String Phenomenology 2015, IFT, Madrid 10th of June, 2015

New F-theory compactifications with U(1)'s and discrete gauge groups - particle physics applications -

Denis Klevers

arXiv:1408.4808: D.K., D. Mayorga Peña, P. Oehlmann, H. Piragua, J. Reuter arXiv:1503.02968: M. Cvetič, D.K., D. Mayorga Peña, P. Oehlmann, J. Reuter arXiv:1502.06953: R. Donagi, M. Cvetič, D.K., H. Piragua, M. Poretschkin arXiv:1506.nnnn: M. Cvetič, D.K., H. Piragua, W. Taylor

Motivation

Global F-theory: advances and goals

1) Local model building:

 Demonstration that F-theory can yield GUT models with promising particle physics & cosmology: features not accessible in perturbative IIB (*E*₆ to *E*₈, 10x10x5) [Donagi,Wijnholt; Beasley,Heckman,Vafa;... many works]

2) <u>Global models:</u>

- Past focus: embed local models into compact CY-fourfolds.
 [Blumenhagen,Grimm,Jurke,Weigand;Marsano,Saulina,SchäferNameki;... many works]
- *Recent approaches* (yearly F-theory workshops for complete list):
 - construct new F-theory vacua with new features: *U*(1)'s, discrete gauge groups...
 - develop new tools: interplay physics/math, duality techniques,...
 - model independence: study whole families of vacua & their generic properties
 - analyze transitions between vacua: Higgs effect **dep** geometric transitions,...

<u>Goal:</u> Explicit construction of all F-theory models & understanding their physics.

Goals of this talk

- I. Study <u>phenomenologically interesting</u> class of CY-manifolds = fibrations of 2D toric hypersurfaces:
 - have <u>intrinsic</u> gauge groups, matter contents & Yukawas
 - are connected in network of Higgsings.
 - * admit global 4D three-family Standard, Pati-Salam & Trinification Models.
 - * include \mathbb{Z}_n discrete gauge groups.
- II. Analyze \mathbb{Z}_n discrete gauge groups in M-/F-theory duality: focus on \mathbb{Z}_3
- III. Construct moduli space of rank two non-Abelian gauge theories in F-theory
 - Propose new non-toric model with U(1)² gauge group needed to describe this moduli space.
 - Present first realization of SU(3) gauge theories with symmetric matter representations in global F-theory.

Review: constructing F-theory vacua

What is F-theory vacuum?

S'

Singular torus-fibered Calabi-Yau X over base B

S''

globally well-defined setup of intersecting (*p*,*q*)7-branes

 T^2

В

Gauge theory in 8D: co-dim. one singularity (7-branes) Matter in 6D : co-dim. two sing. (intersec. 7-branes)

[Katz,Vafa]

4D Yukawa: co-dim three $pt = S \cap S' \cap S''$

I. F-theory on toric hypersurface fibrations

Elliptic CY-manifolds with other toric fibers for F-theory: [Aldazabal,Font,Ibanez,Uranga;Klemm,Mayr,Vafa;Candelas,Font;Klemm,Lian,Roan,Yau;.....] A lot of recent activity:

[Grimm,Weigand;Grimm,Hayashi;Morrison,Park;Braun,Grimm,Keitel;Borchmann,Mayrhofer,Palti,Weigand; Cvetič,Klevers,Piragua;Grimm,Kapfer,Keitel;Cvetič,Grassi,Klevers,Piragua;Küntzler,SchäferNameki; CaboBizet,Klemm,Lopes;Braun,Morrison;Morrison,Taylor;Mayrhofer,Morrison,Till,Weigand;Anderson,Haupt,Lukas; Anderson,GarciaEtxebarria,Grimm,Keitel;Mayrhofer,Palti,Till,Weigand;GarciaEtxebarria,Grimm,Keitel;Lawrie,Sacco; Lawrie,SchäferNameki,Wong...]

