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Non-geometry as a generalization of geometry

We are used to constructing manifolds by patching. That is, we
specify the global structure of our theory by defining the theory on
a set of open patches with topology Rn, and specify a gluing action
on the fields when the different patches overlap.

The patching should be by a physical equivalence of the object
begin patched:

For a geometric object (such as a fiber in a fibration) we can
patch by diffeomorphisms.
Or more generally, for a charged field, we can patch by gauge
transformations.
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Non-geometry as a generalization of geometry

These patching transition functions appear naturally when we have
monodromy around a certain object. A familiar example is the D7
brane in IIB: as we go around the core of the D7 we have a
monodromy C0 → C0 + 1.

We often think of this in the language of F-theory: geometrize the
axio-dilaton τ = C0 + i/gs as the complex structure of a T 2, and
view the C0 → C1 + 1 as a geometric monodromy, coming from a
non-trivial fibration of a torus.

One can try to generalize this viewpoint: we view the patching as a
geometric transformation in some auxiliary space.
[Candelas,Constantin,Damian,Larfors,Morales] [Martucci,Morales,Pacifici]
[Braun,Fucito,Morales]
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Non-geometry as a generalization of geometry

If we have a monodromy in F-theory, we can read off the light
degrees of freedom (let us stay in 8d, for simplicity).

For example, if the monodromy is τ → τ + 1 (and we have a
supersymmetric solution), we know that we have a D7 brane, with
field content N = 1 U(1) SYM in 8d, at least locally.

More complicated setups are understood similarly: if we have

M =

(
−1 −n
0 −1

)
(1)

we have a SO(8 + 2n) stack, etc.1

1We are ignoring discrete fluxes here.
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Non-geometry as a generalization of geometry

More formally, we have a Kodaira classification: we can classify
all the possible ways in which we can have a degeneration of the
fiber while keeping supersymmetry, or equivalently all the local
monodromies using SL(2,Z) patching.

By a number of techniques (for example, by going to the M-theory
dual and resolving) we can read off the gauge dynamics for each
configuration in the Kodaira list.
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Non-geometry as a generalization of geometry

We are not restricted to SL(2,Z), any symmetry of string theory
will do! It could be geometric, or it may be something like
T-duality: as we surround the defect the size of the fibered
dimensions gets inverted. (Interesting because in this case there is
no global notion of geometry.)

A basic question is how to read the light degrees of freedom living
on the soliton.
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Heterotic T-folds

We will be focusing on a particularly interesting class of
non-geometric theories: non-geometric heterotic backgrounds.

In particular, if we take the (E8 × E8) heterotic string on T 2

without Wilson lines, it has a U-duality group given by
D = (SL(2,Z)τ × SL(2,Z)ρ)o Z2

2. Here τ is the complex
structure of the torus, and ρ = B + iJ is the complexified Kähler
form.

We can construct non-trivial backgrounds by fibering over a base
(P1 is the minimal compact case) with patching by elements in D.
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Genus two fibrations

In the spirit of F-theory, we could think of the duality group
D = (SL(2,Z)τ × SL(2,Z)ρ)o Z2

2 as the natural action on the
union of two T 2.

This picture has been recently sharpened by generalizing to the case
where there is a single non-trivial Wilson line on the T 2, breaking
E8 × E8 → E7 × E8. [Clingher,Doran] [Morrison,Malmendier]
[Jockers,Gu]. It turns out that the set of vacua of this theory is
isomorphic to set of complex structures for a genus 2 surface.

The formalism is isomorphic to that appearing in “G-theory”.
[Candelas,Constantin,Damian,Larfors,Morales] [Martucci,Morales,Pacifici]
[Braun,Fucito,Morales]
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Genus two fibrations



Introduction Heterotic T-folds Ogg-Namikawa-Ueno Conclusions

Genus two fibrations

More precisely, the physical data of the T 2 compactification with a
Wilson line in SU(2) ⊂ E8 is given by the Narain space

O(2, 3,R)
O(2,R)×O(3,R)

(2)

modulo the U -duality group O(2, 3,Z) (some subtleties with order
two subgroups, but I will ignore them here [Malmendier,Morrison]).

This data turns out to be isomorphic to the complex structure of a genus
two curve, given as an element of the upper Siegel half-plane:

H2 =

{
τ =

(
τ β
β ρ

) ∣∣∣∣ τ, ρ, β ∈ C, Im(τ) > 0

}
(3)

The space of such curves is H2/USp(4,Z). In the limit β → 0 one has a
pinching of the torus into two tori, with independent τ and ρ.
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Non-geometric heterotic fibrations

We can fiber the genus 2 fiber over a base, and if the transition
functions are general elements of USp(4,Z) we have a
non-geometric background (only the shift ρ→ ρ+ 1 is geometric).

