Non-Abelian Discrete Gauge

Symmetries in F-theory

Thomas W. Grimm

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

Munich

based on:
non-Abelian: 1504.06272 with D. Regalado, T. Pugh
Abelian: $\quad 1408.6448$ with I. García-Etxebarria, J. Keitel
1406.5180 with L. Anderson, I. García-Etxebarria, J. Keitel

Some initial struggle

- in the last years we systematically approached: with Savelli, Pugh, Weissenbacher

Can we derive the $\mathrm{N}=1$ effective action of Type IIB flux compactification with warping?

- challenge:

$$
\frac{1}{\alpha^{2}} \int_{Y_{4}} G^{\mathrm{Flux}} \wedge G^{\mathrm{Flux}}=\frac{\chi\left(Y_{4}\right)}{24}
$$

\rightarrow need to include higher-derivative terms in the action
\rightarrow now known

- important steps:
- find back-reacted solution with higher-derivative terms
[Becker,Becker] [TG,Pugh,Weissenbacher]
derive effective action by dimensional reduction
, determine Kähler potential and Kähler coordinates Part II: arXiv:1506.nnnn

Some initial struggle

- in the last years we systematically approached: with Savelli, Pugh, Weissenbacher

Can we derive the $\mathrm{N}=1$ effective action of Type IIB flux compactification with warping?

- challenge:

$$
\frac{1}{\alpha^{2}} \int_{Y_{4}} G^{\mathrm{Flux}} \wedge G^{\mathrm{Flux}}=\frac{\chi\left(Y_{4}\right)}{24}
$$

\rightarrow need to include higher-derivative terms in the action
\rightarrow now known

- important steps:
- find back-reacted solution with higher-derivative terms
[Becker,Becker] [TG,Pugh,Weissenbacher]
, derive effective action by dimensional reduction
Part I: arXiv:1412.5073
, determine Kähler potential and Kähler coordinates Part II: arXiv:1506.nnnn
\rightarrow Tom Pugh's talk

Goals of this talk

- I like to discuss non-Abelian discrete gauge symmetries in F-theory compactifications on Calabi-Yau fourfolds
- Stepwise introduce:
(1) Geometrically massive $\mathrm{U}(1) \mathrm{s}$ and Abelian gauge symmetries
(2) Discrete non-Abelian gauge symmetries in O7-orientifolds
(3) Candidate gaugings for discrete non-Abelian gauge symmetries in F-theory \Rightarrow mutually non-local seven-branes
(4) Derivation via M-theory compactifiactions on manifolds with cohomological torsion

Geometrically massive $\mathrm{U}(1)$ s and Abelian discrete symmetries

Geometrically massive U(1)s

- geometrically massive $\mathrm{U}(1)$ s arise from D7 - D7' system with Stückelberg coupling:

$$
S_{\mathrm{St}}=\int_{\mathrm{D} 7^{-}} C_{6} \wedge F_{\mathrm{U}(1)} \longrightarrow \text { gauging of dual axion: } C_{2}=c^{a} \omega_{a}
$$

- geometrically massive U(1)s in F-theory: [TG,Weigand] [TG,Kerstan,Palti,Weigand]
- $\mathrm{U}(1) \mathrm{s}$ arise form M-theory three-form:

$$
C_{M}=c^{a} \alpha_{a}+A_{U(1)} \wedge \omega_{U(1)}+\ldots
$$

- non-closed forms induce non-trivial gauging:

$$
d \omega_{U(1)}=m^{a} \alpha_{a} \longrightarrow \mathcal{D} c^{a}=d c^{a}+m^{a} A_{\mathrm{U}(1)}
$$

, interpretation as non-Kähler geometry or CY fourfolds with cohomological torsion

Abelian discrete symmetries

- geometrically massive $\mathrm{U}(1) \mathrm{s}$ can leave Abelian discrete gauge symmetry
- so far, main examples: geometries with multi-section (no section)
- examples with $\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}$ symmetry studied in
[Braun,Morrison] [Morrison,Taylor] [Anderson,García-Etxebarria,TG,Keitel] [Klevers etal.]
[García-Etxebarria,TG,Keitel] [Mayrhofer,Palti,Till,Weigand] [Braun,TG,Keitel] [Cvetic,Donagi,Klevers,etal.]
physical interpretation: mixing of KK-vector with massive $\mathrm{U}(1) \mathrm{s}$ importance of the KK-modes
[Anderson,García-Etxebarria,TG,Keitel]
[García-Etxebarria,TG,Keitel] [Mayrhofer,Palti, Till,Weigand]
- selection rules on Yukawa couplings in F-theory
[García-Etxebarria,TG,Keitel] [Mayrhofer,Palti, Till,Weigand] [Klevers etal.]
- connection with cohomological torsion [Mayrhofer,Palti,Till,Weigand]
- alternative suggestions for non-Abelian case [Karozas,King,Leontaris,Meadowcroft]
\rightarrow Leontaris' talk