➡ [DK,Mayorga-Peña,Piragua,Oehlmann,Reuter]

1) Construction of toric hypersurface fibrations

→ more details in talk by Paul Oehlmann in parallel session at 17:30

Toric varieties from reflexive polytopes

★ Toric variety P_{Fi} associated to 16 reflexive polytopes F_i in 2D.
★ Each P_{Fi} has corresponding genus-one curve C_{Fi}={ p_{Fi} = 0}
= anti-canonical divisor in P_{Fi}.

Conceptually:

- * Take fiber torus $T^2 = C_{F_i}$
- Choose arbitrary base B
- ✤ Fibration data: choice of line bundles on
 B for two local coordinates of C_{Fi}
 (denoted S₇, S₉)
 - \Rightarrow discrete families of CY-manifolds $X_{F_i}(\mathcal{S}_7, \mathcal{S}_9)$.

• Derive the effective theory of F-theory for all these X_{F_i} .

- * Take fiber torus $T^2 = C_{F_i}$
- Choose arbitrary base B –
- ✤ Fibration data: choice of line bundles on
 B for two local coordinates of C_{Fi}
 (denoted S₇, S₉)
 - \Rightarrow discrete families of CY-manifolds $X_{F_i}(\mathcal{S}_7, \mathcal{S}_9)$.
 - Derive the effective theory of F-theory for all these X_{F_i} .

Conceptually:

- * Take fiber torus $T^2 = C_{F_i}$
- Choose arbitrary base B
- Fibration data: choice of line bundles on
 B for two local coordinates of C_{Fi}
 (denoted S₇, S₉)
 - \Rightarrow discrete families of CY-manifolds $X_{F_i}(\mathcal{S}_7, \mathcal{S}_9)$.

→ Derive the effective theory of F-theory for all these X_{F_i} .

Conceptually:

- * Take fiber torus $T^2 = C_{F_i}$
- Choose arbitrary base B
- ✤ Fibration data: choice of line bundles on
 B for two local coordinates of C_{Fi}
 (denoted S₇, S₉)
 - \Rightarrow discrete families of CY-manifolds $X_{F_i}(\mathcal{S}_7, \mathcal{S}_9)$.

• Derive the effective theory of F-theory for all these X_{F_i} .

2) The low-energy effective theory

Non-Abelian Gauge Group

Gauge theory at singularities of elliptic fibration of X: [Vafa;Morrison, Vafa;Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa]

• <u>Singularity</u>

- classified by Lie algebra G [Kodaira;Tate]
- → resolve: Cartan matrix of *G* by \mathbb{P}^1 s over *S*
- → M2's on shrinkable \mathbb{P}^1 s: *G* becomes gauge group in eff. theory

 X_{F_i} have codim. 1 singularities and intrinsic gauge group G_{F_i}

 \Rightarrow can read off G_{F_i} from toric polytope

 Points inside edges
 = nodes in Dynkin diagram

Abelian Gauge Group

U(1)-symmetries Mordell-Weil group of rational sections of elliptic fibrations X_{F_i} . [Morrison, Vafa]

rational section is map ŝ_Q : B → X_{F_i}
induced by rational point Q on C_{F_i}
→ talk by Schäfer-Nameki

4 - 3 = 1 U(1): $G_{F_{11}} = SU(3)xSU(2)xU(1)$

Number of U(1)'s / rational sections from toric polytope:

→ number of U(1)'s = #(vertices of F_i) - 3 (some sections non-toric)

Toric MW-group: [Braun,Grimm,Keitel]

Example:

Effective theories of the 16 toric hypersurface fibrations

[D.K., Mayorga Peña, Oehlmann, Piragua, Reuter] Intrinsic gauge group G_{F_i} of all 16 toric hypersurface fibrations X_{F_i}

Non-simply connected groups: [Aspinwall,Morrison;Mayrhofer,Morrison,Till,Weigand]

