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EGG and EFT

Ed(d) × R+ Generalised Geometry (EGG)

Ed(d) × R+ Generalised Geometry = Reformulation of 11D SUGRA where ...

Geometric Interpretation of the Bosonic Sector
gMN ,AMNP , ÃN1...N6 encoded in the “Generalised metric”

Generalised Tangent Bundle (Ed(d) × R+ structure)
E = v + w + σ + τ ∈ TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M)

Generalised Lie Derivative
LEE

′ = Lvv
′ + (Lvw

′ − iv ′dw) + (Lvσ
′ − iv ′dσ − w ′ ∧ dw)

+ (Lvτ
′ − jσ′ ∧ dw − jw ′ ∧ dσ)

Nice (unified) mathematical structure
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EGG and EFT

Exceptional Field Theory

7→ 56 + “section condition”
∂m8 → ∂m, ∂mn → 0

δξV
M = ξP∂PV

M − 12P(adj)
M

N
P
Q∂Pξ

QV N +
ω

2
∂Pξ

PVM ,

These transformations define the generalised fluxes, FAB
C, via

δEAEB = FAB
CEC .

FAB
C = XAB

C + DAB
C, (912 + 56)

the structure constants XABC automatically satisfy the 4D maximal supergravity
relations of the embedding tensor

P(adj)
C
B
D
E XAD

E = XAB
C , XA[BC] = XAB

B = X(ABC) = XBA
B = 0,

section conditions,

ΩMN∂MA ∂NB = 0, [tα]MN∂MA ∂NB = 0, [tα]MN∂M∂NA = 0 ,

Walter H. Baron M-theory origin of N=8 SUGRA
String Pheno 2015- Madrid 4
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EGG and EFT

N=8 Supergravity in 4D

Field content: eaµ U =

(
uij

IJ vij IJ
v ij IJ uij IJ

)
⊂ E7/SU(8) Aa

µ ψA
µ χABC

N=8 (Abelian) Sugra (up to second order in K) de Wit, Freedman 77’

Full (Abelian) N=8 torus compactification Cremmer,Julia 78’
GL(7,R)global × SO(7)local −→ E7(7)global × SU(8)local

Non Abelian case
Flat groups twisted tori Scherk, Schwarz 79’

SO(8) gauged Maximal supergravity de Wit, Nicolai 81’

SO(p,q) and CSO(p,q,r) gauged Maximal supergravity Hull 84’

New Gauged supergravities Dall’Agata, Inverso, Trigiante 12’

Embedding Tensor

XMN
P = ΘM

α (tα)N
P

Dµ = ∂µ − AM
µΘM

αtα

Linear constraints

tαM
N ΘN

α = 0 , (tβt
α)M

NΘN
β = −1

2
ΘM

α

Quadratic constraint ΘM
α ΘN

β ΩMN = 0

Walter H. Baron M-theory origin of N=8 SUGRA
String Pheno 2015- Madrid 5

/ 14



EGG and EFT

N=8 Supergravity in 4D

Field content: eaµ U =

(
uij

IJ vij IJ
v ij IJ uij IJ

)
⊂ E7/SU(8) Aa

µ ψA
µ χABC

N=8 (Abelian) Sugra (up to second order in K) de Wit, Freedman 77’

Full (Abelian) N=8 torus compactification Cremmer,Julia 78’
GL(7,R)global × SO(7)local −→ E7(7)global × SU(8)local

Non Abelian case
Flat groups twisted tori Scherk, Schwarz 79’

SO(8) gauged Maximal supergravity de Wit, Nicolai 81’

SO(p,q) and CSO(p,q,r) gauged Maximal supergravity Hull 84’

New Gauged supergravities Dall’Agata, Inverso, Trigiante 12’

Embedding Tensor

XMN
P = ΘM

α (tα)N
P

Dµ = ∂µ − AM
µΘM

αtα

Linear constraints

tαM
N ΘN

α = 0 , (tβt
α)M

NΘN
β = −1

2
ΘM

α

Quadratic constraint ΘM
α ΘN

β ΩMN = 0

Walter H. Baron M-theory origin of N=8 SUGRA
String Pheno 2015- Madrid 5

/ 14



EGG and EFT

N=8 Supergravity in 4D

Field content: eaµ U =

(
uij

IJ vij IJ
v ij IJ uij IJ

)
⊂ E7/SU(8) Aa

µ ψA
µ χABC

N=8 (Abelian) Sugra (up to second order in K) de Wit, Freedman 77’

