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  Some initial struggle 

➡ in the last years we systematically approached:

➡ challenge:    

➡ important steps:
‣ find back-reacted solution with higher-derivative terms

‣ derive effective action by dimensional reduction
‣ determine Kähler potential and Kähler coordinates

2

Can we derive the N=1 effective action of Type IIB 
flux compactification with warping?

[Becker,Becker] [TG,Pugh,Weissenbacher]

1
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�(Y
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)

24

Part I:     arXiv:1412.5073

Part II:    arXiv:1506.nnnn

need to include 
higher-derivative 
terms in the action
→ now known

with Savelli, Pugh, Weissenbacher
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➡ I like to discuss non-Abelian discrete gauge symmetries in F-theory 
compactifications on Calabi-Yau fourfolds

➡ Stepwise introduce:

  (1)  Geometrically massive U(1)s and Abelian gauge symmetries 

  (2)  Discrete non-Abelian gauge symmetries in O7-orientifolds

  (3)  Candidate gaugings for discrete non-Abelian gauge 
         symmetries in F-theory  ⇒  mutually non-local seven-branes

  (4)  Derivation via M-theory compactifiactions on manifolds 
         with cohomological torsion

3

  Goals of this talk

Wednesday 10 June 15



Geometrically massive U(1)s and
Abelian discrete symmetries 

4
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  Geometrically massive U(1)s 
➡ geometrically massive U(1)s arise from D7 - D7’ system with Stückelberg 

coupling:

➡ geometrically massive U(1)s in F-theory:
‣ U(1)s arise form M-theory three-form:    

‣ non-closed forms induce non-trivial gauging:

‣ interpretation as non-Kähler geometry or CY fourfolds with 
cohomological torsion

5

Dca = dca +maAU(1)

gauging of dual axion:
SSt =

Z

D7�
C6 ^ FU(1)

[Jockers,Louis]

[TG,Weigand] [TG,Kerstan,Palti,Weigand] 

see also [A. Braun,Collinucci,Valandro] 

C2 = ca!a

CM = ca↵a +AU(1) ^ !U(1) + . . .

d!U(1) = ma↵a Dca = dca +maAU(1)
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  Abelian discrete symmetries
➡ geometrically massive U(1)s can leave Abelian discrete gauge symmetry

➡ so far, main examples:  geometries with multi-section  (no section)
‣ examples with       ,      ,        symmetry studied in 

‣ physical interpretation:   mixing of KK-vector with massive U(1)s 
                                            importance of the KK-modes 

‣ selection rules on Yukawa couplings in F-theory

‣ connection with cohomological torsion

➡ alternative suggestions for non-Abelian case 
6

[Anderson,García-Etxebarria,TG,Keitel]

[Braun,Morrison] [Morrison,Taylor] [Anderson,García-Etxebarria,TG,Keitel] [Klevers etal.]
[García-Etxebarria,TG,Keitel] [Mayrhofer,Palti,Till,Weigand] [Braun,TG,Keitel] [Cvetic,Donagi,Klevers,etal.]

Z2 Z3

 [García-Etxebarria,TG,Keitel] [Mayrhofer,Palti,Till,Weigand]

 [García-Etxebarria,TG,Keitel] [Mayrhofer,Palti,Till,Weigand] [Klevers etal.]

[Mayrhofer,Palti,Till,Weigand]

Z4

→ Palti’s talk, Kapfer’s talk

[Karozas,King,Leontaris,Meadowcroft]
→ Leontaris’ talk
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Non-Abelian discrete symmetries 
in O7-orientifolds 

7
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  Heisenberg symmetries in CY orientifolds
➡ recall the symmetries of the N=1 orientifold moduli space

➡ Kähler metric admits Heisenberg symmetry 
(continuous, non-compact, non-semi-simple)

8

Clearly, there will be additional moduli corresponding to the complex structure de-

formations and brane fields. These will suppressed in the following, since our current

focus is on the identification of candidate non-Abelian symmetries in this sector of the

theory. As we will see later, similar structures appear in the seven-brane sector.

One now readily checks that this Kähler metric has the following 2h(1,1)
� + h

(1,1)
+

holomorphic isometries

�Ga = �a
1

� ⌧�a
2

, �T↵ = �↵ �K↵abG
b�a

2

. (3.4)

where �a
1

,�a
2

,�↵ are the real scalar gauge parameters. Using the transformations (3.4)

one determines the holomorphic Killing vectors to be

t
(1,a) = @Ga , t

(2,a) = �⌧@Ga �K↵abG
b@T↵ , t↵ = @T↵ . (3.5)

Upon exponentiation these vectors yield the Lie group of isometries of M, which we

denote by Iso(M). The explicit algebra reads,

[t
(1,a), t(2,b)] = �K↵abt

↵ , (3.6)

with all other commutators vanishing. This algebra is a generalisation of the Heisenberg

algebra and will be our prime example for the non-Abelian structures appearing in our

string theory set-ups. Comparing with (2.5) this implies that the only non-vanishing

non-Abelian structure constants are f
(1,a)(2,b)

↵ = �K↵ab. Finally, the fact that ca, ba

and ⇢↵ are periodic with period 2⇡, imposes the following identifications in the scalar

manifold

ca ' ca + 2⇡ , and ⇢↵ ' ⇢↵ + ⇡K↵abb
b ,

ba ' ba + 2⇡ , and ⇢↵ ' ⇢↵ � ⇡K↵abc
b ,

⇢↵ ' ⇢↵ + 2⇡ . (3.7)

These identifications render the field-space spanned by ca, ba and ⇢↵ to be compact.