- up to three U(1)'s, non-simply connected & discrete gauge groups Z₂, Z₃, Z₄
 Z₂ discrete group: [Morrison, Taylor; Anderson, García-Etxebarria, Grimm, Keitel; GarcíaEtxebarria, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand]
- for any B: 6D matter (= 4D non-chiral) spectrum & 4D Yukawas derived
 - used techniques from computational algebraic geometry
- ✤ all theories anomaly-free. ✓

3) A Higgs network

Higgs transitions between toric hypersurface fibrations

All toric hypersurface fibrations X_{F_i} are connected: change of torus fibers C_{F_i}

* Described in toric polytope as cutting corners (= extremal transition in X_{F_i})

Corresponds to <u>Higgsing in effective field theory</u>

- ➡ worked out full network of all such Higgsings,
- generates subbranch of moduli space of field theory: "toric Higgs branch".

Toric Higgs branch

- matched full 6D spectra (charged & uncharged).
- all theories in <u>one moduli space</u> of maximal models *F*₁₃, *F*₁₅, *F*₁₆.
- all models with <u>discrete gauge</u> groups arise from <u>Higgsing</u> gauged U(1)'s:
 - consistent with quantum gravity constraint that every global symmetry has to be gauged

4) Three family models in toric unification

[Cvetič, DK, Mayorga-Pena, Oehlmann, Reuter]

→ more details in talk by Damian Mayorga in parallel session at 17:45

Phenomenologically interesting examples

Natural unification structure in toric Higgs branch:

 F_{16} SU(3)³/Z₃

 $(\mathrm{SU}(4) \times \mathrm{SU}(2)^2)/\mathbb{Z}_2$

 F_{13}

Trinification

Pati-Salam

Standard Model ${
m SU}(3) imes {
m SU}(2) imes {
m U}(1) \ F_{11}$

Standard-Model-like theory: $X_{F_{11}}$ 1.

Representation	$({f 3},{f 2})_{1/6}$	$(ar{3}, m{1})_{-2/3}$	$(ar{3},1)_{1/3}$	$({f 1},{f 2})_{-1/2}$	$(1,1)_{-1}$
Multiplicity	$\mathcal{S}_9([K_B^{-1}] + \mathcal{S}_7 - \mathcal{S}_9)$	$\mathcal{S}_9(2[K_B^{-1}] - \mathcal{S}_7)$	$\mathcal{S}_9(5[K_B^{-1}] - \mathcal{S}_7 - \mathcal{S}_9)$	$([K_B^{-1}] + \mathcal{S}_7 - \mathcal{S}_9) \times (6[K_B^{-1}] - 2\mathcal{S}_7 - \mathcal{S}_9)$	$(2[K_B^{-1}] - \mathcal{S}_7) \times (3[K_B^{-1}] - \mathcal{S}_7 - \mathcal{S}_9)$

All gauge invariant 4D Yukawas realized. *

SM via tops of dP₂: [Lin,Weigand] using NHC: [Grassi, Halverson, Shaneson, Taylor]

- Pati-Salam-like theory: $X_{F_{13}}$
- <u>Trinification-like theory:</u> $X_{F_{16}}$

spectrum & Yukawas

Construction of three family models in 4D

[Cvetič,DK,Mayorga-Pena,Oehlmann,Reuter]

Model Building Strategy:

1. Construct G_4 -flux by computing $H_V^{(2,2)}(X_{F_i})$ for Standard, Pati-Salam and Trinification Models following [Cvetič,Grassi,DK,Piragua].

see also:[Marsano,Schäfer-Nameki;Grimm, Hayashi;Cvetič,Grimm,DK;Cvetič,Grassi,DK,Piragua]

2. Compute chiralities

$$\chi(\mathbf{R}) = -\frac{1}{4} \int_{\mathcal{C}_{\mathbf{R}}} G_4$$

[Donagi,Wijnholt;Hayashi,Tatar,Toda,Watari, Yamazaki;Braun,Collinucci,Valandro;Marsano, Schäfer-Nameki]

3. Determine minimal number of families so that n_{D3} is integral & positive and G_4 -flux quantized \longrightarrow 3D CS-terms are integral (in dual M-theory).