Full (Abelian) N=8 torus compactification Cremmer,Julia 78’
GL(7,R)global × SO(7)local −→ E7(7)global × SU(8)local

Non Abelian case
Flat groups twisted tori Scherk, Schwarz 79’

SO(8) gauged Maximal supergravity de Wit, Nicolai 81’

SO(p,q) and CSO(p,q,r) gauged Maximal supergravity Hull 84’

New Gauged supergravities Dall’Agata, Inverso, Trigiante 12’

Embedding Tensor

XMN
P = ΘM

α (tα)N
P

Dµ = ∂µ − AM
µΘM

αtα

Linear constraints

tαM
N ΘN

α = 0 , (tβt
α)M

NΘN
β = −1

2
ΘM

α

Quadratic constraint ΘM
α ΘN

β ΩMN = 0

Walter H. Baron M-theory origin of N=8 SUGRA
String Pheno 2015- Madrid 5

/ 14



EGG and EFT

N=8 Supergravity in 4D

Field content: eaµ U =

(
uij

IJ vij IJ
v ij IJ uij IJ

)
⊂ E7/SU(8) Aa

µ ψA
µ χABC

N=8 (Abelian) Sugra (up to second order in K) de Wit, Freedman 77’

Full (Abelian) N=8 torus compactification Cremmer,Julia 78’
GL(7,R)global × SO(7)local −→ E7(7)global × SU(8)local

Non Abelian case
Flat groups twisted tori Scherk, Schwarz 79’

SO(8) gauged Maximal supergravity de Wit, Nicolai 81’

SO(p,q) and CSO(p,q,r) gauged Maximal supergravity Hull 84’

New Gauged supergravities Dall’Agata, Inverso, Trigiante 12’

Embedding Tensor

XMN
P = ΘM

α (tα)N
P

Dµ = ∂µ − AM
µΘM

αtα

Linear constraints

tαM
N ΘN

α = 0 , (tβt
α)M

NΘN
β = −1

2
ΘM

α

Quadratic constraint ΘM
α ΘN

β ΩMN = 0

Walter H. Baron M-theory origin of N=8 SUGRA
String Pheno 2015- Madrid 5

/ 14



EGG and EFT

N=8 Supergravity in 4D

Field content: eaµ U =

(
uij

IJ vij IJ
v ij IJ uij IJ

)
⊂ E7/SU(8) Aa

µ ψA
µ χABC

N=8 (Abelian) Sugra (up to second order in K) de Wit, Freedman 77’

Full (Abelian) N=8 torus compactification Cremmer,Julia 78’
GL(7,R)global × SO(7)local −→ E7(7)global × SU(8)local

Non Abelian case
Flat groups twisted tori Scherk, Schwarz 79’

SO(8) gauged Maximal supergravity de Wit, Nicolai 81’

SO(p,q) and CSO(p,q,r) gauged Maximal supergravity Hull 84’

New Gauged supergravities Dall’Agata, Inverso, Trigiante 12’

Embedding Tensor

XMN
P = ΘM

α (tα)N
P

Dµ = ∂µ − AM
µΘM

αtα

Linear constraints

tαM
N ΘN

α = 0 , (tβt
α)M

NΘN
β = −1

2
ΘM

α

Quadratic constraint ΘM
α ΘN

β ΩMN = 0

Walter H. Baron M-theory origin of N=8 SUGRA
String Pheno 2015- Madrid 5

/ 14



EGG and EFT

N=8 Supergravity in 4D

Field content: eaµ U =

(
uij

IJ vij IJ
v ij IJ uij IJ

)
⊂ E7/SU(8) Aa

µ ψA
µ χABC

N=8 (Abelian) Sugra (up to second order in K) de Wit, Freedman 77’

Full (Abelian) N=8 torus compactification Cremmer,Julia 78’
GL(7,R)global × SO(7)local −→ E7(7)global × SU(8)local

Non Abelian case
Flat groups twisted tori Scherk, Schwarz 79’

SO(8) gauged Maximal supergravity de Wit, Nicolai 81’

SO(p,q) and CSO(p,q,r) gauged Maximal supergravity Hull 84’

New Gauged supergravities Dall’Agata, Inverso, Trigiante 12’

