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Fig. 12. Marginalized joint 68 % and 95 % CL regions for n, and rpggz from Planck in combination with other data sets, compared

to the theoretical predictions of selected inflationary models.
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Are these results robust to the presence of heavy fields ?
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big angular velocities < heavy field displaced from the minimum.
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the variation in ¢;. As ¢ is given 6, we identify the inflaton with

V(0) = m*6?

V(p,0) = m*6* + M*(p — po)*

challenge for string theory aingvistetai'13
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In general the centrifugal force will imply the v.e.v < p ># po.
When this happens, we will have a non trivial EFT. Imposing

0 >1

» e~ p?0? then p<x1

» Ap ~ pAf ~ M, large field inflation — monodromy

P|n
> AE ~ I]\AL are under Control. McDonald, Barenboim et al.
pl
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» Is this an effect we expect to see in string theory ?