 \Rightarrow Explicit results for concrete fourfolds with base $B = \mathbb{P}^3$.

Construction of three family models in 4D

 $n_7 \setminus n_9$

10

Standard Model: (#(families),*n*_{D3})

$n_7 \setminus^{n_9}$	1	2	3	4	5	6	7
7	_	(27; 16)	-	-			
6	-	(12; 81)	(21; 42)	-	-		
5	-	-	(12; 57)	(30; 8)	-	(3;46)	
4	(42; 4)	-	(30; 32)	-	-	-	-
3	-	(21; 72)	-	-	-	(15; 30)	
2	(45; 16)	(24; 79)	(21; 66)	(24; 44)	(3; 64)		
1	-	-	-	-			
0	—	-	(12; 112)				
-1	(36; 91)	(33; 74)					
-2	-						

[Cvetič,DK,Mayorga-Pena,Oehlmann,Reuter] <u>Pati-Salam:</u> (#(families),*n*_{D3}) Parameters 6 7 51 4 (13; 204)

9	-	(11; 140)					
8	(33; 94)	(10; 119)	(9; 90)				
7	-	(9; 100)	(6;77)	(14; 48)			
6	(15; 108)	(8; 86)	(21; 52)	(12; 46)	(5; 44)		
5	(6; 106)	(35; 44)	-	(30; 16)	-	(3;44)	
4	(7; 102)	(6; 75)	(15; 50)	(8; 42)	(15; 30)	(6; 41)	(7; 42)
3	(6; 106)	(35; 44)	_	(30; 16)	-	(3; 44)	
2	(15; 108)	(8; 86)	(21; 52)	(12; 46)	(5; 44)		
1	-	(9; 100)	(6;77)	(14; 48)			
0	(33; 94)	(10; 119)	(9; 90)				
-1	-	(11; 140)					
-2	(13; 204)						

labelling models $(S_7, S_9) \rightarrow (n_7, n_9)$

<u>Trinification:</u> (#(families),*n*_{D3})

$_{n_7} \setminus ^{n_9}$	1	2	3	4	5	6	7	8	9	10
10	(5; 120)									
9	(3; 94)	(3; 94)								
8	(4; 72)	(8; 69)	(4; 72)							
7	(14; 48)	(7; 54)	(7; 54)	(14; 48)						
6	(5; 50)	(8; 44)	(3; 44)	(8; 44)	(5; 50)					
5	(5; 50)	(5; 42)	(10; 36)	(10; 36)	(5; 42)	(5; 50)				
4	(14; 48)	(8; 44)	(10; 36)	(16; 30)	(10; 36)	(8:44)	(14; 48)			
3	(4; 72)	(7; 54)	(3; 44)	(10; 36)	(10; 36)	(3;44)	(7; 54)	(4; 72)		
2	(3; 94)	(8; 69)	(7; 54)	(8; 44)	(5; 42)	(8; 44)	(7; 54)	(8; 69)	(3; 94)	
1	(5; 120)	(3; 94)	(4; 72)	(14; 48)	(5; 50)	(5; 50)	(14; 48)	(4; 72)	(3; 94)	(5; 120)

All models admit three families

Unification with three families possible.

II. \mathbb{Z}_n discrete gauge groups beyond n=2

[DK,Mayorga-Pena,Oehlmann,Reuter,Piragua; Cvetič, Donagi, DK, Piragua, Poretschkin]

→ talk by Leontaris for discrete symmetries in F-theory GUTs F-theory phenomenology:[Karozas,King,Leontaris,Meadowcroft;Leontaris] Z₂ completely understood: (1) in M-theory (2) torsion homology of J(X) → see talk by Palti [Braun,Morrison; Morrison,Taylor;Anderson,García-Etxebarria,Grimm,Keitel; García-Etxebarria,Grimm,Keitel;Mayrhofer,Palti,Till,Weigand]

The geometry of Abelian discrete symmetries

<u>Question:</u> What is geometrical object associated to discrete gauge groups in F-theory? * know in field theory: \mathbb{Z}_n from Higgsing a theory with U(1) by q=n matter.