Non-Abelian discrete symmetries in O7-orientifolds

Heisenberg symmetries in CY orientifolds

- recall the symmetries of the $\mathrm{N}=1$ orientifold moduli space

$$
\begin{array}{lll}
G^{a}=c^{a}-\tau b^{a} & \longrightarrow \text { from orientifold-odd } C_{2}, B_{2} \\
T_{\alpha}=\rho_{\alpha}+\frac{1}{2(\tau-\bar{\tau})} \mathcal{K}_{\alpha a b} G^{a}(G-\bar{G})^{b}-\frac{1}{2} i \mathcal{K}_{\alpha \beta \gamma} v^{\beta} v^{\gamma} & \text { from orientifold-even } \\
\text { sector: Kähler }+C_{4}
\end{array}
$$

$$
K=-2 \log \mathcal{V}
$$

- Kähler metric admits Heisenberg symmetry (continuous, non-compact, non-semi-simple)

$$
\left[t_{(1, a)}, t_{(2, b)}\right]=-\mathcal{K}_{\alpha a b} t^{\alpha}
$$

$$
t_{(1, a)}=\partial_{G^{a}} \quad t_{(2, a)}=-\tau \partial_{G^{a}}-\mathcal{K}_{\alpha a b} G^{b} \partial_{T_{\alpha}} \quad t^{\alpha}=\partial_{T_{\alpha}}
$$

\Rightarrow Can this non-Abelian group be gauged ?
(1) by R-R gauge fields
(2) by seven-brane gauge fields

Non-Abelian gaugings with R - R vectors

- non-Abelian discrete gauge symmetries were suggested to arise in Type IIB orientifolds with torsional cohomology
[Camara,Ibanez,Marchesano]
[Berasaluce-Gonzalez,Camara,Marchesano,Regalado,Uranga]
\Rightarrow generalization should be simple

Non-Abelian gaugings with R - R vectors

- non-Abelian discrete gauge symmetries were suggested to arise in Type IIB orientifolds with torsional cohomology
[Camara,Ibanez,Marchesano]
[Berasaluce-Gonzalez,Camara,Marchesano,Regalado,Uranga]
\Rightarrow generalization should be simple
- details turn out to be tricky:
- non-Abelian structure due to $\operatorname{Tor}\left(H^{2}\left(Y_{3}\right)\right)$ and $\operatorname{Tor}\left(H^{4}\left(Y_{3}\right)\right)$
- orientifold involution: $\operatorname{Tor}\left(H_{-}^{2}\left(Y_{3}\right)\right) \quad d \gamma_{i}=k_{i}^{a} \omega_{a}$

$$
\begin{aligned}
& B_{2}=A^{1 i} \wedge \gamma_{i}+b^{a} \omega_{a} \\
& C_{2}=A^{2 i} \wedge \gamma_{i}+c^{a} \omega_{a} \quad \longrightarrow D G^{a}=d G^{a}+k_{i}^{a}\left(A^{2 i}-\tau A^{1 i}\right), ~
\end{aligned} \quad \longrightarrow \quad{ }^{2}
$$

real + imaginary part gauged with different vectors \rightarrow supersymmetry?
$\Rightarrow \mathrm{N}=1$ orientifold setting more involved then expected supersymmetrization for negative torsion is a challenge

Non-Abelian symmetries in the F-theory effective action

Setting in F-theory

- F-theory avoids this problem in an intriguing way:
- τ is no longer a four-dimensional field
seven-brane positions complex str. moduli gets replaced by a holomorphic function $f_{a b}(z)$:
also contains Wilson line moduli of 7-branes
- symmetry algebra in F-theory

$$
\left[t_{a}, \tilde{t}^{b}\right]=-M_{\alpha a}{ }^{b} t^{\alpha}
$$

$$
\begin{aligned}
\tilde{t} b & =f^{a b} \partial_{N^{a}}-N^{a}\left(i M_{\alpha a}^{b}+\frac{1}{2} f^{b c} M_{\alpha c a}\right) \partial_{T_{\alpha}} \\
t_{a} & =-i \partial_{N^{a}}-\frac{i}{2} N^{b} M_{\alpha a b} \partial_{T_{\alpha}} \quad t^{\alpha}=\partial_{T_{\alpha}}
\end{aligned}
$$

intersection no. on fourfold: $M_{\alpha a b}=\int \omega_{\alpha} \wedge \alpha_{a} \wedge \alpha_{b}, \quad M_{\alpha a}{ }^{b}=\int \omega_{\alpha} \wedge \alpha_{a} \wedge \beta^{b}$

