A Heterotic QCD Axion

Andrei Constantin (Uppsala University)

Joint work with: Evgeny Buchbinder and Andre Lukas

String Phenomenology 2015, Madrid

The strong CP problem.

$$
\mathcal{L}_{\theta}=\frac{\theta}{8 \pi^{2}} \operatorname{tr}(F \wedge F)_{\mathrm{QCD}}
$$

Naively, $\theta \simeq g_{3} \simeq 1$. Experimental bounds on the electric dipole of the neutron, $\theta<10^{-10}$

Simplest dynamical solution: PQ axion.

$$
\mathcal{L}_{a}=\frac{a}{8 \pi^{2} f_{a}} \operatorname{Tr}(F \wedge F)_{\mathrm{QCD}}
$$

Realisation: Goldstone boson of a global $U(1)_{P Q}$ with mixed anomaly and spontaneously broken at $\simeq f_{a}$:

$$
a \rightarrow a+c
$$

Astrophysical and cosmological constraints on f_{a} :

$$
10^{9} \mathrm{GeV} \lesssim f_{a} \lesssim 10^{12} \mathrm{GeV}
$$

In string models: many axions available; usually $f_{a} \simeq 10^{16} \mathrm{GeV}$.

In heterotic compactifications the imaginary part of the dilaton multiplet

$$
S=s+i \sqrt{2} \sigma
$$

couples at tree-level to $F \tilde{F}$. The corresponding $f_{\sigma} \simeq M_{\text {GUT }}$.
The axions coming from the T^{i} moduli

$$
T^{i}=t^{i}+2 i \chi^{i}
$$

couple at one loop level to $F \tilde{F}$. Similarly, $f_{\chi^{i}} \simeq M_{\mathrm{GUT}}$.

Axions in Heterotic String Theory with Split Bundles

Alternative: consider heterotic CY models with bundles that (somewhere in the allowed Kähler moduli space) split as

$$
V=\bigoplus_{a=1}^{A} V_{a}
$$

Generically, these lead to additional Green-Schwarz anomalous $U(1)$ symmetries in 4 d with D-terms of the form:

$$
D_{a}=\frac{M_{P}^{2}}{\mathcal{V}} \epsilon d_{i j k} k_{a}^{i} t^{j} t^{k}-\sum_{l, J} q_{a, l} G_{I J} C^{\prime} \bar{C}^{J}
$$

where the matter fields $C^{\prime}=h^{\prime} e^{i \phi^{\prime}}$ transform as

$$
\begin{aligned}
\delta C^{\prime} & =-i \eta^{a} q_{a, l} C^{\prime} \\
\delta \phi^{\prime} & =-q_{a, l} \eta^{a}
\end{aligned}
$$

We can construct a KSVZ axion (heavy quark axion) if there exists an exotic vector-like quark pair that couples to a singlet fields C,

$$
W=\lambda \mathcal{Q} C \widetilde{\mathcal{Q}}+W_{\text {sing }}+\ldots,
$$

At low energies, ϕ couples to $F \tilde{F}$, with

$$
f=\sqrt{2} h .
$$

The value of h in the supersymmetric vacuum is controlled by the D-term equation

$$
D=\frac{M_{P}^{2}}{\mathcal{V}} \epsilon d_{i j k} k^{i} t^{j} t^{k}-q h^{2}=0
$$

The FI term vanishes at the split locus and can assume arbitrarily small values close to it.

Heterotic Line Bundle Models with QCD Axions

An explicit example:

Required data: (X, V) and $(\Gamma, \phi), \mathcal{W}$.

$$
X=\begin{aligned}
& \mathbb{C P}^{1} \\
& \mathbb{C P}^{1} \\
& \mathbb{C P}^{1} \\
& \mathbb{C P}^{1} \\
& \mathbb{C P}^{1}
\end{aligned}\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
0 & 2
\end{array}\right]_{-80}^{5,45}
$$

$\Gamma=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Action given by:

$$
\begin{aligned}
g_{1}: & x_{m, \alpha} \mapsto(-1)^{\alpha} x_{m, \alpha} \\
g_{2}: & x_{m, \alpha} \mapsto x_{m, \alpha+1} \\
g_{1}: & p_{\beta} \mapsto(-1)^{\beta} p_{\beta} \\
g_{2}: & p_{\beta} \mapsto(-1)^{\beta+1} p_{\beta}
\end{aligned}
$$

$$
V=\bigoplus_{a=1}^{5} \mathcal{L}_{a}=\bigoplus_{a=1}^{5} \mathcal{O}_{X}\left(\mathbf{k}_{a}\right)
$$

explicitly given by

$$
\left(k_{a}^{i}\right)=\left[\begin{array}{rrrrr}
-2 & 1 & 1 & 0 & 0 \\
1 & -2 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 & 1 \\
1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & -1
\end{array}\right] .
$$

Properties: $c_{1}(V)=0$, structure group $S\left(U(1)^{5} \subset S U(5)\right)$.
$\chi(V)=-12$. Anomaly cancellation condition and stability also satisfied.