<u>Proposal:</u> Tate-Shafarevich group of genus-one fibration $X \rightarrow Minipartial UI(J(X)) \supset \mathbb{Z}_n$ [Witten;deBoer,Dijkgraaf,Hori,Keurentjes,Morgan,Morrison,Sethi]

* $\coprod (J(X))$ only visible after circle compactification: labels different M-theory vacua

<u>Here</u>: Check for $\mathbb{Z}_3 \rightarrow$ need recent progress on understanding of U(1) models.

Field theory: Higgs dP_2 -model with $U(1)^2 \longrightarrow U(1)$ with q=3 matter [Borchmann,Mayrhofer,Palti,Weigand;

Cvetič,Klevers,Piragua]

<u>Geometry</u>: CY with q=3 identified as dP_1 -fibration X_{F3} [D.K., Mayorga, Oehlmann, Piragua, Reuter]

→ Identification of different elements in $\coprod(J(X))$ by finding Higgs-curves.

<u>Field theory:</u> Higgs dP_2 -model with $U(1)^2 \longrightarrow U(1)$ with q=3 matter [Borchmann,Mayrhofer,Palti,Weigand; Cvetič,Klevers,Piragua]

<u>Geometry</u>: CY with q=3 identified as dP_1 -fibration X_{F3} [D.K., Mayorga, Oehlmann, Piragua, Reuter]

→ Identification of different elements in $\coprod(J(X))$ by finding Higgs-curves.

Field theory: Higgs dP_2 -model with $U(1)^2 \longrightarrow U(1)$ with q=3 matter [Borchmann,Mayrhofer,Palti,Weigand;

Cvetič,Klevers,Piragua]

<u>Geometry</u>: CY with q=3 identified as dP_1 -fibration X_{F3} [D.K., Mayorga, Oehlmann, Piragua, Reuter]

→ Identification of different elements in $\coprod(J(X))$ by finding Higgs-curves.

Higgs field = shrinkable curves at codimension two in X_{F3}

* $\xi = 1/3, \langle \Phi_{(3,-1)} \rangle \neq 0$ and $\xi = 2/3, \langle \Phi_{(3,-2)} \rangle \neq 0$: shrinking Higgs curves yields general cubic-fibration X_{F_1}

$$G_{F_1} = \mathbb{Z}_3$$

[D.K., Mayorga Peña, Oehlmann, Piragua, Reuter]

* Third vacuum $\xi = 0, \langle \Phi_{(3,0)} \rangle \neq 0$ more involved [Cvetic, Donagi, D.K., Piragua, Poretschkin]

- * candidate curve identified: class $[c_{(3,-1)} + T^2]$ has right charges (3,0)
- * indirect evidence from Gromov-Witten invariant $N_{c_{(3,-1)}+T^2}=1$ * holom. curve in $[c_{(3,-1)}+T^2]$ explicitly visible in complete intersection resolution.

III. The moduli space of rank two gauge groups in F-theory

[Cvetič, DK, Piragua, Taylor]

The general question

<u>Question:</u> What are the geometries describing adjoint Higgsings $G \rightarrow U(1)^{rk(G)}$? \Rightarrow Elliptic fibrations with higher rank MW-group crucial for F-theory moduli space.

<u>Here:</u> Work out answer for rank two gauge groups *SU*(2)*xSU*(2)*, SU*(3)

- Higgsings to U(1)² not seen in toric network
 - → need more general, non-toric $U(1)^2$ model.

1) A more general model with $U(1)^2$

Construction of non-toric model with $U(1)^2$

Any elliptic fibration X with MW-rank two is cubic. [Deligne;Borchmann,Mayrhofer,Palti,Weigand; Cvetič,DK,Piragua]

$$uf_{2}(u, v, w) + \prod_{i=1}^{3} (a_{i}v + b_{i}w) = 0$$

$$f_{2} = s_{1}u^{2} + s_{2}uv + s_{3}v^{2} + s_{5}uw + s_{6}vw + s_{8}w^{2}$$

* Keep three rational points in elliptic fiber C at general positions

$$P = [0: -b_1: a_1] \quad Q = [0: -b_2: a_2] \quad R = [0: -b_3: a_3]$$

Coefficients *a_i*, *b_i* **non-trivial** polynomials: not considered before.

