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Global F-theory: advances and goals

1) Local model building:

+ Demonstration that F-theory can yield GUT models with promising particle

physics & cosmology: features not accessible in perturbative IIB (Es to Eg, 10x10x5)
[Donagi, Wijnholt; Beasley,Heckman,Vafa;... many works]

2) Global models:

+ Past focus: embed local models into compact CY-fourfolds.
[Blumenhagen,Grimm,Jurke,Weigand;Marsano,Saulina,SchaferNameki;... many works]

+ Recent approaches (yearly F-theory workshops for complete list):

- construct new F-theory vacua with new features: U(1)’s, discrete gauge groups...
- develop new tools: interplay physics/math, duality techniques,...
- model independence: study whole families of vacua & their generic properties

- analyze transitions between vacua: Higgs effect 4ap geometric transitions,...

Goal: Explicit construction of all F-theory models & understanding their physics.



Goals of this talk

[. Study phenomenologically interesting class of CY-manifolds = fibrations of 2D
toric hypersurfaces:

+ have intrinsic gauge groups, matter contents & Yukawas

+ are connected in network of Higgsings.

+ admit global 4D three-family Standard, Pati-Salam & Trinification Models.

+ include Z,, discrete gauge groups.

II. Analyze Z,, discrete gauge groups in M-/F-theory duality: focus on 73

[II. Construct moduli space of rank two non-Abelian gauge theories in F-theory

+ Propose new non-toric model with U(1)? gauge group needed to describe this
moduli space.

= Present first realization of SU(3) gauge theories with symmetric matter
representations in global F-theory.



Review: constructing F¥-theory vacua




Whatis IF-theory vacuum?

Matter in 6D :
co-dim. two sing.
(intersec. 7-branes)

Gauge theory in 8D:
co-dim. one singularity
(7-branes)

[Katz, Vafal

4D Yukawa: co-dim three
pt=SNSsS"Ngs"




Building blocks of torus-fibered Calabi-Yau X

1. Fiber torus of X T? °

B

Today: keep analysis base-independent (B arbitrary), focus on torus fiber T? of X
Classification of B: [Morrison, Taylor;Martini, Taylor;Johnson,Taylor;Taylor,Wang]

—» talk by Taylor
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|. F-theory on toric hypersurface fibrations

Elliptic CY-manifolds with other toric fibers for F-theory:

[Aldazabal, Font,Ibanez,Uranga;Klemm,Mayr,Vafa;Candelas,Font;Klemm,Lian,Roan, Yau;....... 1

A lot of recent activity:

[Grimm,Weigand; Grimm,Hayashi;Morrison,Park;Braun, Grimm,Keitel;Borchmann,Mayrhofer,Palti, Weigand;

Cvetic Klevers,Piragua; Grimm, Kapfer,Keitel;Cveti¢,Grassi, Klevers,Piragua;Kiintzler,SchaferNameki;

CaboBizet, Klemm,Lopes;Braun,Morrison;Morrison, Taylor;Mayrhofer,Morrison, Till, Weigand;Anderson,Haupt,Lukas;
Anderson,GarciaEtxebarria,Grimm, Keitel;Mayrhofer,Palti, Till, Weigand;GarciaEtxebarria, Grimm,Keitel;Lawrie,Sacco;
Lawrie,SchaferNameki,Wong...]

= [DK,Mayorga-Pena,Piragua,Oehlmann,Reuter]



I) Construction of toric hypersurface fibrations

—» more details in talk by Paul Oehlmann in parallel session at 17:30



Toric varieties from reflexive polytopes

Fi3 Fig

o} o8 Fs Fy
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+ Toric variety P, associated to 16 reflexive polytopes F; in 2D.

+ Each P, has corresponding genus-one curve Cr,={ pp, = 0}

= anti-canonical divisor in Pp..



Construction of toric hypersurface fibration Xp,

Conceptually:

<+ Take fiber torus T2=CF7;

+ Choose arbitrary base B

<+ Fibration data: choice of line bundles on

B for two local coordinates of Cp,
(denoted S-, Sy)

= discrete families of CY-manifolds X, (S7,Sg).