Origins of gaugings in F-theory - Part I

- geometric Stückelberg mechanism for D7-branes:

$$
D G^{a}=d G^{a}-\tilde{k}_{i}^{a} A^{i} \longleftarrow \text { D7-brane gauge field }
$$

gauges only the axion arising from R-R two-form C_{2}

- generalization to mutually non-local (p,q)-seven-branes: $S l(2, \mathbb{Z})$ acts on $\left(B_{2}, C_{2}\right)$: more general gaugings

$$
D N^{a}=d N^{a}+i\left(\tilde{k}_{i}^{a} A^{i}-i f^{a b} k_{i b} A^{i}\right)
$$

(p, q)-generalization of Stückelberg coupling:

$$
S^{(i)}=\int_{\mathbb{M}_{4} \times S_{i}} F^{i} \wedge\left(p C_{6}+q B_{6}\right)
$$

\Rightarrow precisely generalization that is needed to find supersymmetric non-Abelian structure \Rightarrow leave weak string coupling configurations

Origins of gaugings in F-theory - Part II

- possible non-Abelian completion due to two effects
- (1) fluxes on seven-branes

$$
\begin{aligned}
& D T_{\alpha}=d T_{\alpha}-\Theta_{\alpha i} A^{i} \quad \Theta_{\alpha i}=\int_{S_{i}} \mathcal{F}^{i} \wedge \omega_{\alpha} \\
& \Rightarrow \text { purely open-string (seven-brane) setup }
\end{aligned}
$$

- (2) non-trivial torsion in base of F-theory $\operatorname{Tor}\left(H^{4}\left(B_{3}, \mathbb{Z}\right)\right)$

$$
D T_{\alpha}=d T_{\alpha}-k_{\alpha \kappa} A^{\kappa} \quad d \omega_{\alpha}=k_{\alpha \kappa} \beta^{\kappa}
$$

- F-theory settings with mutually non-local (p,q)-seven-branes appear to allow for non-Abelian discrete gauge symmetries
\Rightarrow Checks ?!

Gauge coupling function and kinetic mixing

- gauging a Heisenberg group has profound implications:
- Heisenberg group has no positive definite Killing form
- kinetic term for the vectors has to involve the gauged scalars:

$$
\mathcal{L}=-\frac{1}{2} f_{A B}^{1} F^{A} \wedge * F^{B}-\frac{1}{2} f_{A B}^{2} F^{A} \wedge F^{B}-g_{a b} D \phi^{a} \wedge * D \phi^{b}
$$

- in setting (2) with gaugings arising partly from seven-branes and partly from R-R forms the Heisenberg group dictates the form of the kinetic mixing between brane and bulk gauge fields

Check: result agrees with expectations at weak coupling for Wilson lines

Computing the F-theory effective action via M-theory

Computing the F-theory effective actions

- No twelve-dimensional low-enegry effective action for F-theory

Analyze and define F-theory via M-theory

(1) A-cycle: if small than M-theory becomes Type IIA
(2) B-cycle: T-duality \Rightarrow Type IIA becomes Type IIB
(3) grow extra dimension: send T^{2} - volume T -dual $\Rightarrow \mathrm{B}$-cycle becomes large
\Rightarrow M-theory to F-theory limit connects 4 d and 3d effective theories

- key insight of recent research:
, importance of: circle Kaluza-Klein modes \leftrightarrow M2-branes on fiber
, as of now non-Abelian gauge symmetries in direct lift from 3d to 4d

Reduction of M-theory with torsion

- dimensional reduction of eleven-dimensional supergravity starting with two-derivative action [Cremmer,Julia,Scherk]
- background is taken to be a direct product:

$$
\begin{aligned}
d \hat{s}^{2} & =g_{\mu \nu} d x^{\mu} d x^{\nu}+2\left(g_{m \bar{n}}^{0}+i \delta v^{\Sigma} \omega_{\Sigma m \bar{n}}\right) d y^{m} d y^{\bar{n}} \\
\hat{C} & =A^{\Sigma} \wedge \omega_{\Sigma}+\tilde{\xi}^{I} \alpha_{I}+\xi_{I} \beta^{I} . \quad \rightarrow \text { talk of T. Pugh (warping + higher-derivatives) }
\end{aligned}
$$