Embedding Tensor

XMN
P = ΘM

α (tα)N
P

Dµ = ∂µ − AM
µΘM

αtα

Linear constraints

tαM
N ΘN

α = 0 , (tβt
α)M

NΘN
β = −1

2
ΘM

α

Quadratic constraint ΘM
α ΘN

β ΩMN = 0

Walter H. Baron M-theory origin of N=8 SUGRA
String Pheno 2015- Madrid 5

/ 14



EGG and EFT

N=8 Supergravity in 4D

Field content: eaµ U =

(
uij

IJ vij IJ
v ij IJ uij IJ

)
⊂ E7/SU(8) Aa

µ ψA
µ χABC

N=8 (Abelian) Sugra (up to second order in K) de Wit, Freedman 77’

Full (Abelian) N=8 torus compactification Cremmer,Julia 78’
GL(7,R)global × SO(7)local −→ E7(7)global × SU(8)local

Non Abelian case
Flat groups twisted tori Scherk, Schwarz 79’

SO(8) gauged Maximal supergravity de Wit, Nicolai 81’

SO(p,q) and CSO(p,q,r) gauged Maximal supergravity Hull 84’

New Gauged supergravities Dall’Agata, Inverso, Trigiante 12’

Embedding Tensor

XMN
P = ΘM

α (tα)N
P

Dµ = ∂µ − AM
µΘM

αtα

Linear constraints

tαM
N ΘN

α = 0 , (tβt
α)M

NΘN
β = −1

2
ΘM

α

Quadratic constraint ΘM
α ΘN

β ΩMN = 0

Walter H. Baron M-theory origin of N=8 SUGRA
String Pheno 2015- Madrid 5

/ 14



EGG and EFT

N=8 Supergravity in 4D

Field content: eaµ U =

(
uij

IJ vij IJ
v ij IJ uij IJ

)
⊂ E7/SU(8) Aa

µ ψA
µ χABC

N=8 (Abelian) Sugra (up to second order in K) de Wit, Freedman 77’

Full (Abelian) N=8 torus compactification Cremmer,Julia 78’
GL(7,R)global × SO(7)local −→ E7(7)global × SU(8)local

Non Abelian case
Flat groups twisted tori Scherk, Schwarz 79’

SO(8) gauged Maximal supergravity de Wit, Nicolai 81’

SO(p,q) and CSO(p,q,r) gauged Maximal supergravity Hull 84’

New Gauged supergravities Dall’Agata, Inverso, Trigiante 12’

Embedding Tensor

XMN
P = ΘM

α (tα)N
P

Dµ = ∂µ − AM
µΘM

αtα

Linear constraints

tαM
N ΘN

α = 0 , (tβt
α)M

NΘN
β = −1

2
ΘM

α

Quadratic constraint ΘM
α ΘN

β ΩMN = 0

Walter H. Baron M-theory origin of N=8 SUGRA
String Pheno 2015- Madrid 5

/ 14



Embedding of SUGRAs in EGG and EFT

Generalised Scherk-Schwarz reductions

(
ṼABMN(x , y) ṼABMN(x , y)

ṼABMN(x , y) ṼAB
MN(x , y)

)
=

(
uab

CD(x) vab CD(x)
v ab CD(x) uab

CD(x)

)(
ECD

MN(y) ECDMN(y)
ECDMN(y) ECD

MN(y)

)

Embedding tensor of SO(p, q) Gauged Maximal Supergravity

LEABECD = R−1 (ηCB EAD − ηDB EAC − ηCA EBD + ηDA EBC ) ,

LEABE
CD = R−1

(
ηAE δ

C
B EED − ηBE δCA EED + ηAEδ

D
B ECE − ηBEδDA ECE

)
,

LEABECD = 0 , LEABECD = 0 .

LEAEB = XAB
CEC XAB

C ≡ SO(p, q) Embedding tensor

Sn are generalised parallelisable Waldram, Lee, Strickland-Constable 14’

Are Hyperboloids Generalised parallelisable?

Walter H. Baron M-theory origin of N=8 SUGRA
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ṼABMN(x , y) ṼABMN(x , y)
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Embedding of SUGRAs in EGG and EFT

Generalized Vielbein for compact gaugings

solved in EGG by Waldram, Lee, Strickland-Constable 14’

solved in EFT by WB 14’

Generalized Vielbein for noncompact gaugings

solved in EGG by WB, Dall’Agata 14’

solved in EFT by Hohm, Samtleben 14’

Walter H. Baron M-theory origin of N=8 SUGRA
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Embedding of SUGRAs in EGG and EFT

EA =

 EAB = KAB + SAB + iKAB ζ

EAB = PAB + TAB − jζ ∧ PAB ,

with

PAB = dXA ∧ dXB ,

SAB = ∗PAB =
R−1

(d − 2)!
εABC1...Cd−1X

C1dXC2 ∧ · · · ∧ dXCd−1

TAB = R−1
(
XAdXB − XBdXA

)
⊗ VolH ,

VolH =
R−1

d!
εC1...Cd+1X

C1dXC2 ∧ · · · ∧ dXCd+1 ,

dζ =
d − 1

R
VolH

Hyperboloids Generalised parallelizable !