= Derive the effective theory of F-theory for all these X ..
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2) The low-energy effective theory




Non-Abehan Gauge Group

Gauge theory at singularities of elliptic fibration of X:
[Vafa;Morrison,Vafa;Bershadsky,Intriligator,Kachru,Morrison,Sadov, Vafa]
‘r
! i \

S

— Singularity

= classified by Lie algebra G [Kodaira; Tate]

= resolve: Cartan matrix of G by P's over S

= M?2’s on shrinkable P's: G becomes gauge
group in eff. theory

X r, have codim. 1 singularities and intrinsic gauge group G,

= can read off (G, from toric polytope

e.o.
= Points inside edges -5 I

=nodes in Dynkin SUB)xSU(2)
diagram / C Gry,




Abelian Gauge Group

U(1)-symmetries 6 Mordell-Weil group of rational sections of
elliptic fibrations X .. [Morrison, Vafa]

Cr.

+ rational sectionis map sg : B — Xp,

induced by rational point Q on Cg,
—p talk by Schafer-Nameki

Number of U(1)’s/rational sections from toric polytope:

= number of U(1)'s = #(vertices of F}; ) —3 l (some sections non-toric)

Toric MW-group: [Braun,Grimm,Keitel]

Fiq

Example: 4—-3=1UQ1):
' Gr,, =SUB)xSU2)xU(1)




Eftective theories of the 16 toriec hypersurface fibrations

[D.K.,Mayorga Pena,Oehlmann,Piragua,Reuter]
Intrinsic gauge group G g, of all 16 toric hypersurface fibrations X,

Gr, Zs Gr, U(1)?

Gr, U(1)xZs G r, SU(2)?xU(1) Gr., | (SU4)xSU(2)%)/Zs,
Gr, U(1) Gr, SU(2)xU(1)? Gr, | SUB)xSU(2)*xU(1)
Gr, | (SU2)XZy4)/Zs || Gy, SU(3)xSU(2) Gr. | SU(2)*/ZyxU(1)
Gr. U(1)? Gr, | SUB)xSU((2)xU(1) || Gp, SU(3)%/Zs

Gr | SU@)xU(1) | Gg, SU(2)*xU(1)

Non-simply connected groups: [Aspinwall,Morrison;Mayrhofer,Morrison,Till, Weigand]

+ up to three U(1)’s, non-simply connected & discrete gauge groups Zs, Z3,Z4

Z, discrete group: [Morrison, Taylor;Anderson,Garcia-Etxebarria, Grimm, Keitel;GarciaEtxebarria, Grimm,Keitel;
Mayrhofer,Palti, Till, Weigand]

+ for any B: 6D matter (= 4D non-chiral) spectrum & 4D Yukawas derived

= used techniques from computational algebraic geometry

+ all theories anomaly-free. v/



3) A Hhggs network




Higgs transitions between toric hypersurface fibrations

All toric hypersurface fibrations X r, are connected: change of torus fibers Cp,

+ Described in toric polytope as cutting corners (= extremal transition in X )

Corresponds to Higgsing in effective field theory

= worked out full network of all such Higgsings,

= generates subbranch of moduli space of field theory: “toric Higgs branch”.



lorie Higgs branch

[DK,Mayorga-Pena,Oehlmann,Reuter,Piragual

A Arrow: extremal transitions
6 - 3 in fiber /Higgsing
+ matched full 6D spectra il
(charged & uncharged). . %M e

5+ Fis Fy4 Fi5 su@)t/z, x U(1)

%+ all theories in one moduli space of |, \i\

: SU(3) x SU(2) x U(1) F Fyo SU@2)? x U(1)?
maximal models Fi3, F15, Fis. . N

I P AN

Fio SUB) xSU@) Fg su@)?xu@) Fysu@)xuw)? Fr U1)?

+ all models with discrete gauge \i ><¢ /

oroups arise from Higesing
o o e S Fs Su@2) xu(1) Fs U1)?

gauged U(1)’s: / i /

= consistent with quantum FySU@ xZi U Fs  Fp U(L) xZs

gravity constraint that every /
global symmetry has to ; ; ; ; >~
be gauged (74 Mordell-Weil rank

Gauge group rank
w
i

N
|
|




4> Three family models in toric unification

[Cveti¢, DK, Mayorga-Pena, Oehlmann, Reuter]

—» more details in talk by Damian Mayorga in parallel session at 17:45



Phenomenologically interesting examples

[DK,Mayorga-Pena,Oehlmann,Reuter,Piragual
Natural unification structure in toric Higgs branch:

Trinification

Pati-Salam

Fie SU(3)°/Zs

(SU(4) x SU(2)*)/Zs

Fi3

T

Frq

su3) x sU@) x (1) Fi; | Standard Model
1. Standard-Model-like theory: Xp .
Representation (37 2)1/6 (3, 1)_2/3 (3, 1)1/3 (1, 2) 1/2 (1, 1)_
1 ] ]51 _ S
Multiplicity [So([K5'] + 87 = 80| So(2[K "] = 1) [SoGIK " — & — &) <6(§1t§s7 sl) ><(3[(lz[§} —]37—)39>|

+ All gauge invariant 4D Yukawas realized.