Let us now address the question of gauging the non-Abelian symmetries (3.6). This

requires the introduction of gauge fields that arise from the bulk sector. In section 4

we will develop this further by including vectors that arise from the brane sector.

3.2 Non-Abelian gaugings from Type IIB orientifolds with torsion

In this section we briefly review the construction in [36] which shows that the reduction

of Type IIB on manifolds Y
3

with torsion homology may lead to an e↵ective theory

where the non-Abelian isometries analysed in the last section are gauged.

– 9 –

be non-gauge invariant and fixed to induce tree-level diagrams that cancel the one-loop

anomalous diagrams of the chiral fermions. In consistent string theory compactifica-

tions this mechanism is automatically implemented in the situations that require such

a cancellation.

3 Non-Abelian discrete symmetries in Type IIB orientifolds

In this section we study the possibility of obtaining non-Abelian discrete symmetries

by gauging R-R and NS-NS scalars in Type IIB orientifolds with O7-planes. We first

examine the symmetries of the orientifold moduli space in subsection 3.1. The Heisen-

berg isometry group that appears is a special version of the symmetry groups later

encountered in the complete F-theory setting. We then turn to the discussion of the

gauging of this non-Abelian group in subsection 3.2 by performing a reduction with

non-harmonic forms. It turns out that there is a tension between performing a super-

symmetric orientifold quotient and the gauging of a non-Abelian group.

3.1 Heisenberg isometries in Type IIB orientifold compactifications

To begin with let us consider Calabi-Yau orientifold compactifications of Type IIB with

O7-planes. The e↵ective action for the bulk fields in such compactifications contains

the following terms [43]

L = �G↵�dv
↵ ^ ⇤dv� � 1

4V2

dV ^ ⇤dV +
3iv↵

(⌧ � ⌧̄)
K↵ab(dc

a � ⌧dba) ^ ⇤(dcb � ⌧̄dbb)

� G↵�

16V2

⇣
d⇢↵ +

1

2
K↵ab(b

adcb � cadbb)
⌘
^ ⇤

⇣
d⇢� +

1

2
K�cd(b

cdcd � ccdbd)
⌘
. (3.1)

In this expression ⌧ = C
0

+ ie�� is the axiodilaton, ba, ca, a = 1, . . . h1,1
� arise from the

reduction of B
2

and C
2

on harmonic orientifold-odd two-forms, and ⇢↵, ↵ = 1, . . . , h1,1
+

comes from the reduction of C
4

on orientifold-even harmonic four-forms. The real

scalars v↵ are the deformations of the Kähler form of the underlying Calabi-Yau geom-

etry. The intersection numbers of the Calabi-Yau manifold are given by

K↵�� =

Z

Y3

!↵ ^ !� ^ !� , K↵ab =

Z

Y3

!↵ ^ !a ^ !b . (3.2)

The first of these is related to the definition of the volume V = 1
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a(G� Ḡ)b � 1

2
iK↵��v

�v� . (3.3)

– 8 –

from orientifold-even
sector: Kähler + C4

be non-gauge invariant and fixed to induce tree-level diagrams that cancel the one-loop

anomalous diagrams of the chiral fermions. In consistent string theory compactifica-

tions this mechanism is automatically implemented in the situations that require such

a cancellation.

3 Non-Abelian discrete symmetries in Type IIB orientifolds

In this section we study the possibility of obtaining non-Abelian discrete symmetries

by gauging R-R and NS-NS scalars in Type IIB orientifolds with O7-planes. We first

examine the symmetries of the orientifold moduli space in subsection 3.1. The Heisen-

berg isometry group that appears is a special version of the symmetry groups later

encountered in the complete F-theory setting. We then turn to the discussion of the

gauging of this non-Abelian group in subsection 3.2 by performing a reduction with

non-harmonic forms. It turns out that there is a tension between performing a super-

symmetric orientifold quotient and the gauging of a non-Abelian group.

3.1 Heisenberg isometries in Type IIB orientifold compactifications

To begin with let us consider Calabi-Yau orientifold compactifications of Type IIB with

O7-planes. The e↵ective action for the bulk fields in such compactifications contains

the following terms [43]

L = �G↵�dv
↵ ^ ⇤dv� � 1

4V2

dV ^ ⇤dV +
3iv↵

(⌧ � ⌧̄)
K↵ab(dc

a � ⌧dba) ^ ⇤(dcb � ⌧̄dbb)

� G↵�

16V2

⇣
d⇢↵ +

1

2
K↵ab(b

adcb � cadbb)
⌘
^ ⇤

⇣
d⇢� +

1

2
K�cd(b

cdcd � ccdbd)
⌘
. (3.1)

In this expression ⌧ = C
0

+ ie�� is the axiodilaton, ba, ca, a = 1, . . . h1,1
� arise from the

reduction of B
2

and C
2

on harmonic orientifold-odd two-forms, and ⇢↵, ↵ = 1, . . . , h1,1
+

comes from the reduction of C
4

on orientifold-even harmonic four-forms. The real

scalars v↵ are the deformations of the Kähler form of the underlying Calabi-Yau geom-

etry. The intersection numbers of the Calabi-Yau manifold are given by

K↵�� =

Z

Y3

!↵ ^ !� ^ !� , K↵ab =

Z

Y3

!↵ ^ !a ^ !b . (3.2)

The first of these is related to the definition of the volume V = 1

6

K↵��v
↵v�v� and the

metric G↵�. The Lagrangian defines a Kähler metric when written in the form (2.11)

with a Kähler potential K = �2 logV and complex coordinates

Ga = ca � ⌧ba , T↵ = ⇢↵ +
1

2(⌧ � ⌧̄)
K↵abG

a(G� Ḡ)b � 1
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Clearly, there will be additional moduli corresponding to the complex structure de-

formations and brane fields. These will suppressed in the following, since our current

focus is on the identification of candidate non-Abelian symmetries in this sector of the

theory. As we will see later, similar structures appear in the seven-brane sector.