GUT group: $S U(5) \times S\left(U(1)^{5}\right)$.
Result: quotient manifold $\widetilde{X}=X / \Gamma$ with $\pi_{1}(\widetilde{X}) \cong \Gamma, h^{1,1}(\widetilde{X})=5$ and $h^{2,1}(\widetilde{X})=15$.

Choice for the equivariant structure:
$\mathcal{L}_{1}^{(0,1)} \oplus \mathcal{L}_{2}^{(0,0)} \oplus \mathcal{L}_{3}^{(0,0)} \oplus \mathcal{L}_{4}^{(0,0)} \oplus \mathcal{L}_{5}^{(0,0)}$

Heterotic Line Bundle Models with QCD Axions

multiplet	$S\left(U(1)^{5}\right)$ charge	bundle	cohomology
$\mathbf{1 0}_{a}$	\mathbf{e}_{a}	V_{a}	$H^{1}\left(X, V_{a}\right)$
$\overline{\mathbf{1 0}}_{a}$	$-\mathbf{e}_{a}$	V_{a}^{*}	$H^{1}\left(X, V_{a}^{*}\right)$
$\overline{5}_{a, b}$	$\mathbf{e}_{a}+\mathbf{e}_{b}$	$V_{a} \otimes V_{b}$	$H^{1}\left(X, V_{a} \otimes V_{b}\right)$
$\mathbf{5}_{a, b}$	$-\mathbf{e}_{a}-\mathbf{e}_{b}$	$V_{a}^{*} \otimes V_{b}^{*}$	$H^{1}\left(X, V_{a}^{*} \otimes V_{b}^{*}\right)$
$\mathbf{1}_{a, b}$	$\mathbf{e}_{a}-\mathbf{e}_{b}$	$V_{a} \otimes V_{b}^{*}$	$H^{1}\left(X, V_{a} \otimes V_{b}^{*}\right)$

After quotienting: MSSM spectrum with a vector-like pair of quarks and singlets:

$$
\begin{gathered}
\mathbf{1 0}_{1}, \mathbf{1 0}_{2}, \mathbf{1 0}_{3}, \overline{\mathbf{5}}_{1,3}, \overline{\mathbf{5}}_{1,5}, \overline{\mathbf{5}}_{3,4} \\
T_{1,4}, \bar{T}_{1,4}, H_{4,5}, \bar{H}_{4,5}, 3 \mathbf{1}_{1,3}, \mathbf{1}_{1,4}, \mathbf{1}_{4,1}, \mathbf{1}_{1,5}, 4 \mathbf{1}_{2,4}, \mathbf{1}_{2,5}, 3 \mathbf{1}_{3,2}, \mathbf{1}_{3,4}, 3 \mathbf{1}_{3,5},
\end{gathered}
$$

Heterotic Line Bundle Models with QCD Axions

The $U(1)$-charges constrain the allowed superpotential operators. Importantly,

$$
W \supset \bar{T}_{1,4} d_{3,4} S_{1,3}
$$

For $\left\langle S_{1,3}\right\rangle \neq 0$, this removes the pair $d_{3,4}-\bar{T}_{1,4}$ from the massless spectrum.
$d_{3,4}, \bar{T}_{1,4}$ play the role of the exotic quark fields \mathcal{Q} and $\widetilde{\mathcal{Q}}$. The "missing" d-type quark is replaced by $T_{1,4}$.

If $\left\langle S_{1,3}\right\rangle$ can be stabilised at a small value, $10^{-7} \lesssim\left\langle S_{1,3}\right\rangle \lesssim 10^{-4}$ in GUT units, the axion coupling parameter will be in the phenomenologically allowed range.

Conclusions

Heterotic CY models with split bundles can accommodate all the required ingredients for a successful axion model:

- Green-Schwarz anomalous $U(1)$ symmetries with associated FI terms that vanish at specify loci in Kähler moduli space;
- SM multiplets, additional singlet matter fields and vector-like pairs of exotic quarks, charged under the extra $U(1)$ symmetries;
- trilinear superpotential coupling $\mathcal{Q} C \tilde{\mathcal{Q}} ; C=h e^{i \phi}$
- axion coupling parameter controlled by the FI term can be arbitrarily small close to the split locus.

Thank you!

