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THIS TALK

neither slrings nor pheno, unfortunately!

Still a lot to learn about TCS G before thinking pheno.

Instead, present and discuss physics of TCS G
and develop a language / set of techniques for global models,
specifically as It regards gauge enhancement.
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® G; Review
what 1s a G manifold?
what does | |D SUGRA + M-branes on them give!?

® A G; Landscape
now over 50 million Gy manifolds.
'll discuss physics and give an example.

® Gauge Enhancement
Need singularities. Can't use standard CY trick. What to do?
Example: Coulomb branches, monopoles, instantons, etc.



G2 REVIEW

both math and physics

My apologies that this has to be so fast. This Is a lightning review.

ITwo slides on math.
One slide on physics, since you've heard It.



G2 Manifolds
(57 Is an exceptional Lie group with rk=2 and dim=14.

A Gz manifold X is a /-manifold with hol(Gz). No CAG. No Yau's thm.

Characterized by a G; structure that determines a metric go and G
three-form ®.These give a G; action on every tangent space.

Note well: only one type of metric modulus, from ®.

The following are equivalent: Hol(gs) C Gj

Vo = 0, and

' & TORSION FREE | ——
dP =dxd = 0.
Holonomy Is exactly G iff above and X has finite fundamental sroup.
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G2 Calibrations
(G2 manifolds can have calibrated submanifolds,
assoclative 3-mflds, coassociative 4-mflds. [HARVEY, LAWSON]
They are volume minimizing reps of their hom. classes.
Can compute their volumes, even though we don't know the metric.

Vol(Ms) — / 3 Vol(M,) = / "

Mg M4

CHNP:  first construction theorem for associatives
in compact Gy manifolds.

(rough: rigid one to each rigid holomorphic curve in build. block
non-rigid for each appropriate slLag in building block ).
8



11D SUYHA + M-branes on

Key point:  gives d=4 N=1 theory.

KK reduction: reduce metric mod ® as well as Cs and C.

Summary: by(X) abelian vector multiplets [PAPADOPOULOS,
b3(X) massless uncharged chirals TOWNSENDI

M2 (MS) on two (five) -cycles give charged particles (monopoles).

Also from wrapped M-branes: instantons, domain walls, strings, etc.

Key: at most abelian gauge symmetry!
so we need singularities for non-abelian theories (NAGS)
or massless charged matter (MCM)
Smoothing is the Higgs mechanism. How do we reliably un-Higgs?

Local work: NAGS, vector matter; chiral matter from codim 4, 6, /.

9



A LANDSCAPE

[rom twisted connected sum G2 manifolds.

Classical, on smooth G; at large volume.

There's been huge math progress recently,
and there are now over 50 million smooth, compact G, manifolds.

What does M-theory on them yield?
VWhat can we learn about this landscape!
What is still to be done!



Twisted Connected Sums

HOW DO WE USE THE TCS CONSTRUCTION TO GET A G MANIFOLD?  [KOVALEV]

ldea:  “appropriately’ glue two “appropriate” building blocks M-+
X Inherits Gy structure from blocks. Show torsion free.

M. =V, X gl where Vi s an ACyl Calabi-Yau threefold.

.e. V7 asymptotes to "Calabi-Yau cylinder” C* x S, >aKs.

2z = ett on C*

This gives a natural G structure at each asymptotic end:

®=dp Adt NdO+dp Aws + df A Re(Qs) + dt A Im(Qg)

wy; = Re(Ng), Re(Qy) = wg
Change CS of S to get K3 2 such that Im(Qs) = — Im(Qy)

Key:then (¢,t,6,S) to (0, —t,¢,%X) leaves ® invariant



hovalev’s Theorem

[KOVALEV] (DUHD

This Is the key observation for the gluing.
't means we can glue G structures on M+ to get (G structure on X

K3 diffeomorphism r satistying: r*(ws_) = Re(Qs,)
r*(Re(Qs_)) = ws,

r*(Im(R2g_)) = —Im(Qg, )
Gluing map:
F M, =28 xRt xSt xS, o SIxRY xS xS_~M_,
(0_,t,60.,x) —> 0., T+1—t,0_,r(x))
Kovalev's Theorem: (rough: see paper for more)

Given such M+ and r, F, can glue to get TCS seven-manifold X.
X has a natural G; form related to G; forms of M+ and it has a torsion
free def within its cohomology class. With that metric, X is G, mfld.