- non-closed forms:

$$
d \omega_{\Sigma}=\tilde{k}_{\Sigma}^{I} \alpha_{I}+k_{\Sigma I} \beta^{I} \text { includes: }
$$

can be interpreted as cohomological
(1) M-theory dual of geom. massive $\mathrm{U}(1) \mathrm{s}$
(2) non-trivial torsion in the base
\Rightarrow should find the non-Abelian structure suggest by F-theory configuration

Slide of disappointment

- performing dimensional reduction:
- covariant derivatives found

$$
\begin{aligned}
& \hat{G}=d A^{\Sigma} \wedge \omega_{\Sigma}+D \tilde{\xi}^{I} \wedge \alpha_{I}+D \xi_{I} \wedge \beta^{I}+\tilde{\xi}^{I} d \alpha_{I}+\xi_{I} d \beta^{I} \\
& D \tilde{\xi}^{I}=d \tilde{\xi}^{I}-A^{\Sigma} \tilde{k}_{\Sigma}^{I} \quad D \xi_{I}=d \tilde{\xi}^{I}-A^{\Sigma} k_{\Sigma I}
\end{aligned}
$$

- checking the gauged symmetry: purely Abelian gauging

Slide of hope

- performing dimensional reduction:
- covariant derivatives found

$$
\begin{aligned}
& \hat{G}=d A^{\Sigma} \wedge \omega_{\Sigma}+D \tilde{\xi}^{I} \wedge \alpha_{I}+D \xi_{I} \wedge \beta^{I}+\tilde{\xi}^{I} d \alpha_{I}+\xi_{I} d \beta^{I} \\
& D \tilde{\xi}^{I}=d \tilde{\xi}^{I}-A^{\Sigma} \tilde{k}_{\Sigma}^{I} \quad D \xi_{I}=d \tilde{\xi}^{I}-A^{\Sigma} k_{\Sigma I}
\end{aligned}
$$

- checking the gauged symmetry: purely Abelian gauging
- However: We are not yet in the correct duality frame to perform the F-theory limit !
- split the 3d fields and dualize:
example: $A^{\Sigma} \longrightarrow A^{i}, A^{\alpha}$
has to be dualize into scalar \Rightarrow axion in 4 d complex field

Discovering the Non-Abelian structure

- Dualization of A^{α} into axion ρ_{α}, and $\tilde{\xi}_{\kappa}$ into $\mathrm{R}-\mathrm{R}$ vector A^{κ}

$$
\begin{aligned}
D \rho_{\alpha} & =d \rho_{\alpha}-k_{\alpha \kappa} A^{\kappa}+\frac{1}{2} M_{\alpha a}{ }^{b}\left(k_{i b} a^{a}-\tilde{k}_{i}^{a} b_{b}\right) A^{i} \\
F^{\kappa} & =d A^{\kappa}+\frac{1}{2}\left(\tilde{k}_{j}^{a} M_{i a}{ }^{\kappa}+k_{j a} M_{i}^{a \kappa}\right) A^{i} \wedge A^{j}
\end{aligned}
$$

, dual frame features non-Abelian gauge symmetry as suggested

$$
\tilde{k}_{j}^{a} M_{i a}{ }^{\kappa}+k_{j a} M_{i}{ }^{a \kappa}
$$

geometrically massive seven-brane gauge fields
\rightarrow non-closed forms / torsion
control kinetic mixing of R-R and seven-brane $\mathrm{U}(1) \mathrm{s}$
\rightarrow necessary for gauged Heisenberg group

$$
M_{\Sigma I}^{J}=\int_{\hat{Y}_{4}} \omega_{\Sigma} \wedge \alpha_{I} \wedge \beta^{J}
$$

Conclusions

- Discrete Abelian gauge symmetries in F-theory
- much recent progress: analyzing F-theory geometries with multi-sections
- Discrete non-Abelian gauge symmetries at weak string coupling
- pure R-R gaugings from cohomological torsion in CY orientifolds \Rightarrow in apparent conflict with supersymmetry
\Rightarrow precise reason is mysterious (torsion in orientifold-odd cohomology?)
- Discrete non-Abelian gauge symmetries in F-theory
- mutually non-local seven-branes required \Rightarrow genuinely F-theoretic gauging of a generalization of a Heisenberg group
\Rightarrow non-trivial insights about the gauge-coupling function
\Rightarrow generally true in string theory? insights about kinetic mixing?
purely open string settings with fluxes on seven-branes
\Rightarrow dual description via Higgsing?
\Rightarrow selection rules on Yukawa couplings
- discovered Abelian to non-Abelian duality (any dimension) [TG,Regalado,Pugh]