One now readily checks that this Kähler metric has the following 2h(1,1)
� + h

(1,1)
+

holomorphic isometries

�Ga = �a
1

� ⌧�a
2

, �T↵ = �↵ �K↵abG
b�a

2

. (3.4)

where �a
1

,�a
2

,�↵ are the real scalar gauge parameters. Using the transformations (3.4)

one determines the holomorphic Killing vectors to be

t
(1,a) = @Ga , t

(2,a) = �⌧@Ga �K↵abG
b@T↵ , t↵ = @T↵ . (3.5)

Upon exponentiation these vectors yield the Lie group of isometries of M, which we

denote by Iso(M). The explicit algebra reads,

[t
(1,a), t(2,b)] = �K↵abt

↵ , (3.6)

with all other commutators vanishing. This algebra is a generalisation of the Heisenberg

algebra and will be our prime example for the non-Abelian structures appearing in our

string theory set-ups. Comparing with (2.5) this implies that the only non-vanishing

non-Abelian structure constants are f
(1,a)(2,b)

↵ = �K↵ab. Finally, the fact that ca, ba

and ⇢↵ are periodic with period 2⇡, imposes the following identifications in the scalar

manifold

ca ' ca + 2⇡ , and ⇢↵ ' ⇢↵ + ⇡K↵abb
b ,

ba ' ba + 2⇡ , and ⇢↵ ' ⇢↵ � ⇡K↵abc
b ,

⇢↵ ' ⇢↵ + 2⇡ . (3.7)

These identifications render the field-space spanned by ca, ba and ⇢↵ to be compact.

Let us now address the question of gauging the non-Abelian symmetries (3.6). This

requires the introduction of gauge fields that arise from the bulk sector. In section 4

we will develop this further by including vectors that arise from the brane sector.

3.2 Non-Abelian gaugings from Type IIB orientifolds with torsion

In this section we briefly review the construction in [36] which shows that the reduction

of Type IIB on manifolds Y
3

with torsion homology may lead to an e↵ective theory

where the non-Abelian isometries analysed in the last section are gauged.
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⇒  Can this non-Abelian group be gauged ?
      

(1)  by R-R gauge fields
(2)  by seven-brane gauge fields 
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  Non-Abelian gaugings with R-R vectors
➡ non-Abelian discrete gauge symmetries were suggested to arise in Type IIB 

orientifolds with torsional cohomology

9

⇒  generalization should be simple ✓

[Camara,Ibanez,Marchesano]
[Berasaluce-Gonzalez,Camara,Marchesano,Regalado,Uranga]

Tor(H2(Y3)) Tor(H4(Y3))

Tor(H2
�(Y3))

⇒  N=1 orientifold setting more involved then expected
      supersymmetrization for negative torsion is a challenge 

DGa = dGa + kai (A
2 i � ⌧A1 i)

?!

where the isomorphisms follow from the universal coe�cient theorem. Then, in analogy

with equation (3.9) we have that3

d�i = ka
i !a , d!↵ = k↵�

 , d↵ = k↵!̃
↵ ,

d!a = 0 , d!̃↵ = 0 , d� = 0 (3.12)

which are compatible with the conditions
Z

Y3

↵ ^ �� = �� ,

Z

Y3

!↵ ^ !̃� = ��↵. (3.13)

We note that in the pure torsion case the ka
i and k↵ would be invertible. However,

by not imposing conditions on the rank we allow harmonic and torsion forms to be

considered simultaneously in the following analysis. Also, we assume that the parity

under the orientifold action of ↵, �
 and !↵, !̃

↵ is even while the parity of �i and !a

is odd.

In addition to this we will also demand that the basis of forms also satisfies

!a ^ �i = Mia
↵ , !a ^ !b = K↵ab!̃

↵ , �i ^ �j = Nij
↵!↵ . (3.14)

In the first of these identities we have demanded that there is no term proportional

to �. This is imposed in order to prevent electric and magnetic degrees of freedom

from being simultaneously gauged. The quantities Mia
 and Nij

↵ appearing in these

identities define the additional intersection numbers

Mia
 =

Z

Y3

�i ^ !a ^ � , Nij
↵ =

Z

Y3

!̃↵ ^ �i ^ �j . (3.15)

Compatibility of these conditions then implies that

ka
i Mja

 = ka
jMia

 , k↵Mia
 = kb

iK↵ab , k↵Nij
↵ = 0 . (3.16)

In the second identity in (3.14), we have allowed for a non-trivial product between the

torsion two-forms which, as we will see, is coupling responsible for a non-Abelian gauge

symmetry.

Given this setup, the ansatz for the reduction is

C
4

= V  ^ ↵ � U ^ � + ⇢↵!̃
↵ + C↵

2

^ !↵ , (3.17)

B
2

= A1 i ^ �i + ba!a , C
2

= A2 i ^ �i + ca!a .