Construct elliptically fibered CY-manifold X from C and arbitrary B.
 [Cvetič, DK, Piragua, Taylor]

2) The low-energy effective theory

Full 6D spectrum over general base $B_{\text{[Cvetič, DK, Piragua, Taylor]}}$

Charges	Multiplicity
(2,0)	$x_{(2,0)} = [a_2] \cdot [b_2]$
(0,2)	$x_{(0,2)} = [a_3] \cdot [b_3]$
(-2,-2)	$x_{(-2,-2)} = [a_1] \cdot [b_1]$
(-1,1)	$x_{(-1,1)} = (2[b_2] + [s_3]) \cdot ([a_3] + [b_2]) - 2x_{(2,0)}$
(-2,-1)	$x_{(-2,-1)} = (2[b_3] + [s_3]) \cdot ([a_1] + [b_3]) - 2x_{(0,2)}$
(-1,-2)	$x_{(-2,-1)} = (2[b_1] + [s_3]) \cdot ([a_1] + [b_2]) - 2x_{(-1,1)}$
(1,1)	$\begin{array}{rcl} x_{(1,1)} &=& ([a_1^4 a_2 b_3 s_8^2]) \cdot ([a_1^4 a_2^2 s_8^3]) - 2x_{(2,0)} - 8x_{(-2,-1)} \\ && -4x_{(-1,-2)} - 20x_{(-2,-2)} \end{array}$
(1,0)	$x_{(1,0)} = 4[b_1^3 b_2^3 s_3^3] \cdot ([a_1 b_2] - [K_B]) - 16x_{(2,0)} - 16x_{(-2,-1)} - x_{(-1,-2)} - 16x_{(-2,-2)} - x_{(-1,1)} - x_{(1,1)}$
(0,1)	$x_{(0,1)} = 4[b_1^3 b_3^3 s_3^3] \cdot ([a_1 b_3] - [K_B]) - x_{(-2,-1)} - 16x_{(0,2)} - 16x_{(-1,-2)} - 16x_{(-2,-2)} - x_{(-1,1)} - x_{(1,1)}$

→ model specified by four divisor classes $[a_1]$, $[a_2]$, $[a_3]$, $[s_8]$ on B

- rich particle spectrum with new types of representations
- ✤ checked cancellation of all 6D anomalies.

3) The moduli space

Geometry of Higgs transitions in F-theory

General strategy to reduce Mordell-Weil rank of X

tune moduli of X to place rational points on top of each other

$$uf_2(u, v, w) + \prod_{i=1}^3 (a_i v + b_i w) = 0$$

Geometry of Higgs transitions in F-theory

General strategy to reduce Mordell-Weil rank of X

tune moduli of X to place rational points on top of each other

 $uf_{2}(u, v, w) + \lambda_{1}(a_{1}v + b_{1}w)^{2}(a_{3}v + b_{3}w) = 0$ * rk(MW)=2 \rightarrow 1: $\overline{PQ} \rightarrow 0$

Geometry of Higgs transitions in F-theory

General strategy to reduce Mordell-Weil rank of X

tune moduli of X to place rational points on top of each other

$$uf_2(u, v, w) + \lambda_1 \lambda_2 (a_1 v + b_1 w)^3 = 0$$

* $rk(MW)=2 \rightarrow 1$: $\overline{PQ} \longrightarrow 0$ <u>not possible in</u> * $rk(MW)=1 \rightarrow 0$: $\overline{PR} \longrightarrow 0$ <u>toric models</u>

No *U*(1)'s, tuning induces non-Abelian group *G* in *X*

 $G=SU(2)\times SU(2)\times SU(3)$

Higgsing back to Abelian theory by bifundamentals:

 $U(1)^{2}$ (2,1,2) U(2)xU(1)xSU(2) (1,2,3) U(2)xSU(2)xSU(2)xSU(3)

Special cases: smaller *G* and Higgsing by adjoints.