People (e.g. CHNP) have gotten redlly good at constructing (Mx+, r; F)

to the tune of 50 million examples. Their progress: V = Z\S, Z weak Fano.
12



TCS Top(ftogy [CHNP!

Let's be specific about the topology since it matters for physics.
Typically getV+ from other alg. threefolds Z+ as Vi=/4+\Sst

There are natural restriction maps

| . . H2(V..Z) — H%(S..Z
with kernel K+ and image Nx. P (Va, Z) — H(54,2)

Then for the second and third cohnomology we have:
H*(X,Z)=(Ny,NN_)O K, ®K_
H3(X,Z) > H*Z,.,Z) ® H*(Z_,Z) ® K, ® K—

Note: some two-forms and three-forms “come together.”

Thm:  if Cis rig hol. curve inV then def CxS' is rig associative in X,



Broad tlssessment of TCS G2 Tlandscape

[J.H., MORRISON]

® [ MonTCS G2 Xis vacuum of broken NAGT, nearly all Higgs branches.

(semi-Fano building blocks of CHNP large numbers have K=0,
together with simplest gluing gives by(X) = 0).

® Fluxes: never have to turn them onin Gy, [BEASLEY, WITTENI

® |nstantons: due to CHNP rigid associated theorem,
for the first time we have M2-instantons with no deformation
modes. Must be concerned about Wilson line modulini!

® Some (5 transitions can be understood in terms of top trans in V.

|4
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Eeplicit V(1) Eample

[J.H., MORRISON]
idea: study physics using CHNP topology.

Get three U(1)'s since dm(K)=3.

K non-zero since blew up along base of non-generic AC pencil.
(specifically: one gen. of pencil is non-generic quartic xoxixxx3=0 in P3)

Particle charges: Intersections in X via intersections in 6-mfld.

4 (vector-pairs of chiral multiplets) of each type.
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Circle of Conifolds Transition

[J.H., MORRISON]

CY conifold: take massless particle imit by calibrating two-cycle
to zero via movement in Kahler moduli.

(G2: can't do that so simply! There are no calibrated two-cycles.
But remember: H*(X,Z) = (NyNN_)® K, ® K_

H*X,Z) D> H(Z,,Z) ®H*(Z_,Z) ® K. ® K—
and we have K non-zero!  So our 2nd, 3rd coh related.

Related fact: our rigid associative in X contains the matter S?'s.
Collapse S* by collapsing associative.  Circle of conifolds

Deform. Since S3 is sLag in'V, it's associative in X. (use other CHNP thm)

But we know what we're Higgsing!  Field theory predicts def top.

|7



GAUGE ENHANCEMENT

Families of metrics In non-compact examples are great,
but we don't have that luxury iIn compact examples
and want a language / approach appropriate for compact examples.

Related: In the last example we ran into an important problem
but didn’t really discuss 1t. Let's do that now.



The Problem

WHY DOES GAUGE ENHANGEMENT WORK FOR GY (F-TH)? WHAT IS G2 OBSTRUCTION?

CY singularrties are well understood. (defining equations, CAG, etc)

More specifically: know how certain singularities relate to families of
two-cycles going to zero volume via variation in Kahler moduli.

vol(C') :/CJHO

Dimensionality of family M determines spacetime quantum numbers.

[WITTEN] [ASPINWALL, KATZ, MORRISON]

So varying | and studying dim(M), we can identify limits that give
massless charged matter and / or massless charged W-bosons.