2. Pati-Salam-like theory: X .

3. Trinification-like theory: Xp,

spectrum & Yukawas

SM via tops of dP»: [Lin,Weigand|
using NHC: [Grassi,Halverson,Shaneson,Taylor]



Construction of three family models i 4D

[Cveti¢,DK,Mayorga-Pena,Oehlmann,Reuter]
Model Building Strategy:

1. Construct Gy-flux by computing H ‘(/2 ) (Xp,) for Standard, Pati-Salam and

Trinification Models following [Cvetic,Grassi, DK, Piragual .

see also:[Marsano,Schafer-Nameki;Grimm, Hayashi;Cveti¢, Grimm,DK;Cveti¢,Grassi,DK,Piragua]

2. Compute chiralities
1 [Donagi, Wijnholt;Hayashi, Tatar,Toda,Watari,
/ Gy
Cr

X(R) = — — Yamazaki;Braun,Collinucci,Valandro;Marsano,
4 Schifer-Nameki]

3. Determine minimal number of families so that np; is integral & positive and

G4-flux quantized “ 3D CS-terms are integral (in dual M-theory).

= Explicit results for concrete fourfolds with base B = P,



Construction of three family models i 4D

Standard Model: (#(families),np3)

[Cveti¢, DK,Mayorga-Pena,Oehlmann,Reuter]

Pati-Salam: (#(families),np3)

Parameters
labelling models
(S7Sy) = (n7,n9)

<+ All models admit three families

<« Unification with three families

n\" |1 2 3 4 5 6 7 nr\" 1 2 3 4 5 6 T
n = one) - - 10| (13;204)
6 - (12:81) (21:42) - - 9 - (15140)
. _ _ (12:57)  (30:8) _ . 8 (33;94)  (10;119)  (9;90)
4 (42: 4) _ (30: 32) _ _ _ 7 - (9;100)  (6;77) (14;48)
\ - eum - _ - 50 6 | (15;108) (8:86) (21352) (12:46) (5:44)
2 | (45;16) (24:79) (21;66) (24;44) (3:64) 5 | (6:106)  (3544) 7 (30:16) 7
1 3 . C B 4 | (1:102)  (6:75)  (15:50) (8:42) (15;30) (6:41) (7:42)
) ~ R, 3 | (6:106) (3544)  —  (30;16) —  (3:44)
| eson @3 2 | (15;108)  (%:86) (21352) (12:46) (5:44)
‘ B ’ 1 - (9;100)  (6;77) (14;48)
’ 0 (33;94) (10;119)  (9;90)
1 - (11;140)
2 | (13;204)
Trinification: (# (families),np3)
W\ 1 2 3 1 5 6 7 8 9 10
10 | (5;120)
9 (3;94) (3;94)
8 (4;72) (8;69) (4;72)
7| (14;48) (7;54) (T;54) (14;48)
6 | (5:50) (8:44) (3;44) (8:44)  (5:50)
5 | (5;50) (5;42) (10;36) (10;36) (5:42)  (5;50)
4| (14:48) (8:44) (10;36) (16;30) (10;36) (8:44) (14;48) >
3 | (4:72) (7:54) (3:44) (10:36) (10;36) (7:54)  (4;72) pOSSlble.
2 | (3;04) (8;69) (7:54) (8:;44) (5:42) (AL (7;54) (8;69) (3;94)
1| (5:;120) (3:94) (4;72) (14;48) (5;50) (5;50) (14;48) (4;72) (3:94) (5:120)




Il. Z, discrete gauge groups beyond n=2

[DK,Mayorga-Pena,Oehlmann, Reuter,Piragua; Cvetic¢, Donagi, DK, Piragua, Poretschkin]

—p talk by Leontaris for discrete symmetries in F-theory GUTs

F-theory phenomenology:[Karozas,King,Leontaris, Meadowcroft;Leontaris]

Zio completely understood: (1) in M-theory (2) torsion homology of [(X) = see talk by Palti

[Braun,Morrison; Morrison, Taylor;Anderson,Garcia-Etxebarria, Grimm,Keitel;
Garcia-Etxebarria,Grimm, Keitel;Mayrhofer,Palti, Till, Weigand]



The geometry of Abelian discrete symmetries

Question: What is geometrical object associated to discrete gauge groups in F-theory?