3We did not include the torsion five-forms since we will not need them here.
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➡ details turn out to be tricky:
‣ non-Abelian structure due to                           and 
‣ orientifold involution:    

real + imaginary part gauged with different vectors  → supersymmetry?
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  Setting in F-theory
➡ F-theory avoids this problem in an intriguing way:

‣     is no longer a four-dimensional field
    gets replaced by a holomorphic function              :

‣ symmetry algebra in F-theory

intersection no. on fourfold:
11

⌧
fab(z)

seven-brane positions
complex str. moduli

Ga
also contains Wilson
line moduli of 7-branes

the Na as well as complex coordinates T↵ containing the Kähler structure deformation

defined as

T↵ = ⇢↵ � i

2
d↵abN

a(N + N̄)b � i

2

Z

Db
↵

J
b

^ J
b

(4.10)

where J
b

is the Kähler form in the base. The Kähler potential is given by

K = �log
⇣Z

Y4

⌦ ^ ⌦̄
⌘
� 2logV

b

, (4.11)

where it is crucial to express the base volume V
b

= 1

6

R
B3

J
b

^ J
b

^ J
b

in terms of the

complex coordinates Na, T↵ given in (4.10), and the complex structure deformations.

Let us now turn to the analysis of the isometries of the metric (4.6). The metric

has the following holomorphic isometries

�Na = � i(�a + ifab�b) ,

�T↵ = �↵ � i

2
N bM↵ab�

a �Na
⇣
iM↵a

b +
1

2
f bcM↵ca

⌘
�b , (4.12)

with �a,�a,�↵ real. The corresponding Killing vectors read

t̃b = fab@Na �Na

✓
iM↵a

b +
1

2
f bcM↵ca

◆
@T↵ , (4.13)

ta = �i@Na � i

2
N bM↵ab@T↵ , t↵ = @T↵ . (4.14)

It is then straightforward to check that the only non-vanishing commutator is

[ta, t̃
b] = �M↵a

b t↵ , (4.15)

which again defines an algebra that is a generalisation of the Heisenberg algebra. Notice

that M↵ab does not appear in the structure constants.

The expression (4.15) is the analog of the weak string coupling algebra (3.6). In

fact, the setup reduces to the one of subsection 3.1 in a special limit. In order to see

that one interprets all fields Na to arise from the bulk as the fields Ga used in subsection

3.1. Setting

fab = i⌧�ab , Na = �iGa , (4.16)

one recovers the weak coupling expressions for all couplings. However, it is crucial

to point out that away from weak string coupling fab will in general not be diagonal.

The non-diagonal generalisation will be crucial when considering the gauging of the

holomorphic isometries as we discuss in the next subsection. In contrast to the weak

– 16 –

H2,1(Y
4

) one can in fact argue that the  a admit an expansion

 a =
1

2
Refab(�

b � if̄ bc↵c) ,  a �  ̄a = �i↵a , (4.3)

where (↵a, �
a) are a real three-form basis for the elements of H3(Y

4

) which are not in

H2,1(B
3

) and fab is a holomorphic function of the complex structure moduli. The  a

are not anti-holomorphic in the complex structure moduli due to the appearance of

Refab, the inverse of Refab. Using the real basis (↵a, �
a) we can also expand

C
3

= aa↵a � ba�
a + . . . (4.4)

where (aa, ba) are real scalars. Comparing (4.2) with (4.4) and using (4.3), we see that

Na = �i(aa + ifabbb) . (4.5)

In a next step we recall the e↵ective action for the complex scalars Na coupled to

v↵, ⇢↵ and study its symmetries. The derivation of this action proceeds via M-theory

as carried out in [44]. This yields the generalisation of the weak string coupling action

(3.1) to F-theory as

L = �G↵�dv
↵ ^ ⇤dv� � 1

4V2

dV ^ ⇤dV +
3v↵

K d↵ab dN
a ^ ⇤dN̄ b (4.6)

� G↵�

16V2

�
d⇢↵ + i

2

(d↵acN̄
cdNa � d↵caN

cdN̄a)
�
^⇤

�
d⇢� +

i
2

(d�bdN̄
ddN b � d�dbN

ddN̄ b)
�
.

with

d↵ab = i

Z

Y4

!↵ ^  a ^  ̄b . (4.7)

Here !↵ is a two-form dual to vertical divisors D↵ = ⇡�1(Db

↵), where Db

↵ are divisors

in the base B
3

. Thus, d̄↵ab = d↵ba. In terms of the real basis we have that

d↵ab =
1

2
Refac

�
M↵b

c + if̄ cdM↵db

�
, (4.8)

where we defined

M↵ab =

Z
!↵ ^ ↵a ^ ↵b, M↵a

b =

Z
!↵ ^ ↵a ^ �b . (4.9)

The action (4.6) can be expressed in terms of a Kähler potential and complex

coordinates as in the weak string coupling setting. The correct complex coordinates are

– 15 –

Na = �i(aa + ifabbb)

t̃b = fab@Na �Na(iM↵a
b +

1

2
f bcM↵ca)@T↵

ta = �i@Na � i

2
N bM↵ab@T↵ t↵ = @T↵
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  Origins of gaugings in F-theory  - Part I
➡ geometric Stückelberg mechanism for D7-branes:

gauges only the axion arising from R-R two-form  

➡ generalization to mutually non-local (p,q)-seven-branes:
             acts on                :  more general gaugings 

(p,q)-generalization of 
Stückelberg coupling:

⇒  precisely generalization that is needed to find supersymmetric 
      non-Abelian structure ⇒  leave weak string coupling configurations
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axion ca dual to the two-form c̃
(2)

a as

DGa = dGa � k̃a
i A

i , (4.18)

One can show that, generically, this leads to a spontaneous breaking of the symmetry

(see e.g. [30]). The surviving unbroken symmetry my contain a discrete part which is

always Abelian. The details of this discrete part are discussed in [39, 45].

