσ̃

αδ
a Dδ1e

−Φ
)
Dα1 0

0 − 2
(
δ(β

αDγ)2e
−Φ − 1

2σ
a
βγσ̃

αδ
a Dδ2e

−Φ
)
Dα2

)
.

We are interesting in the dim 1 fermionic torsion component,

EαTαb
β1 = −1

8
Eα1Hbcd (σ

cd)α
β +

1

16
Eα2

4∑
n=0

(−)n(σbR̃/
(2n+1))α

β ,

EαTαb
β2 =

1

16
Eα1

4∑
n=0

(σbR̃/
(2n+1))α

β +
1

8
Eα2 Hbcd (σ

cd)α
β .

[up to the terms of higher order in fermions]. These fix the form of

the supersymmetry transformations of gravitino ψα
b
= (ψα1b , ψ

α2
b )

and dilatino χ
α
= (χ1

α, χ
2
α)

δεψb := Dbε := Dbε−
1

8
Hbc1c2ε(σ

c1c2 ⊗ τ3) +

+
1

8
eΦ ε

(
−σb ˆ̃R/(1) ⊗ iτ2 + σb

ˆ̃R/(3) ⊗ τ1 −
1

2
σb

ˆ̃R/(5) ⊗ iτ2

)
,

δεχ = ε

[
1

2
∇/Φ⊗ I +

1

4
H/⊗ τ3 −

1

2
eΦR̂/(1) ⊗ iτ2 +

1

4
eΦR̂/(3) ⊗ τ1

]
.



Superfield T-duality rules
[Kulik and Roiban 2002], [I.B. and B. Julia 2003] (ZM = (Z̃M , y),...)

type IIA : Ê â = (Ê ã, Ê#) , Ê ã = Ê ã(−) = dZ̃MÊ ã
M(Z̃) ...

type IIB : Ea = (E ã, E∗) , E ã = E ã(−) = dZ̃ME ã
M(Z̃) , ...

The T–duality rules for NS-NS superfields are (Einstein frame)

e
Φ(Z̃)
4 E ã(−) = e

Φ̂(Z̃)
4 Ê ã(−) , e

Φ
4E∗

y =
1

e
Φ̂
4 Ê

#
ẑ

, e
Φ
4E∗(−) = iẑB̂2

e
Φ̂
4 Ê

#
ẑ

,

eΦ(Z̃) = eΦ̂(Z̃)

e
Φ̂
4 Ê

#
ẑ

,

iyB2 =
Ê#(−)

Ê
#
ẑ

, B
(−)
2 = B̂

(−)
2 − iẑB̂2 ∧ Ê#(−)

Ê
#
ẑ

.

The T–duality rules for fermionic supervielbeins are

e−
1
8Φ

E
β1
y

E∗
y
= − e−

1
8Φ̂

 Ê
β1
ẑ

Ê
#
ẑ + i

4 σ̃
#βγ∇̂γ1Φ̂− i

8 σ̃
#βγ∇̂γ1ln

(
e
Φ̂
4 E

#
ẑ

)
 ,

e−
1
8Φ

E
β2
y

E∗
y
= e−

1
8Φ̂ σ̃#βγ

(
Êẑ

2
γ

Ê
#
ẑ

+ i
4σ

#
βγ∇̂

γ
2Φ̂− i

8σ
#
βγ∇̂

γ
2ln
(
e
Φ̂
4E#

ẑ

))
,

e
1
8ΦEβ1[−] = e

1
8Φ̂
(
Êβ1[−] − i

8Ê
ã(−)σ̃ã

βγ∇̂γ1ln
(
e
Φ̂
4E#

ẑ

))
,

e
1
8ΦEβ2[−] = e

1
8Φ̂ σ̃#βγ

(
Ê

2[−]
γ − i

8Ê
ã(−)σãβγ∇̂γ

2ln
(
e
Φ̂
4E#

ẑ
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.

Finally, the T–duality rules for the RR superform potentials are

C(0) = iẑĈ1 ≡ Ĉ
(1)
ẑ ,

iyC2n = −Ĉ(−)
2n−1 +

Ê#(−)

Ê#
ẑ

∧ iẑĈ2n−1 , n = 1, 2, 3, 4, 5 ,

C
(−)
2n = iẑĈ2n+1 + iẑB̂2 ∧

(
Ĉ

(−)
2n−1 −

Ê#(−)

Ê#
ẑ

∧ iẑĈ2n−1

)
, n = 1, ..., 4.