Problem: G2 has no calibrated two-cycles!  What to dol!

19
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ﬂ Pr Up(}ﬂal 1., MORRISON!

WHEN ROCK AND ROLL FITS YOUR TALK, YOU'VE GOT TO USE IT

And if you can’t be with the one you love, honey, HOLOMORPHIC CURVES

ASSOC AND COASSOC
SUBMANIFOLDS

you've gotta love the one you're with!

20



ﬂ Pr OPOJClI [J.H., MORRISON]

USE THE CALIBRATIONS YOU HAVE! 3- AND 4-MFLDS.

Recall: associative 3-mflds and coassociative 4-mflds are calibrated, so
we can control their volumes as a function of modulr.

|dea: define cones of assoc. and coassoc. analogous to Kahler cone.,
Get singularities by collapsing associatives or coassociatives.

Math trick) assoc or coassoc collapse via collapsing two-cycle in them.
particle masses to zero.

Physics option) Use other signatures of symmetry breaking.  (e.g. defects)
My =gV Mn=v/g Tano = 2TT V?

Some defects arise from calibrated cycles.  (e.g. strings, inst, dom walls)
Some not from not-calibrated cycles (e.g. monopoles, but they're still useful).

21



WHAT DO WE WANT?

Tdeally, a natural 3 or 4-cycle asscciated with symmelry
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® \What if [Ds] had an associative submfld representative Dy !
Calibrate that to zero for gauge enhancement?
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(I) . da 1’ d;[‘z MORRISON]
e Consider any non-trivial class [o] € H?(X,R) then:

o] U [o] U [®] < 0

® Forany U(l)in M on X have a non-triv 3-cycle [Ds] = - PD[CO cup O] !

® \What if [Ds] had an associative submfld representative Dy !
Calibrate that to zero for gauge enhancement?

o NO! That's the limit of infinite gauge coupling since.
VOZ(DE):/ <I>:—/(7/\(7/\<I>:/(7/\>|<(7Ni2
Ds, g

® Upshot: finite g, and if Ds exists, a place to wrap gauge instantons!
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Eample: Coulomb Branches

DEDUGE ADDITIONAL FEATURES OF X FROM PHYSICS, THEN SEE WHAT TO CALIBRATE.

Break G to H=U(1)™©),  for G a simple Lie group.
Clearly, the W-bosons got a mass but Z-bosons remained light.

has 't Hooft-Polyakov monopoles measured by T12(G/H).
Crrtical monopole (Bog bound) Mmw ~ v/ig  (ex dep. factor)

G-gauge theory for G has gauge instantons measured by T13(G).
with instanton size a modulus p and suppression e®mg"2

Recall: even when broken to H, G-instantons play a role.
e.g. the so-called "t Hooft term” A ¢ _ 272 [u[?p?

24



Eample: Coulomb Branches

DEDUGE ADDITIONAL FEATURES OF X FROM PHYSICS, THEN SEE WHAT TO CALIBRATE.

® Break G to H=U(1)X®), for G a simple Lie group.
® (learly, the W-bosons got a mass but Z-bosons remained light.

® has 't Hooft-Polyakov monopoles measured by T12(G/H).
Crrtical monopole (Bog bound) Mmw ~ v/ig  (ex dep. factor)

® (-gauge theory for G has gauge Iinstantons measured by T13(G).
with instanton size a modulus p and suppression e®mg"2

® Recall: even when broken to H, G-instantons play a role.
e.g. the so-called "t Hooft term” A ¢ _ 272 [u[?p?

® [urthermore: though for v non-zero p not a modulus the
zero size Instanton still solves EOM. (e.g. use “constrained instantons” of Affleck)
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HOW WOULD M-THEORY ON X REALIZE SUCH A BRANCH?
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® Specify to non-pheno Georgi-Glashow for simplicity:  G=5SU(2).