Secondly, there is a possibility of switching on fluxes F i on the D7-branes. The

gauging induced by this generalisation is of the form

DT↵ = dT↵ �⇥↵iA
i , ⇥↵i =

Z

Si

F i ^ !↵ . (4.19)

with DGa being unmodified. We note that these considerations generalize if we include

several D7-branes. Taking into account the appropriate Chern-Simons couplings, we

may find a discrete Abelian gauge symmetry [39, 45].

To gain a intuition how this D7-brane setting generalises, let us naively consider a

configuration that contains O7-planes and (0,1)-seven-branes. In this case, the analo-

gous coupling to (4.17) is

S
(0,1) �

Z

R1,3⇥S�
i

B
6

^ F i = �abkbi

Z

R1,3

b̃(2)a ^ F i, (4.20)

with B
6

dual to the NS-NS two-form, B
6

= b̃
(2)

a ^ !̃a. One would therefore expect that

in this case the ba scalar, dual to b̃
(2)

a , receives a gauging of the form

DGa = dGa � ⌧�abkaiA
i . (4.21)

Of course, this setting cannot be fully trusted, since we have included a (0, 1)-seven-

brane in a weak coupling scenario. We should instead return to the F-theory setting

outlined in subsection 4.1 as we will do below.

Let us finally turn to the discussion of gaugings due to non-closed two-forms in the

base B
3

. This will lead to gaugings involving the R-R gauge-fields just as in subsection

3.2. As before this requires non-closed forms to be included among the !↵ in the base

B
3

such that

d!↵ = k↵�
 , (4.22)

where � are three-forms in B
3

. Carrying out the expansion of C
4

in a process similar

so that shown in subsection 3.2 one finds that (4.22) induces the gauging

DT↵ = dT↵ � k↵A
 , (4.23)
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C2

D7-brane gauge field

seven-brane 
gauge field

(B2, C2)Sl(2,Z)

S(i) =

Z

M4⇥Si

F i ^ (pC6 + q B6)

DNa = dNa + i(k̃ai A
i � ifabkibA

i)

Wednesday 10 June 15



  Origins of gaugings in F-theory  - Part II
➡ possible non-Abelian completion due to two effects

‣ (1)  fluxes on seven-branes

       ⇒ purely open-string (seven-brane) setup 

‣ (2) non-trivial torsion in base of F-theory          
     

➡ F-theory settings with mutually non-local (p,q)-seven-branes appear to
allow for non-Abelian discrete gauge symmetries 

13

Tor(H4
+(Y3,Z))

Tor(H4(B3,Z)) corresp. to

in orientifold
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Of course, this setting cannot be fully trusted, since we have included a (0, 1)-seven-

brane in a weak coupling scenario. We should instead return to the F-theory setting

outlined in subsection 4.1 as we will do below.

Let us finally turn to the discussion of gaugings due to non-closed two-forms in the

base B
3

. This will lead to gaugings involving the R-R gauge-fields just as in subsection

3.2. As before this requires non-closed forms to be included among the !↵ in the base

B
3

such that

d!↵ = k↵�
 , (4.22)

where � are three-forms in B
3

. Carrying out the expansion of C
4

in a process similar

so that shown in subsection 3.2 one finds that (4.22) induces the gauging

DT↵ = dT↵ � k↵A
 , (4.23)
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R-R gauge field from C4

⇒  Checks ?!
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  Gauge coupling function and kinetic mixing
➡ gauging a Heisenberg group has profound implications:

‣ Heisenberg group has no positive definite Killing form
‣ kinetic term for the vectors has to involve the gauged scalars:

‣ in setting (2) with gaugings arising partly from seven-branes and partly 
from R-R forms the Heisenberg group dictates the form of the kinetic 
mixing between brane and bulk gauge fields

14

Next we discuss the gauging of non-Abelian isometries with the appropriate charges.

Consider a sigma model with a d-dimensional manifold M endowed with a Riemannian

metric g and coordinates �a,

L
0

= �gabd�
a ^ ⇤d�b, (2.4)

and let t
ˆA be generators of the group of isometries Iso(M) which satisfy

[t
ˆA, t ˆB] = f

ˆA ˆB
ˆCt

ˆC , (2.5)

where f
ˆA ˆB

ˆC are the structure constants. A particular gauging is specified by picking a

set of Killing vectors

XA = k
ˆA
At ˆA (2.6)

where k
ˆA
A are constants and the vectors generate the gauge algebra

[XA, XB] = fAB
CXC . (2.7)

The gauging is implemented by considering the following Lagrangian

L = �1

2
f 1

ABF
A ^ ⇤FB � 1

2
f 2

ABF
A ^ FB � gabD�a ^ ⇤D�b , (2.8)

where we included gauge bosons AB with field strengths FB = dAB + fAC
BAA ^ AC .

