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based on works with Dave Morrison (1412.4123 and 1507.xxxxx appear.)
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A really great G2 MATH paper

I cannot recommend this paper enough. Pedagogical and readable!

1207.4470

“CHNP”
 Kovalev’s Twisted 

connected sums (TCS)

constructs  
some associative 

submanifolds.
over 50 million 

examples.
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This talk
neither strings nor pheno, unfortunately!

Still a lot to learn about TCS G2 before thinking pheno.

Instead, present and discuss physics of TCS G2
and develop a language / set of techniques for global models,

specifically as it regards gauge enhancement.
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G2 Review
both math and physics

My apologies that this has to be so fast. This is a lightning review.

Two slides on math. 
One slide on physics, since you’ve heard it.



G2 Manifolds
• G2 is an exceptional Lie group with rk=2 and dim=14.

• A G2 manifold X is a 7-manifold with hol(G2). No CAG. No Yau’s thm.

• Characterized by a G2 structure that determines a metric gΦ and G2 
three-form Φ. These give a G2 action on every tangent space.

• Note well:   only one type of metric modulus, from Φ.

• The following are equivalent:

• Holonomy is exactly G2 iff above and X has finite fundamental group.

7

Φ torsion free



• G2 manifolds can have calibrated submanifolds, 
   associative 3-mflds,   coassociative 4-mflds.

• They are volume minimizing reps of their hom. classes.

• Can compute their volumes, even though we don’t know the metric. 
 
 
 
 

• CHNP:    first construction theorem for associatives  
                   in compact G2 manifolds. 
 
    (rough: rigid one to each rigid holomorphic curve in build. block  
               non-rigid for each appropriate sLag in building block ).

G2 Calibrations

8

V ol(M3) =

Z

M3

� V ol(M4) =

Z

M4
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[Harvey, Lawson]



11D SUGRA + M-branes on G2
• Key point:    gives d=4 N=1 theory.

• KK reduction:   reduce metric mod Φ as well as C3 and C6.  
 
Summary:   b2(X) abelian vector multiplets  
                 b3(X) massless uncharged chirals

• M2 (M5) on two (five) -cycles give charged particles (monopoles).

• Also from wrapped M-branes:   instantons, domain walls, strings, etc.

• Key:     at most abelian gauge symmetry! 
so we need singularities for non-abelian theories (NAGS)  
    or massless charged matter (MCM)  
Smoothing is the Higgs mechanism. How do we reliably un-Higgs?

• Local work:   NAGS, vector matter, chiral matter from codim 4, 6, 7.
9

[Papadopoulos, 
Townsend]
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A Landscape
from twisted connected sum G2 manifolds.

Classical, on smooth G2 at large volume.

There’s been huge math progress recently,
and there are now over 50 million smooth, compact G2 manifolds.

What does M-theory on them yield? 
What can we learn about this landscape?

What is still to be done?



Twisted Connected Sums
• Idea:    “appropriately” glue two “appropriate” building blocks  M+- 

                X inherits G2 structure from blocks. Show torsion free.

•                              where         is an ACyl Calabi-Yau threefold.

• i.e.         asymptotes to “Calabi-Yau cylinder”               ,   S a K3.  
 

• This gives a natural G2 structure at each asymptotic end: 
 

• Change CS of S to get K3 Σ such that 

• Key: then                                            leaves Φ invariant!
11

How do we use the TCS construction to get a G2 Manifold?

M± = V± ⇥ S1
±

V± C⇤ ⇥ S

V±

[kovalev]



Kovalev’s Theorem
• This is the key observation for the gluing. 

It means we can glue G2 structures on M+- to get G2 structure on X.

• K3 diffeomorphism r satisfying:             
 
        

• Gluing map:

• Kovalev’s Theorem:          (rough: see paper for more)  
        
    Given such M± and r, F, can glue to get TCS seven-manifold X.  
    X has a natural G2 form related to G2 forms of M± and it has a torsion  
    free def within its cohomology class.  With that metric, X is G2 mfld.

• People (e.g. CHNP) have gotten really good at constructing (M±, r, F) 
to the tune of 50 million examples. Their progress:  V = Z\S, Z weak Fano. 

12

[kovalev]   (duh!)



TCS Topology
• Let’s be specific about the topology since it matters for physics.

• Typically get V± from other alg. threefolds Z± as       V± = Z± \ S±

• There are natural restriction maps 
with kernel K± and image N±.

