
Spiral Embeddings of Inflation

Vicente Atal
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The effects of heavy fields in the low energy EFT can be
divided in two:

Changes in the background: a heavy field may change H(t)
→ changes in ε, η
→ Flattening vs Steepening Rubin, Dong et al., Buchmuller et al., Dudas et al., Blumenhagen

et al.

Changes in the perturbations: the heavy isocurvature modes
can effectively create a reduced speed of sound for the
adiabatic mode

L2 ∝ Ṙ2 + c2
s (∇R)2

L3 ∝ 2ċsc−3
s RṘ2 + (1− c−2

s )Ṙ[Ṙ2 − 1
a2 (∇R)2]

c−2
s = 1 + 4θ̇2/M2

eff M2
eff = M2 − θ̇2

big angular velocities⇔ heavy field displaced from the minimum.
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s RṘ2 + (1− c−2
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CASES

I If the cs is varying slowly, then
ns = 1− ε− η − ċs/Hcs
r = 16εcs

I If cs is a transient phenomena

← Today we will talk about
this case

∆PR

PR,0
= D

( kτ0

β

) [
p1(kτ0)∗sin(kτ0)+p2(kτ0)∗cos(kτ0)

]

These features can be search in Planck.
There are some mild signficance of
these models

Achucarro, VA, Ortiz, Torrado 2013
Achucarro, VA, Hu, Ortiz, Torrado 2014
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Framework: same symetry that protects the inflaton protects
the variation in cs. As cs is given θ̇, we identify the inflaton with
an angular field.

ϕ

V(ϕ)

V(φ) = m2φ2

→

V(θ) = m2θ2

→
V(ρ, θ) = m2θ2 + M2(ρ− ρ0)2

challenge for string theory Alhqvist et al ’13
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SIMPLEST TOY MODEL

L =
1
2
ρ̇2 +

1
2
ρ2θ̇2 −m2θ2 −M2(ρ− ρ0)2

In general the centrifugal force will imply the v.e.v < ρ > 6= ρ0.
When this happens, we will have a non trivial EFT. Imposing

θ′ � 1

I ε ∼ ρ2θ′2 then ρ� 1

I ∆φ ∼ ρ∆θ ∼Mpl large field inflation→monodromy

I ∆L ∼ |Φ|
n

Mn
pl

are under control. McDonald, Barenboim et al.
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PREDICTIONS

1- If ρ̇� ρθ̇:

I find ρ = ρ(θ) neglecting ρ̈, ρ̇ in the e.o.m.

I ρ(θ) in V→ Veff ε = 1
2(

Veff
φ

Veff )2 η =
Veff
φφ

Veff

2- Calculate cs

c−2
s = 1− 4

θ̇2

M2
eff

3- Calculate (ns, r)

ns = 1− ε− η − ċs/Hcs

r = 16εcs
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CHAOTIC INFLATION

L =
1
2
ρ̇2 +

1
2
ρ2θ̇2 −m2θ2 −M2(ρ− ρ0)2

I background ρ = const→
ε, η unchanged

I + perturbations
cs � 1 for ρ0 < 0.01
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NATURAL INFLATION

L =
m2

ρ

2
(ρ− ρ0)2 + Λ [1 + cos θ

/N

]

Decay constant is given by f where cosφ/f . This implies f ∼ r

N
N: SU(N) in SUSY QCD, Dine et al. ’14

I background
ρ 6= const→ ε, η changed
Steepening !

I + perturbations
cs � 1 for ρ0 < 0.01
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DISENTANGLING
If we measure r, single-field with cs = 1 or single field with cs 6= 1 ?

L2 = Ṙ2 + c2
s (∇R)2 → (ns, r)

cs 6= 1 implies the appearance of 3th order interactions (Cheung et al).

L3 = 2ċsc−3
s RṘ2 + (1− c−2

s )Ṙ[Ṙ2 − 1
a2 (∇R)2] → fNL(k1, k2, k3)

For slowly varying cs f eq
NL ∝

1
c2

s − 1
∼ 1



DISENTANGLING
If we measure r, single-field with cs = 1 or single field with cs 6= 1 ?

L2 = Ṙ2 + c2
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L2 = Ṙ2 + c2
s (∇R)2 → (ns, r)

cs 6= 1 implies the appearance of 3th order interactions (Cheung et al).

L3 = 2ċsc−3
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CONCLUSIONS

I Heavy fields influence low energy EFT. (Veff and cs)
I Spiral embeddings of inflation with small radius of

stabilization are examples where this happens
I Chaotic and the natural inflationary potential are brought

into more consistency with the data.
I Non Gaussianity can help us to detect the presence of

additional heavy field.
I Is this an effect we expect to see in string theory ?
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