The functions f 1

AB and f 2

AB are in general dependent on the scalars �a. f 1

AB determines

the gauge couplings and has to be positive definite. We stress that f i
AB, i = 1, 2 in

general have to transform non-trivially under the gauge group in order to ensure gauge

invariance of the Lagrangian, i.e. one has to have

�f i
AB = �C(fCA

Df i
BD + fCB

Df i
AD) , (2.9)

where �D are the gauge parameters. In particular, for groups that are noncompact one

cannot use the Killing form and therefore f 1

AB and f 2

AB have to be non-trivial functions

of the fields �a. Furthermore, we defined the covariant derivatives

D�a = d�a � ABXa
B. (2.10)

Now we may proceed formally in analogy to the Abelian case. The space of inequivalent

vacua of the gauged theory (2.8) is AB = 0 and constant �a 2 M. Then, under

a constant gauge transformation along �AXA we find that the vacuum �a
0

goes to

Q(�a
0

;�A) which, if di↵erent from �a
0

, signals a spontaneous breaking of the generator

�AXA. Alternatively, the set of ei�
AXA that satisfy Q(�a

0

;�A) = �a
0

corresponds to

a preserved symmetry. Clearly, this construction may lead to a case in which the

preserved symmetry is a non-Abelian discrete subgroup of Iso(M). In the following

section we consider a particular example.
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gauge coupling function
should depend on
in a very specific way to 
ensure gauge invariance 

Na

Check:  result agrees with expectations at weak coupling for Wilson lines
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Computing the F-theory effective action 
via M-theory
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  Computing the F-theory effective actions 

➡ No twelve-dimensional low-enegry effective action for F-theory

Analyze and define F-theory via M-theory   

(1) A-cycle:   if small than M-theory becomes Type IIA
(2) B-cycle:  T-duality  ⇒  Type IIA becomes Type IIB
(3) grow extra dimension:   send       - volume T-dual ⇒ B-cycle becomes large 

⇒   M-theory to F-theory limit connects 4d and 3d effective theories

➡ key insight of recent research: 
‣ importance of:  circle Kaluza-Klein modes  ↔︎  M2-branes on fiber
‣ as of now non-Abelian gauge symmetries in direct lift from 3d to 4d

16

T 2

  F-theory via M-theory

➡ F-theory viewed as auxiliary `12 dim.’ theory  (torus volume unphysical)  

➡ F-theory effective actions has to be studied via M-theory 
Consider M-theory on space      

(1) A-cycle:   if small than M-theory becomes Type IIA
(2) B-cycle:  T-duality  ⇒  Type IIA becomes Type IIB,     is indeed dilaton-axion
(3) grow extra dimension:   send                  than T-dual  B-cycle becomes large 

➡ can be generalized for singular       fibrations:  e.g.  Taub-NUT ➝ D6 ➝ D7 

9

T 2 ⇥M9

10

Computing the 4d N = 1 e�ective action I

• need a framework to work with varying � : from M-theory to F-theory (on one slide)

• Basic idea: consider M-theory one T 2 with metric

ds2
11 =

v

Im�

�
(dx + Re �dy)2 + (Im�)2dy2

⇥
+ ds2

9

� is the complex structure modulus of the T 2, v volume of T 2

�������

�������

a) consider A cycle: if small ⇥ M-theory becomes Type IIA strings

b) consider B cycle: T-duality ⇥ Type IIA becomes Type IIB strings

c) grow an extra dimension: send v ⇥ 0 since then T-dual B cycle becomes large

• Claim: the F-theory lift perform steps fiberwise for Y4 is T 2 fibration over B3

M-theory on Y4 (three-dim.) with v ⇥ 0 ⇥ F-theory on Y4 (four-dim.)

v ! 0

F-theory limit:

⌧

T 2

Sunday, March 17, 13
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  Reduction of M-theory with torsion
➡ dimensional reduction of eleven-dimensional supergravity starting with 

two-derivative action 

➡ background is taken to be a direct product:

➡ non-closed forms:

17

eigenstates of the Laplace-Beltrami operator. They are related by the non-closure of

!
⌃

given by

d!
⌃

= k̃I
⌃

↵I + k
⌃I�

I . (5.2)

This expression is a generalisation of (4.22) in which !↵ and � are elements of the

base B
3

of Ŷ
4

. It also contains the case that !
⌃

yields a gauge field of a seven-brane

and the non-closure yields the gaugings induced from the geometric Stückelberg term

(4.17) and (4.20). For D7-branes this has already been suggested in [6, 31, 33].

Next we introduce the modes of the e↵ective theory that arise from expanding the

eleven-dimensional metric and the M-theory three-form into !
⌃

and (↵I , �I). We will

therefore make an ansatz for the reduction where

dŝ2 = gµ⌫dx
µdx⌫ + 2(g0mn̄ + i�v⌃!

⌃mn̄)dy
mdyn̄ , (5.3)

Ĉ = A⌃ ^ !
⌃

+ ⇠̃I↵I + ⇠I�
I .

In this expression �v⌃, ⇠̃I and ⇠I are three-dimensional scalar fields, while A⌃ are

three-dimensional vector fields. Note that �v⌃ parameterise the deformations of the

Calabi-Yau metric g0mn̄ that are in general non-Kähler. Setting J = J
0

+�v⌃!
⌃

one has

dJ = �v⌃d!
⌃

= �v⌃k̃I
⌃

↵I + �v⌃k
⌃I�

I , (5.4)

which implies that there will be a potential induced for the scalars �v⌃. We will denote

the complete three-dimensional scalar potential by V , but will refrain discussing its

precise form. We will also introduce the scalars v⌃, which parameterise the expansion

of J = v⌃!
⌃

. More important in the following is the reduction of the M-theory three-

form part of the action. Using (5.4) and (5.2) we see that Ĝ is given by

Ĝ = dA⌃ ^ !
⌃

+D⇠̃I ^ ↵I +D⇠I ^ �I + ⇠̃Id↵I + ⇠Id�
I . (5.5)

Here we have defined the covariant derivatives

D⇠̃I = d⇠̃I � A⌃k̃I
⌃

, D⇠I = d⇠I � A⌃k
⌃I . (5.6)

As we will show in the following it will be these simple gaugings that are responsible

for the gauge structure encountered in the F-theory e↵ective action of section 4.