To read the low energy physics one can resort to heterotic-F-theory
duality. The map has been understood recently.
[Malmendier,Morrison][Jockers,Gu] It is easiest to define the physics
starting from the genus two fibration.

Schematically, given a genus two surface, it is easy to construct some
modular forms of τ . (∼ f, g) Given these modular forms, one can easily
construct the dual K3.
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A quick reminder of the genus one case
The branching cubic

Recall that a genus one curve can be specified by a double cover of
P1 branched at four points, one of which we can fix at ∞:

y2 = x3 + fx+ g =

3∏
i=1

(x− ei) . (4)

The roots are connected pairwise by branch cuts, so

g =
d

2
− 1 = 1 . (5)

The complex structure τ of the torus is determined by f, g, or
equivalently the positions of the roots. One has

f = e1e2 + e1e3 + e2e3 ; g = −e1e2e3 . (6)
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A quick reminder of the genus one case
Modular forms

f, g can also be constructed as modular forms of τ :

f = −1

3
E4(τ) , g = − 2

27
E6(τ) , (7)

with
E2k(τ) =

1

2ζ(2k)

∑
(m,n)∈Z2\{0}

1

(mτ + n)2k
. (8)

These modular forms transform with weights 4, 6 under SL(2,Z),
so we have that a rescaling (f, g)→ (λ2f, λ3g) for λ ∈ C∗ defines
a torus with the same complex structure.

One can construct a modular and rescaling invariant that gives a
one-to-one map from C to the fundamental domain:

j(τ) ∝ f3

4f3 + 27g2
(9)
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A quick reminder of the genus one case
Duality with F-theory

We can view a E8 × E8 heterotic compactification without Wilson
line as being specified by two complex numbers τ, ρ. The F-theory
dual is given by an elliptically fibered K3 manifold with two E8

singularities (and generically, otherwise smooth). This can be
parameterized by

y2 = x3 + αz4x+ (z5 + βz6 + z7) . (10)

(Singularities at z = 0,∞.)

The duality map is given in this case by [Cardoso, Curio, Lüst,
Mohaupt]

j(τ)j(ρ) = −17282α
3

27
, (11)

(j(τ)− 1728)(j(ρ)− 1728) = 17282
β2

4
. (12)
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Genus two curves
Igusa-Clebsch and Siegel invariants

Recall that g = d
2 − 1. If we want to construct a g = 2 curve we

need a sextic (or a quintic):

y2 =

6∑
i=0

cix
i =

6∏
i=1

(x− ei) . (13)

We want to define the analogues of f, g. These are given by the
Igusa-Clebsch and Siegel invariants.
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Genus two curves
Igusa-Clebsch invariants

The Igusa-Clebsch invariants are

I2 =
1

48

∑
σ∈S6

(12)(34)(56) (14)

I4 =
1

72

∑
σ∈S6

(12)(23)(31)(45)(56)(64) (15)

I6 =
1

12

∑
σ∈S6

(12)(23)(31)(45)(56)(64)(14)(25)(36) (16)

I10 =
∏
i<j

(ei − ej)2 (17)

with (ab) = (eσ(a) − eσ(b))2. Notice that I10 is nothing but the
discriminant, so it vanishes iff the curve is singular.
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Genus two curves
Igusa-Clebsch invariants

Despite having a sextic, and the Igusa-Clebsch invariants being
defined in terms of the roots, they can also be expressed purely in
terms of the coefficients ci, without having to solve for the roots
(luckily!):

I2 = 6c23 − 16c2c4 + 40c1c5 − 240c0c6

I4 = 4c22c
2
4 − 12c1c3c

2
4 + 48c0c

3
4 − 12c22c3c5 + 36c1c

2
3c5 + 4c1c2c4c5

− 180c0c3c4c5 − 80c21c
2
5 + 300c0c2c

2
5 + 48c32c6 − 180c1c2c3c6

+ 324c0c
2
3c6 + 300c21c4c6 − 504c0c2c4c6 − 540c0c1c5c6 + 1620c20c

2
6

I6 = . . .

I10 = . . .