Special cases: $SU(2)^2$ and SU(3)

Different strata in moduli space of X yield ``unHiggsed'' models with

- 1. $G=SU(2)\times SU(2)$ and adjoints
- 2. G=SU(3) and adjoints
- Reproduce exactly their most general Weierstrass models.
- ➡ Full spectra match. ✔

Can add matter with charges \pm (2,2) to *SU*(3)-spectrum:

Get first *SU*(3)-model with symmetric representation in global F-theory.

Special cases: $SU(2)^2$ and SU(3)

Different strata in moduli space of X yield ``unHiggsed'' models with

- 1. $G=SU(2)\times SU(2)$ and adjoints
- 2. G=SU(3) and adjoints
- Reproduce exactly their most general Weierstrass models.
- ➡ Full spectra match. ✔

Can add matter with charges \pm (2,2) to *SU*(3)-spectrum:

Get first *SU*(3)-model with symmetric representation in global F-theory.

4) Global F-theory with symmetrics of SU(3)

Global models of SU(3) with symmetric matter representations

Tuned Abelian model has *I*₃-singularity over divisor with ordinary double point singularity at $a_1=b_1=0$: $T = \{a_1^2s_8 - a_1b_1s_6 + b_1^2s_3 = 0\}$

 Weierstrass model looks like I₃^{ns}: monodromy cover is irreducible

<u>Generic situation</u>: Z_2 -monodromy exchanges nodes in fiber around $D \cap T \rightarrow I_3^{ns}$ yielding G=SU(2)

$$\psi^2 + (s_6^2 - 4s_3s_8) = 0$$
$$D := \{s_6^2 - 4s_3s_8 = 0\}$$

Interplay between structure of *T* and fiberation: double point of *T* not deformable
 [Morrison, Taylor]
 first global example with symmetric + antisymmetric matter at *a*₁=*b*₁=0

Global models of SU(3) with symmetric matter representations

Tuned Abelian model has *I*₃-singularity over divisor with ordinary double point singularity at $a_1=b_1=0$: $T = \{a_1^2s_8 - a_1b_1s_6 + b_1^2s_3 = 0\}$

- Weierstrass model looks like I₃^{ns}: monodromy cover is irreducible
- Here: D = discriminant locus of Tintersection points in $D \cap T$ pair up: no monodromy

 \rightarrow *I*³ is split: *I*³ yielding *SU*(3)

$$\psi^2 + (s_6^2 - 4s_3s_8) = 0$$
$$D := \{s_6^2 - 4s_3s_8 = 0\}$$

Interplay between structure of *T* and fiberation: double point of *T* not deformable
 [Morrison, Taylor]
 first global example with symmetric + antisymmetric matter at *a*₁=*b*₁=0

III. Conclusions & Outlook

Summary

- 1. Analyzed all genus-one fibrations with fiber C_{F_i} in toric varieties associated to 16 2D reflexive polytopes F_i .
 - Full effective theories in 6D (= non-chiral 4D) determined: discrete gauge groups,...
 - Network of Higgsings relating all effective theories studied.
 - Construction of explicit three family SM, PS & Trinif. models.
- 2. Analysis of F-/M-theory vacua with Z_3 discrete gauge group: all Higgs-curves found.
- 3. Construction of general, non-toric CY-elliptic fibration with $U(1)^2$
 - Determination of full effective theory in 6D (= non-chiral 4D).
 - All models with rank two non-Abelian gauge groups embedded.
 - First explicit construction of *SU(3)* gauge theory with two-times symmetric representation in global F-theory.

<u>Outlook</u>

- Explore further phenomenology of <u>all</u> toric hypersurface fibrations: add G₄-flux, compute chiralities... work with them!
- Study non-toric models for phenomenology: new features expected.