• Then for the second and third cohomology we have: 

• Note:   some two-forms and three-forms “come together.”

• Thm:      if C is rig hol. curve in V then def CxS1 is rig associative in X.

13

[CHNP]



Broad Assessment of TCS G2 Landscape

• If M on TCS G2 X is vacuum of broken NAGT, nearly all Higgs branches. 
 
   (semi-Fano building blocks of CHNP large numbers have K=0, 
      together with simplest gluing gives b2(X) = 0).

• Fluxes: never have to turn them on in G2 .         

• Instantons:   due to CHNP rigid associated theorem,  
                 for the first time we have M2-instantons with no deformation  
                 modes.       Must be concerned about Wilson line modulini!

• Some G2 transitions can be understood in terms of top trans in V±. 
                 

14

[j.h., Morrison]

math artifact of gluing difficulty.

[Beasley, Witten]
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• idea: study physics using CHNP topology.

• Get three U(1)’s since dim(K)=3.  
K non-zero since blew up along base of non-generic AC pencil. 
(specifically: one gen. of pencil is non-generic quartic x0x1x2x3=0 in P3)

• Particle charges:   intersections in X via intersections in 6-mfld. 
 
 
 
 
 
 
4 (vector-pairs of chiral multiplets) of each type.
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• CY conifold:  take massless particle limit by calibrating two-cycle 
                   to zero via movement in Kahler moduli.

• G2: can’t do that so simply! There are no calibrated two-cycles.

• But remember: 
                              
 
and we have K non-zero!    So our 2nd, 3rd coh related.

• Related fact:   our rigid associative in X contains the matter S2’s. 
Collapse S2 by collapsing associative.     Circle of conifolds

• Deform.  Since S3 is sLag in V,  it’s associative in X. (use other CHNP thm)

• But we know what we’re Higgsing!   Field theory predicts def top.
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Gauge enhancement
how do you get it, globally!?

Related: in the last example we ran into an important problem
but didn’t really discuss it. Let’s do that now.

Families of metrics in non-compact examples are great,
but we don’t have that luxury in compact examples

and want a language / approach appropriate for compact examples.



The Problem
• CY singularities are well understood.   (defining equations, CAG, etc)

• More specifically: know how certain singularities relate to families of    
two-cycles going to zero volume via variation in Kahler moduli.

• Dimensionality of family M determines spacetime quantum numbers. 
    

• So varying J and studying dim(M), we can identify limits that give 
massless charged matter and / or massless charged W-bosons.    

• Problem:  G2 has no calibrated two-cycles!      What to do!? 

19

why does gauge enhancement work for CY (F-th)? What is G2 obstruction?

vol(C) =

Z

C
J 7! 0

[witten] [Aspinwall, Katz, Morrison]
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And if you can’t be with the one you love, honey, holomorphic curves

you’ve gotta love the one you’re with! Assoc and coassoc 
submanifolds

when rock and roll fits your talk, you’ve got to use it



A Proposal
• Recall:  associative 3-mflds and coassociative 4-mflds are calibrated, so 

we can control their volumes as a function of moduli.

• Idea: define cones of assoc. and coassoc. analogous to Kahler cone. 
Get singularities by collapsing associatives or coassociatives.

• Math trick) assoc or coassoc collapse via collapsing two-cycle in them. 
                particle masses to zero. 

• Physics option)  Use other signatures of symmetry breaking.   (e.g. defects) 
 
             Mw = g v       Mm = v / g      TANO = 2π v2

• Some defects arise from calibrated cycles.     (e.g. strings, inst, dom walls) 
Some not from not-calibrated cycles (e.g. monopoles, but they’re still useful).

21

Use the calibrations you have!  3- and 4-MFLDS.

[j.h., Morrison]
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what do we want?
Ideally, a natural 3 or 4-cycle associated with symmetry
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• Consider any non-trivial class                              then:  
 
 

• For any U(1) in M on X have a non-triv 3-cycle [DΣ] = - PD[σ cup σ] !

• What if [DΣ] had an associative submfld representative DΣ ? 
Calibrate that to zero for gauge enhancement?

• NO!           That’s the limit of infinite gauge coupling since.  
 

• Upshot:   finite g, and if DΣ exists, a place to wrap gauge instantons!

Physics of a Lemma of Joyce
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• Break G to H=U(1)rk(G),    for G a simple Lie group.