Substituting the ansatz (5.4) and (5.5) into the action (5.1) and performing a

Weyl rescaling, which puts the e↵ective action in Einstein frame, we find the three-

– 24 –

→ talk of T. Pugh (warping + higher-derivatives)

can be interpreted as cohomological 
torsion: Tor(H3(Y4,Z))

includes:
(1)  M-theory dual of geom. massive U(1)s
(2)  non-trivial torsion in the base

[Cremmer,Julia,Scherk]

⇒  should find the non-Abelian structure suggest by F-theory configuration

d!⌃ = k̃I⌃↵I + k⌃I�
I
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  Slide of disappointment 
➡ performing dimensional reduction:

‣ covariant derivatives found

‣ checking the gauged symmetry:   purely Abelian gauging 
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This expression is a generalisation of (4.22) in which !↵ and � are elements of the

base B
3

of Ŷ
4

. It also contains the case that !
⌃

yields a gauge field of a seven-brane

and the non-closure yields the gaugings induced from the geometric Stückelberg term

(4.17) and (4.20). For D7-branes this has already been suggested in [6, 31, 33].

Next we introduce the modes of the e↵ective theory that arise from expanding the

eleven-dimensional metric and the M-theory three-form into !
⌃

and (↵I , �I). We will

therefore make an ansatz for the reduction where

dŝ2 = gµ⌫dx
µdx⌫ + 2(g0mn̄ + i�v⌃!

⌃mn̄)dy
mdyn̄ , (5.3)

Ĉ = A⌃ ^ !
⌃

+ ⇠̃I↵I + ⇠I�
I .

In this expression �v⌃, ⇠̃I and ⇠I are three-dimensional scalar fields, while A⌃ are

three-dimensional vector fields. Note that �v⌃ parameterise the deformations of the

Calabi-Yau metric g0mn̄ that are in general non-Kähler. Setting J = J
0

+�v⌃!
⌃

one has

dJ = �v⌃d!
⌃

= �v⌃k̃I
⌃

↵I + �v⌃k
⌃I�

I , (5.4)

which implies that there will be a potential induced for the scalars �v⌃. We will denote

the complete three-dimensional scalar potential by V , but will refrain discussing its

precise form. We will also introduce the scalars v⌃, which parameterise the expansion

of J = v⌃!
⌃

. More important in the following is the reduction of the M-theory three-

form part of the action. Using (5.4) and (5.2) we see that Ĝ is given by

Ĝ = dA⌃ ^ !
⌃

+D⇠̃I ^ ↵I +D⇠I ^ �I + ⇠̃Id↵I + ⇠Id�
I . (5.5)

Here we have defined the covariant derivatives

D⇠̃I = d⇠̃I � A⌃k̃I
⌃

, D⇠I = d⇠I � A⌃k
⌃I . (5.6)

As we will show in the following it will be these simple gaugings that are responsible

for the gauge structure encountered in the F-theory e↵ective action of section 4.

Substituting the ansatz (5.4) and (5.5) into the action (5.1) and performing a

Weyl rescaling, which puts the e↵ective action in Einstein frame, we find the three-
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Ĝ = dA⌃ ^ !
⌃

+D⇠̃I ^ ↵I +D⇠I ^ �I + ⇠̃Id↵I + ⇠Id�
I . (5.5)

Here we have defined the covariant derivatives

D⇠̃I = d⇠̃I � A⌃k̃I
⌃

, D⇠I = d⇠I � A⌃k
⌃I . (5.6)

As we will show in the following it will be these simple gaugings that are responsible

for the gauge structure encountered in the F-theory e↵ective action of section 4.

Substituting the ansatz (5.4) and (5.5) into the action (5.1) and performing a

Weyl rescaling, which puts the e↵ective action in Einstein frame, we find the three-

– 24 –

➡ However:     We are not yet in the correct duality frame to perform 
                       the F-theory limit !

‣ split the 3d fields and dualize:
 

example: A⌃ Ai, A↵ has to be dualize into scalar
⇒ axion in 4d complex field

D⇠̃I = d⇠̃I �A⌃k̃I⌃ D⇠I = d⇠̃I �A⌃k⌃I
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A↵ ⇢↵

We expect that the non-Abelian structure is linked to the coupling M↵a
b. This is not

obvious from the expressions above but we may use the relations (5.14) to make it

manifest, namely

D⇢↵ = d⇢↵ � k↵A
 +

1

2
M↵a

b(kı̂ba
a � k̃a

ı̂ bb)A
ı̂ ,

k↵F
 = k↵dA

 + k̃a
⌘̂ kı̂bM↵a

bAı̂ ^ A⌘̂ . (5.22)

This also shows that the field strength satisfies the projection condition (4.32) that was

required for closure of the gauged subalgebra.

Let us now split the index ı̂ further into (0, i). This allows us to denote !
0

as

the two-form Poincaré dual to the base of the elliptic fibration (which we assume to

be closed in the following), !i as dual to blow-up divisors and !↵ as dual to vertical

divisors. Similarly we now understand the splitting ↵I = (↵a,↵) and �I = (�a, �)

as being such that ↵a and �a have a component with one leg in the fiber while ↵ and

� have legs only in the base directions. This decomposition justifies the constraints

(5.15) which may be seen by counting legs of the forms present. We also now impose

that

M
0

� = �� , Mi
� = 0 , (5.23)

the first of which shows that ↵ and � form a symplectic basis for three-forms on the

base. With this decomposition we see that the gaugings decompose as k̃a
ı̂ = (0, k̃a

i ) and

kı̂a = (0, kia).