+ know in field theory: Z,, from Higgsing a theory with U(1) by g=n matter.

Chain of Higgsings: U(1)! = U(1), g=n matter =— 7Z,,. l

Translation I to geometry I

Chain of conifold transitions: # sections == n-section: genus-one fibration X I

Proposal: Tate-Shafarevich group of genus-one fibration X==p [J](J(X)) D an

[Witten;deBoer,Dijkgraaf,Hori, Keurentjes,Morgan,Morrison,Sethi]

+ [HI(J(X)) only visible after circle compactification: labels different M-theory vacua

Here: Check for Z3 == need recent progress on understanding of U(1) models.



Global models with Zg discrete gauge groups

Field theory: Higgs dP,-model with U(1 ) —» U(1) with 7=3 matter
|

Geometry: CY with g=3 identified as dP;-fibration Xp;!

F—theory: LI(1)eq, (I)(3) W’ Zg
3

St with flux Stwith discrete

e=[ Aga flux ¢= / Apass.
St g1

U(I)KKXZ;), )

M-theory: U(1)xU(1)kk
KK-tower 3,1y, m=|3q+k|

U'(Dkx ¢ TI(J(X))

522/3 . <(I)(3,_2)>7£O UII(I)KK

/

= [dentification of different elements in ITI(J(X)) by finding Higgs-curves.
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Global models with Zs discrete gauge groups

Higgs field = shrinkable curves at codimension two

in X,

* £=1/3,(P3,-1))#0 and £=2/3,(®(3,-2))#0: shrinking Higgs curves yields

general

» Gpl :Zg

| cubic-fibration X B

[D.K., Mayorga Penna,Oehlmann,Piragua,Reuter]

+ Third vacuum £=0,{® 3 ¢))70 more involved  [Cvetic,Donagi,D.K. Piragua,Poretschkin]

2
+ candidate curve identified: class [c;; ;+ T | has

right charges (3,0)

% indirect evidence from Gromov-Witten invariant [V, (3.—1)+T72 —]

2
+ holom. curve in [c; ;+T ] explicitly visible in complete intersection resolution.



1. The modul space of rank two gauge groups in F-theory

[Cveti¢, DK, Piragua, Taylor]



T'he general question

Question: What are the geometries describing adjoint Higgsings G—9 U(1)™?
= Elliptic fibrations with higher rank MW-group crucial for F-theory moduli space.

Rank one case understood:
6D F-theory with SU(2) Higgses to model with U(1) described by quartic inP?(1,1,2).

[Morrison,Taylor]

adjoint VEV
SU(2) on with adjoints ;> U(1)
uning moduli

rk(MW)=0 rk(MW)=1

Here: Work out answer for rank two gauge groups SU(2)xSU(2), SU(3)

+ Higgsings to U(1)’ not seen in toric network

= need more general, non-toric U(1)° model.



1) A more general model with U(1)?




Construction of non-toric model with U(1)2

Any elliptic fibration X with MW-rank two is cubic. [Peligne;Borchmann, Mayrhofer Palti, Weigand;
Cveti¢, DK, Piragual]

u=>0 3
< ufo(u,v,w) + H(aw + b;w) =0
1=1
< fo = 31u2 + Souv + 331}2 + S5UW + SgUW —+ 38w2

+ Keep three rational points in elliptic fiber C at general positions

P=[0:=bi:a1] Q=1[0:=by:as] R=1[0:-b3:as]

= Coefficients a;, b; non-trivial polynomials: not considered before.

+ Construct elliptically fibered CY-manifold X from C and arbitrary B.
[Cveti¢, DK, Piragua, Taylor]



2) The low-energy effective theory




[Full 6D spectrum over general base B

Charges Multiplicity
(2,0) (2,0) = |az] - [b2
(0,2) Z(0,2) = |as| - |bs]
(-2,-2) T(—2,—2) = |ai] - [b1]
(-1,1) [|zcin = Q2be] + [s3]) - (las] 4 [b2]) — 22(20)
(-2,-1) |21 = 2[bs] + [s3]) - ([aa] + [bs]) — 22(02)
(-1,-2) |22 = @b+ ss]) - (laa] +[bo]) = 2219
(L) |70 T R e e
T e

— 433531 - ([as bal — 21 — 16202

O ™ et

= model specified by four divisor
classes [a1], [a2], [a3], [ss] on B

U(1)xU(1) charge lattice

§ o o

*—>

+ rich particle spectrum with new types of representations
+ checked cancellation of all 6D anomalies. ¢/