(18)
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Genus two curves
Siegel invariants

There are also analogues of f, g when viewed as modular forms.
We need the Siegel modular forms

ψ2k(τ) =
∑
(C,D)

1

det(Cτ +D)2k
(19)

with (C,D) ∼ (M · C,M ·D) for any M ∈ SL(2,Z). For our
purposes we need (ψ4, ψ6, χ10, χ12) with

χ10(τ) ∝ ψ4(τ)ψ6(τ)− ψ10(τ) , (20)

χ12(τ) ∝ 441ψ4(τ)
3 + 250ψ6(τ)

2 − 691ψ12(τ) . (21)

These naturally have a projective invariance
(ψ4, ψ6, χ10, χ12) ∼ (λ2ψ4, λ

3ψ6, λ
5χ10, λ

6χ12) with λ ∈ C∗ (and
similarly for the Ik).
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Genus two curves
Relation between Siegel and Igusa-Clebsch invariants

There is a simple relation between the Siegel and Igusa-Clebsch
invariants:

ψ4 = 144 I4

ψ6 = 576 (3 I6 − I2I4)
χ10 = 486 I10

χ12 = 486 I2I10 .

(22)
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Genus two curves
Duality with F-theory

The F-theory dual will be an elliptically fibered K3 with E8 and E7

singularities, and 5 other isolated I1 singularities of the fiber. A
generic such space is of the form:

y2 = x3 + (au4 + bu3)x+ cu7 + du6 + eu5 (23)

with (x, y) coordinates on the fiber, and u a coordinate on the P1

base. This is dual to the heterotic background via the map

a = − 1

48
ψ4(τ) , b = −4χ10(τ) , d = − 1

864
ψ6(τ) , e = χ12(τ)

(24)
and c = 1.
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Generalizing the Kodaira classification

In the case of fibrations of curves of genus one, we know that we
can classify the possible degenerations of the fiber by the Kodaira
classification: In, II, III, IV and their starred relatives.

We also know how to read the low energy physics of each of these
degenerations when they occur in string theory.

How do we read the low energy physics of the non-geometric
fibrations associated with genus-two fibrations? (Hint: the title of
this talk gives it away.)

Analyse the F-theory dual.
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Ogg-Namikawa-Ueno
The generalization of the Kodaira classification to genus 2 was
given by Ogg-Namikawa-Ueno.

Many possible cases:
K −K ′ −m for K,
K ′ in Kodaira...
and a bunch of
intrinsic ones

for a total of 120 kinds of
degenerations.
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Dualizing Ogg-Namikawa-Ueno

Consider the local model for the sextic with a degeneration

y2 = (x2 − tM )((x− α)2 − tN )(x− β)(x− 1) (25)

This is the IM -IN -0 singularity in the Ogg-Namikawa-Ueno
classification. The monodromy can be computed to be (ignoring
the Wilson line part)

τ → τ +M

ρ→ ρ+N
(26)

which we interpret as a N NS5 branes hitting a C2/ZM singularity
in the E8 ×E8 heterotic string. The dynamics can be computed by
dualizing to F-theory [Aspinwall,Morrison, and many recent works]: a
(1, 0) theory with a number of massless tensors. (From having too high
degree of vanishing in the F-theory elliptic fibration.)



Introduction Heterotic T-folds Ogg-Namikawa-Ueno Conclusions

The In-Im-0 singularity in F-theory

(From [Aspinwall,Morrison].)
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A non-geometric example
The previous example was familiar and with a clear geometric
interpretation. There are many genus two fibrations in
Ogg-Namikawa-Ueno that are intrinsically non-geometric, for
example III-III-m, with monodromy

τ ′ =
ρ

β2 − τρ
, ρ′ =

τ

β2 − τρ
, β′ =

β

β2 − τρ
. (27)

Running through the duality machinery, we find a dual F-theory
model with local form:

y2 = x3 + (au4)x+ u7 + eu5 (28)

with (turning off the Wilson line for simplicity)

a = −36 · (t+ 3) · t2 · (t− 1)2 + . . . (29)

e = 46656 · t6 · (t− 1)8 + . . . (30)

so we again have a non-trivial (1, 0) CFT.
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Conclusions

We find that non-geometric backgrounds in the heterotic string,
with one Wilson line at most, can be analyzed by looking to the
F-theory dual, and we can read the low-energy physics there.

The whole machinery is conceptually very similar to the genus one
fibrations that appear in F-theory, but degenerations of the fiber are
associated with non-trivial (1, 0) theories in six dimensions, instead
of N = 1 Yang-Mills theories in eight dimensions.

So it seems like studying branes in heterotic non-geometric
backgrounds naturally leads us to the study of (1, 0) theories, and if
we go to four dimensions we are naturally lead to compactifications
of (1, 0) theories in Riemann surfaces.
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Open problems

Many interesting questions!

Any physical meaning for the genus two curve?
Generalizations?
Can we understand type II in a similar manner?
[Candelas,Constantin,Damian,Larfors,Morales]
[Martucci,Morales,Pacifici] [Braun,Fucito,Morales]
Are these theories interesting at all? I.e. what do we get when we
compactify to 4d? (Parallel talk by Hayashi.)
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