® H = U(l) means by(X) = I. This naturally gives the obvious cycles

~

2] € Hy(X)  [E] € H5(X)
but by the Joyce lemma we also have [Dy]| = —[X] N [X] € Hs(X, Z)
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® H = U(l) means by(X) = I. This naturally gives the obvious cycles

~

2] € Hy(X)  [E] € H5(X)
but by the Joyce lemma we also have [Dy]| = —[X] N [X] € Hs(X, Z)

® More is required by breaking from G.
Need W-bosons, monopoles, instantons from wrapped branes.
Requires submanifolds of these classes, callthem %7 Y Dis
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Eample: Coulomb Branches

HOW WOULD M-THEORY ON X REALIZE SUCH A BRANCH?

Specify to non-pheno Georgi-Glashow for simplicity:  G=SU(2).

H = U(l) means ba(X) = |. This naturally gives the obvious cycles

~

2] € Hy(X)  [E] € H5(X)
but by the Joyce lemma we also have [Dy]| = —[X] N [X] € Hs(X, Z)

Vore Is required by breaking from G.
Need W-bosons, monopoles, instantons from wrapped branes.
Requires submanifolds of these classes, callthem %7 Y Dis

1
g2

Instanton behavior follows from ”UOZ(DE) ~
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&anhute: Coulomb Branches

NDING NATURALLY ON A FIBRATION-LIKE STRUCTURE

Geometrically, we have three volumes, of ¥ ¥ Dx
and two physical parameters, g and v (f modul)
Overconstrained system!?

More specifically: My o« gy um|v| o< vol(Z) and My glLl x vol(X)
Y M

The gauge coupling is computed by the volume of [y, so

v| My -

My x —— x —— x vol(X) o vol(X)vol(Dsx)
9vyM  Gym

Volume relation suggests ) fibered over Dy by curves of class Y]
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® Upshot: by rather general global G; and Coulomb branch
considerations, we've landed on a fibration structure expected
from the standard picture of S? fibered over a three-mfld.
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Eample: Coulomb Branches

LANDING NATURALLY ON A FIBRATION-LIKE STRUCTURE

® Upshot: by rather general global G; and Coulomb branch
considerations, we've landed on a fibration structure expected
from the standard picture of S? fibered over a three-mfld.

® \What to calibrate to zero, though!?

No adjoint chiral in the story yet. Ds can have topology.
It bi(Ds) non-zero, we have a two-sphere fibration over each one-cycle.

Assoc. rep! Calibrate that to zero ... ‘ ‘ ‘

One-cycle in singular limit
assoclated to adj chiral.
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Eample: Coulomb Branches

LANDING NATURALLY ON A FIBRATION-LIKE STRUCTURE

® Upshot: by rather general global G; and Coulomb branch
considerations, we've landed on a fibration structure expected
from the standard picture of S? fibered over a three-mfld.

® \What to calibrate to zero, though!?

No adjoint chiral in the story yet. Ds can have topology.
It bi(Ds) non-zero, we have a two-sphere fibration over each one-cycle.

Assoc. rep! Calibrate that to zero ... ‘ ‘ ‘

One-cycle in singular limit
assoclated to adj chiral.

® Joyce example: SU(2) to U(I) gives S? fib overT3. 3 adj chiral mult.
2
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® [here's over 50 million Gy manifolds and counting,

® |[D SUGRA landscape, mostly Higgs branches it NAGS sing limits exist.

® Presented a rich example: charged particles, M2 inst on rigid assoc
circles of conifolds, conifold transition  (ignoring quantum G; mod)

® Big technical issue: no calibrated two-cycles, what to do for NAGS, MCMF
® | ove the one you're with proposal:  collapse assoc. or coassoc.
Math trick (two-spheres collapse)

Diff. physics (topological defects)

® Coulomb branch: rather general physics arguments and a simple Gy fact
lead to standard fibration picture and three-cycles to collapse.
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‘Thanks a0 much lo the organizers
f[or a truly great conference!