3) The moduli space




Geometry of Higgs transitions in F-theory

General strategy to reduce Mordell-Weil rank of X

+ tune moduli of X to place rational points on top of each other

u=20 3

: ufo(u,v,w) + H(aiv + bjw) =0

/ i=1

Q@




Geometry of Higgs transitions in F-theory

General strategy to reduce Mordell-Weil rank of X
+ tune moduli of X to place rational points on top of each other

u=20

wfa(u,v,w) + A (a1v + biw)?(azv + bzw) = 0
2 rk(MW)=2 =1: PQ—>0




Geometry of Higgs transitions in F-theory

General strategy to reduce Mordell-Weil rank of X

+ tune moduli of X to place rational points on top of each other

ufo(u,v,w) + Ao (arv + blw)S =0
+*rk(MW)=2 =>1: PQ—>0 not possible in

+»tk(MW)=1 »0: P R—>0 toricmodels

No U(1)’s, tuning induces non-Abelian group G in X
G=SU(2)xSU(2)xSU(3)

Higgsing back to Abelian theory by bifundamentals:

(2,1,2) (1,2,3)

U(1)2 SU2)xU(1)xSU(2) e SU(2)xSU(2)xSU(3)

Special cases: smaller G and Higgsing by adjoints.




Special cases: SU(2)1* and SU(3)

Different strata in moduli space of X yield “unHiggsed”' models with
1. G=SU(2)xSU(2) and adjoints
2. G=SU(3) and adjoints

= Reproduce exactly their most general Weierstrass models. ¢/

= Full spectra match. v/

1. SU2)xSU(2): 2. SU(3): °

Can add matter with charges +(2,2) to SU(3)-spectrum:
= Get first SU(3)-model with symmetric representation in global F-theory.



Special cases: SU(2)>and SU(3)

Different strata in moduli space of X yield “unHiggsed” models with
1. G=SU(2)xSU(2) and adjoints
2. G=SU(3) and adjoints

= Reproduce exactly their most general Weierstrass models. v/

= Full spectra match. v/

1. SU(2)xSU(2): 2. SU(3): *

Can add matter with charges +(2,2) to SU(3)-spectrum:
= Get first SU(3)-model with symmetric representation in global F-theory.



4) Global F-theory with symmetries of SU(5)




Global models of SU(3) with symmetric matter representations

[Cveti¢, DK, Piragua, Taylor]
Tuned Abelian model has I3-singularity over divisor with ordinary double point

singularity at a;=b;=0: T — {a%SS — a1b1s¢ + b%Sg — O}I

<= Weierstrass model looks like 5" ?
monodromy cover is irreducible D :=

Generic situation: Z,-monodromy

exchanges nodes in fiber around
1 —> 1™ vielding G=511(2)

B

+ Interplay between structure of T and fiberation: double point of T not deformable
[Morrison, Taylor]

= first global example with symmetric + antisymmetric matter at a;=b;=0



Global models of SU(3) with symmetric matter representations

~ |Cveti¢, DK, Piragua, Taylor]
Tuned Abelian model has I3-singularity over divisor with ordinary double point

singularity at a;=b;=0: T — {a%SS — aiby s + b%Sg =0}

+ Weierstrass model looks like /5"
monodromy cover is irreducible

Here: D = discriminant locus of T

= intersection pointsin D NT°
pair up: no monodromy

D :
T
= [31S Split: I35 yielding SU(3)

+ Interplay between structure of T and fiberation: double point of T not deformable
[Morrison, Taylor]

= first global example with symmetric + antisymmetric matter at a;=b;=0



IIl. Conclusions & Outlook




Summary

1. Analyzed all genus-one fibrations with fiber C g, in toric varieties associated to 16 2D
reflexive polytopes F;.

+ Full effective theories in 6D (= non-chiral 4D) determined: discrete gauge groups,...
+« Network of Higgsings relating all effective theories studied.

+ Construction of explicit three family SM, PS & Trinif. models.
2. Analysis of F-/M-theory vacua with Z3 discrete gauge group: all Higgs-curves found.

3. Construction of general, non-toric CY-elliptic fibration with U(1)?
+ Determination of full effective theory in 6D (= non-chiral 4D).
+ All models with rank two non-Abelian gauge groups embedded.

+ First explicit construction of SU(3) gauge theory with two-times symmetric
representation in global F-theory.

Outlook

+ Explore further phenomenology of all toric hypersurface fibrations: add Gs-flux,
compute chiralities... work with them!

+ Study non-toric models for phenomenology: new features expected.