Having performed this further decomposition the field strengths and covariant

derivatives may be written as

U = F  + (⇠̃ +M
0a

aa �M
0

aba)F
0 +Mia

aaF i �Mi
abaF

i ,

F  = dA +
1

2
(k̃a

jMia
 + kjaMi

a)Ai ^ Aj ,

D̂⇢↵ = D⇢↵ +
1

2
M↵a

b(aaDbb � bbDaa)� 1

2
M↵aba

aDab � 1

2
M↵

abbaDbb ,

D⇢↵ = d⇢↵ � k↵A
 +

1

2
M↵a

b(kiba
a � k̃a

i bb)A
i . (5.24)

From these expressions we clearly see that a non-Abelian gauge symmetry has emerged

after the dualisation. In particular, only the field strength F  includes the usual non-

Abelian term Ai^Aj so that together {F i, F } correspond to the field strengths of the

extended Heisenberg algebra.

To close this section let us discuss the gauge coupling function in some detail. As

already mentioned, the Heisenberg group is both non-compact and non-semisimple so
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extended Heisenberg algebra.

To close this section let us discuss the gauge coupling function in some detail. As
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dimensional e↵ective theory given by

S(3) =
1

2

Z h
R ⇤ 1� 1

2
G

⌃⇤

dL⌃ ^ ⇤dL⇤ � 1

2
G

⌃⇤

F⌃ ^ ⇤F⇤

� 1

2
G̃IJD⇠̃I ^ ⇤D⇠̃J � 1

2
GIJD⇠I ^ ⇤D⇠J �HI

JD⇠̃I ^ ⇤D⇠J

+
1

3
M

⌃I
JF⌃ ^ (⇠̃ID⇠J � ⇠JD⇠̃I) +

1

3
M

⌃IJF
⌃ ^ ⇠̃ID⇠̃J +

1

3
M

⌃

IJF⌃ ^ ⇠ID⇠J

+
1

3
M

⌃I
JA⌃ ^D⇠̃I ^D⇠J +

1

6
M

⌃IJA
⌃ ^D⇠̃I ^D⇠̃J +

1

6
M

⌃

IJA⌃ ^D⇠I ^D⇠J

� 1

3
N

⌃⇤I ⇠̃
IA⌃ ^ F⇤ +

1

3
Ñ

⌃⇤

I ⇠IA
⌃ ^ F⇤ + V ⇤ 1

i
. (5.7)

The first line contains the kinetic terms for the scalars v⌃ and vectors A⌃. To write

them in this simple form, we have used the definitions

G
⌃⇤

= V
Z

ˆY4

!
⌃

^ ⇤!
⇤

, L⌃ =
v⌃

V , (5.8)

where V is the volume of the manifold Ŷ
4

. To display the couplings of the scalars

(⇠I , ⇠̃J) we have introduced the definitions

G̃IJ =
1

V

Z

ˆY4

↵I ^ ⇤↵J , GIJ =
1

V

Z

ˆY4

�I ^ ⇤�J ,

HI
J =

1

V

Z

ˆY4

↵I ^ ⇤�J , M
⌃I

J =

Z

ˆY4

!
⌃

^ ↵I ^ �J ,

N
⌃⇤I =

Z

ˆY4

!
⌃

^ !
⇤

^ d↵I , Ñ I
⌃⇤

= �
Z

ˆY4

!
⌃

^ !
⇤

^ d�I . (5.9)

The tensors N
⌃⇤I and Ñ I

⌃⇤

can be written in terms of the other couplings by integrating

by parts and using (5.2), which gives

N
⌃⇤I = k

⌃JM⇤I
J + k̃J

⌃

M
⇤IJ + k

⇤JM⌃I
J + k̃J

⇤

M
⌃IJ , (5.10)

Ñ I
⌃⇤

= k
⌃JM⇤

JI + k̃J
⌃

M
⇤J

I + k
⇤JM⌃

JI + k̃
⇤

JM
⌃J

I ,

k
⇤IN

I
⌃�

= k̃I
⇤

N
⌃�I .

Let us close this subsection with a few crucial observations. It is straightforward

to see that the action (5.7) enjoys an Abelian gauge symmetry given by

�A⌃ = d�⌃, �⇠̃I = k̃I
⌃

�⌃, �⇠I = k
⌃I�

⌃ , (5.11)

where �⌃ is a gauge parameter. However, in the last sections we argued that this system

should posses non-Abelian symmetries. Surprisingly, such a non-Abelian structure is
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k̃ajMia
 + kjaMi

a

geometrically massive 
seven-brane gauge fields
→ non-closed forms / torsion

control kinetic mixing of 
R-R and seven-brane U(1)s
→ necessary for gauged
     Heisenberg group
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➡ Discrete Abelian gauge symmetries in F-theory
‣ much recent progress: analyzing F-theory geometries with multi-sections

➡ Discrete non-Abelian gauge symmetries at weak string coupling
‣ pure R-R gaugings from cohomological torsion in CY orientifolds 
⇒ in apparent conflict with supersymmetry
⇒ precise reason is mysterious (torsion in orientifold-odd cohomology?)

➡ Discrete non-Abelian gauge symmetries in F-theory
‣ mutually non-local seven-branes required ⇒ genuinely F-theoretic 
‣ gauging of a generalization of a Heisenberg group 
⇒ non-trivial insights about the gauge-coupling function 
⇒ generally true in string theory? insights about kinetic mixing?

‣ purely open string settings with fluxes on seven-branes
⇒ dual description via Higgsing?
⇒ selection rules on Yukawa couplings

‣ discovered Abelian to non-Abelian duality (any dimension) 

  Conclusions

[TG,Regalado,Pugh]
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