TAB = 0⇐⇒ XA = XB = 0,
PAB = 0⇐⇒ (XA)2 + (XB)2 = R2 A,B = 1, . . . , 4,
PAB = 0⇐⇒ (XA)2 − (XB)2 = R2 A = 1, . . . , 4; B = 5, . . . , 8,
PAB 6= 0 for A,B = 5, . . . , 8.

Walter H. Baron M-theory origin of N=8 SUGRA
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Embedding of SUGRAs in EGG and EFT

Non linear uplift ansatze (WB, Dall’Agata 14’)

Nonlinear metric ansatz

∆−1gmn =
1

2
Km

ABK
n
CD

(
uab

AB − iv ab AB
)(

uab
CD + iv ab CD

)
Nonlinear Flux ansatz

Amnp =

√
2

4
∆ gpq Kmn

ABK q
CD

(
uabAB + i vab AB

) (
uab

CD + i vab AB

)

Km
AB : Killing vectors

Kmn
AB = R−1ηACηBD

◦
gmp

◦
∇n K p

CD

Tests:

In SO(8) ⇒ SO(8), SO(7), G2, SU(4), SO(3)× SO(3)

In SO(5, 3)⇒ SO(5)× SO(3)

In SO(4, 4)⇒ SO(4)× SO(4),SO(3)× SO(3)

Walter H. Baron M-theory origin of N=8 SUGRA
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Uplifting the SO(3)× SO(3) critical point

The SO(3)× SO(3) invariant critical points of SO(4, 4)
gauged supergravity (Dall’Agata, Inverso 12’) can be
obtained by truncating the scalar manifold to a 2d sector.

This critical point has the following uplift solution in 11D
SUGRA (WB, Dall’Agata 14’). y i = {ψ, θ1, φ1}

Figure 1: Scalar potential for the SO(4,4)c model with c = 0 and with c = 1/3. The
instabilities of the de Sitter vacua represented by blue squares become milder as c approaches
the boundary value

√
2− 1. Note that the vacuum represented by a red dot is locally stable

in the τ and x directions.

3 Analysis of the extrema

We now restrict our analysis of the scalar potential (2.8) to the scalars related to the g5 and

g6 generators. By taking g5 and g6 normalized so that Tr(gigi) =1, we define the associated

coset representative as

L(x, τ) = exp

(
3√
2
g5 log x+

√
6 g6 log τ

)
. (3.1)

Obviously, in this parameterization the allowed moduli space is spanned by x > 0 and τ > 0.

We then see that the explicit form of (2.8) becomes

V (x, τ) =
1

8 τ x3/2
[
c2(τ + 1)2x3 + 3x2

(
2c2(τ − 1)2 − (τ − 6)τ − 1

)

−3x (c2((τ − 6)τ + 1)− 2(τ − 1)2) + (τ + 1)2] .

(3.2)

As depicted in Fig. 1 for two representative choices of c, this potential has 3 extrema in the

range c ∈ [0,
√

2− 1[, all of which have a positive cosmological constant.

The first critical point is at

x1 = 1, τ1 = 1. (3.3)

At this critical point the potential is2

V1 = 2(1 + c2) > 0 (3.4)

2If one chooses to parameterize θ and ξ using sinω and cosω, as in [1], the value of V1 becomes independent
on ω. Recall that one has always the freedom to rescale simultaneously θ and ξ by changing the value of the
gauge coupling constant g.