• Clearly, the W-bosons got a mass but Z-bosons remained light.

• has   ’t Hooft-Polyakov monopoles measured by π2(G/H). 
      Critical monopole (Bog bound) Mm ~ v/g     (ex dep. factor)

• G-gauge theory for G has gauge instantons measured by π3(G). 
      with instanton size a modulus ρ and suppression e-8π/g^2

• Recall: even when broken to H, G-instantons play a role.  
      e.g. the so-called “’t Hooft term”

• Furthermore:   though for v non-zero ρ not a modulus the  
      zero size instanton still solves EOM.  (e.g. use “constrained instantons” of Affleck)

24

deduce additional features of X from physics, then see what to calibrate.



Example: Coulomb Branches

25

how would M-theory on X realize such a branch?



• Specify to non-pheno Georgi-Glashow for simplicity:   G=SU(2).

Example: Coulomb Branches

25

how would M-theory on X realize such a branch?



• Specify to non-pheno Georgi-Glashow for simplicity:   G=SU(2).

• H = U(1) means b2(X) = 1.  This naturally gives the obvious cycles  
 
 
but by the Joyce lemma we also have    

Example: Coulomb Branches

25

how would M-theory on X realize such a branch?



• Specify to non-pheno Georgi-Glashow for simplicity:   G=SU(2).

• H = U(1) means b2(X) = 1.  This naturally gives the obvious cycles  
 
 
but by the Joyce lemma we also have    

• More is required by breaking from G. 
Need W-bosons, monopoles, instantons from wrapped branes. 
Requires submanifolds of these classes, call them  

Example: Coulomb Branches

25

how would M-theory on X realize such a branch?



• Specify to non-pheno Georgi-Glashow for simplicity:   G=SU(2).

• H = U(1) means b2(X) = 1.  This naturally gives the obvious cycles  
 
 
but by the Joyce lemma we also have    

• More is required by breaking from G. 
Need W-bosons, monopoles, instantons from wrapped branes. 
Requires submanifolds of these classes, call them  

• Instanton behavior follows from

Example: Coulomb Branches

25

how would M-theory on X realize such a branch?

vol(D⌃) ⇠
1

g

2



Example: Coulomb Branches
• Geometrically, we have three volumes, of  

and two physical parameters, g and v    (f moduli) 
Overconstrained system?

• More specifically:   

• The gauge coupling is computed by the volume of          so

• Volume relation suggests       fibered over         by curves of class

26
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Example: Coulomb Branches
• Upshot: by rather general global G2 and Coulomb branch 

considerations, we’ve landed on a fibration structure expected 
from the standard picture of S2 fibered over a three-mfld.

• What to calibrate to zero, though!? 
 
No adjoint chiral in the story yet.  DΣ can have topology. 
If b1(DΣ) non-zero, we have a two-sphere fibration over each one-cycle. 
 
Assoc. rep? Calibrate that to zero . . . 
 
One-cycle in singular limit 
associated to adj chiral. 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Example: Coulomb Branches
• Upshot: by rather general global G2 and Coulomb branch 

considerations, we’ve landed on a fibration structure expected 
from the standard picture of S2 fibered over a three-mfld.

• What to calibrate to zero, though!? 
 
No adjoint chiral in the story yet.  DΣ can have topology. 
If b1(DΣ) non-zero, we have a two-sphere fibration over each one-cycle. 
 
Assoc. rep? Calibrate that to zero . . . 
 
One-cycle in singular limit 
associated to adj chiral. 

• Joyce example: SU(2) to U(1) gives S2 fib over T3.    3 adj chiral mult.
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Conclusions
• There’s over 50 million G2 manifolds and counting.

• 11D SUGRA landscape, mostly Higgs branches if NAGS sing limits exist.

• Presented a rich example:    charged particles, M2 inst on rigid assoc 
    circles of conifolds,  conifold transition    (ignoring quantum G2 mod)

• Big technical issue: no calibrated two-cycles, what to do for NAGS, MCM!?

• Love the one you’re with proposal:    collapse assoc. or coassoc. 
   Math trick (two-spheres collapse) 
   Diff. physics (topological defects)

• Coulomb branch:   rather general physics arguments and a simple G2 fact  
   lead to standard fibration picture and three-cycles to collapse. 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Thanks so much to the organizers  
for a truly great conference!