5

ds2
7 =

α−1R2

∆(y)

 3∑
i,j=1

hij (y)dy i dy j + R2
1 (y)

(
dθ2

2 + sin2(θ2) dθ2
3

)
+ R2

2 (y)
(
dφ2

2 + sin2(φ2) dφ2
3

) ,

A = A(1) ∧ e4 ∧ e5 + A(2) ∧ e6 ∧ e7,
e4 = R1 dθ2, e5 = R1 sin θ2 dθ3,
e6 = R2 dφ2, e7 = R2 sinφ2 dφ3,

A(1) = −A0

[
sinh2(ψ) +

(
1 + 2√

3

)
cosh2(ψ)

]
sin(θ1) cos(φ1) dψ

− A0 sinh(ψ) cosh(ψ) cos(θ1) cos(φ1) dθ1 + A0

(
1 + 2√

3

)
sinh(ψ) cosh(ψ) sin(θ1) sin(φ1) dφ1

The 4D metric g̃ describes de Sitter spacetime and therefore R̃µν = 3R−2
4 g̃µν , with R4

the de Sitter radius. The 4-form Fµνρσ = fFR εµνρσ, where

R2
4 =

3

2

g 2

Vc
R2 , fFR = ± 1

g 2
√

2
VcR

−1 ,

where g is the coupling constant of the 4-dimensional gauged supergravity theory and
Vc is the value of the potential at the critical point.
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R2
1 =

4(2
√

3− 3) sin2 θ1

3(
√

3− 1) + 6 sin2 θ1 + tanh2 ψ[3
√

3(
√

3− 1)− (6− 4
√

3) sin2 φ1]
,

R2
2 =

4(2
√

3− 3) sin2 φ1

3(
√

3− 1) + 6 sin2(φ1) + coth2 ψ[3
√

3(
√

3− 1)− (6− 4
√

3) sin2 θ1]
,

and the overall warp factors are

∆−9 = α
7
det h−1 sin4 θ1

R4
1

sin4 φ1

R4
2

cosh6
ψ sinh6

ψ

h = (detM)
− 1

2 M

where

M =


A B − S2

2 S2
3 −(Φ3 B + S32 Φ2) S2 −(Φ2 A + S22 Φ3) S3

−(Φ3 B + S2
3 Φ2)S2 [

3(2+
√

3)
4

− Φ2Φ3] B − S2
3 Φ2

2
3(2+
√

3)
4

S2 S3

−(Φ2 A + S2
2 Φ3) S3

3(2+
√

3)
4

S2 S3 [
3(2+
√

3)
4

− Φ2Φ3] A− S2
2 Φ2

3

 ,
and

S2 = 1
2

tanhψ sin(2θ1), S3 = 1
2

cothψ sin(2φ1),

Φ2 = 3
2
− sin2 θ1 , Ψ2 = 3

2
− cos2 θ1 ,

Φ3 = 3
2
− sin2 φ1 , Ψ3 = 3

2
− cos2 φ1 ,

A = 3+
√

3
4

+ tanh2 ψ

[
3(2+
√

3)
4

− Ψ2Φ3

]
, B = 3+

√
3

4
+ coth2 ψ

[
3(2+
√

3)
4

− Ψ3Φ2

]
.
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Conclusions and perspectives

Conclusions and perspectives

We provided a new ansatz for the full uplift of the vacua of maximal gauged
supergravity with non-compact gauge groups SO(p, q) and tested it against
the 11- dimensional equations of motion for all the known de Sitter vacua of
these models.

An alternative way of deriving the Uplift ansatze follows from a ground-up
approach by using the SU(8) reformulation of 11D SUGRA and SUSY as a
organising principle.

While the construction of the generalised vielbein involves the use of Killing
tensors for the space with (p,q) signature, this procedure correctly
reproduces euclidean geometries, because the scalar-dependent matrix
MAB(x) is positive definite.

The fact that the final metric depends on the contraction of the generalised
vielbeins with a positive definite matrix M, implies that at any vacuum the
SO(p, q) gauge group is broken to a subgroup of its maximal compact
subgroup SO(p)× SO(q).
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Conclusions and perspectives

Conclusions and perspectives

An independent derivation of the CSO(p,q,r) gaugings was proposed by
Hohm and Samtleben in the Exceptional Field Theory framework (EFT).
Even though the geometrical interpretation of these solutions is not
completely clear, these should reduced to ours for r = 0 because they
imposed the section conditions.

The same approach was successfully applied by Hohm and Samtleben to get
the uplift formulas of IIB supergravity with compact and non compact gauge
group.

After 35 years of work in this longstanding problem we feel confident that
today all electric maximal gauged supergravities can be uplifted to 11D
Supergravity.

A very interesting problem is to understand if the dyonic gauged
supergravities recently proposed by Dall’Agata, Inverso and Trigiante can be
uplifted to 11 D Supergravity or some deformation. By simple analysis of the
generalised Lie derivatives of the generalised vielbeins one observes that
dyonic gaugings need the inclusion of form fluxes in the background. We
expect to explore this situation in the future.
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Conclusions and perspectives

Thank you for your attention!
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