

Madrid June 2015

F-theory GUTs with Discrete Symmetry Extensions

George Leontaris

Ioannina University

GREECE

1

Outline of the Talk

- ▲ Introductory remarks
- ▲ F-theory and Elliptic Fibration
- ▲ F-GUTs with discrete symmetries
- \blacktriangle Mordell-Weil U(1) and GUTs
- ▲ Concluding Remarks

\mathcal{A}

Properties of Ordinary GUTs

★ interesting features

- ▲ Gauge coupling unification
- ▲ Assembling of SM fermions in a few irreps.
- ▲ Charge Quantisation

🛧 deficiencies

- fermion mass hierarchy and mixing not predicted
- Yukawa Lagrangian poorly constrained
- ▲ Baryon number non-conservation

... Solution requires new insights \dots such as: Discrete and U(1) symmetry extensions

 \blacktriangle These appear naturally in $\mathcal{F} - \mathcal{THEORY}$ constructions \blacktriangle

New Ingredients from F-theory

- **\star** Discrete and U(1) symmetries:
- necessary tools to suppress or eliminate undesired superpotential terms

★ Fluxes :

- ... truncate GUT irreps, eliminate coloured Higgs triplets, induce chirality...
- ***** "Internal" Geometry :
- ... determines SM arbitrary parameters from a handful of topological properties

 \mathcal{B}

F-theory and Elliptic Fibration

★ F-theory ★ (Vafa 1996)

Geometrisation of Type II-B superstring

II-B: closed string spectrum obtained by combining left and right moving open strings with NS and *R*-boundary conditions:

$$(NS_+, NS_+), (R_-, R_-), (NS_+, R_-), (R_-, NS_+)$$

Bosonic spectrum:

 (NS_+, NS_+) : graviton, dilaton and 2-form KB-field:

 $g_{\mu\nu}, \phi, B_{\mu\nu} \to B_2$

 (R_-, R_-) : scalar, 2- and 4-index fields (*p*-form potentials)

 $C_0, C_{\mu\nu}, C_{\kappa\lambda\mu\nu} \to C_p, \ p = 0, 2, 4$

Definitions (*F*-theory bosonic part)

- 1. String coupling: $g_s = e^{-\phi}$
- 2. Combining the two scalars C_0 , ϕ to one modulus:

$$\tau = C_0 + i e^{\phi} \to C_0 + \frac{i}{g_s}$$

IIB - action (see e.g. Denef, 0803:1194):

$$S_{IIB} \propto \int d^{10}x \sqrt{-g} R - \frac{1}{2} \int \frac{1}{(\mathrm{Im}\tau)^2} d\tau \wedge *d\overline{\tau} + \frac{1}{\mathrm{Im}\tau} G_3 \wedge *\overline{G}_3 + \frac{1}{2} \tilde{F}_5 \wedge *\tilde{F}_5 + C_4 \wedge H_3 \wedge F_3$$

Property:

Invariant under
$$SL(2,Z)$$
 S-duality:
$$\tau \to \frac{a\tau + b}{c\tau + d}$$

Elliptic Fibration described by \mathcal{W} eierstraß \mathcal{E} quation

$$y^2 = x^3 + f(w)xz^4 + g(w)z^6$$

For each point of B_3 , the above equation describes a torus

- 1. x, y, z homogeneous coordinates
- 2. $f(w), g(w) \rightarrow 8^{th}$ and 12^{th} degree polynomials.
- 3. Discriminant

$$\Delta(w) = 4 f^3 + 27 g^2$$

Fiber singularities at

 $\Delta(w) = 0 \to 24 \text{ roots } w_i$

Manifold Singularities

CY 4-fold: Red points: pinched torus \Rightarrow 7-branes $\perp B_3$

Kodaira classification:

- Type of Manifold singularity is specified by the vanishing order of $f(w), \, g(w)$ and $\Delta(w)$
- Singularities are classified in terms of \mathcal{ADE} Lie groups (*Kodaira*).

Interpretation of geometric singularities

 \bigcup CY_4 -Singularities \rightleftharpoons gauge symmetries

$$\mathbf{Groups} \rightarrow \left\{ egin{array}{c} SU(n) \ SO(m) \ \mathcal{E}_n \end{array}
ight.$$

Tate's Algorithm

$$y^{2} + \alpha_{1}x y z + \alpha_{3}y z^{3} = x^{3} + \alpha_{2}x^{2}z^{2} + \alpha_{4}x z^{4} + \alpha_{6}z^{6}$$

Table: Classification of Elliptic Singularities w.r.t. vanishing order of Tate's form coefficients α_i :

Group	$lpha_1$	$lpha_2$	$lpha_3$	$lpha_4$	$lpha_6$	Δ
SU(2n)	0	1	n	n	2n	2n
SU(2n+1)	0	1	n	n+1	2n + 1	2n + 1
SU(5)	0	1	2	3	5	5
SO(10)	1	1	2	3	5	7
\mathcal{E}_6	1	2	3	3	5	8
\mathcal{E}_7	1	2	3	3	5	9
\mathcal{E}_8	1	2	3	4	5	10

Basic ingredient in F-theory:

D7 - brane

GUTs are associated to 7-branes wrapping certain classes of *'internal'* 2-complex dim. surface $S \subset B_3$

▲ Gauge symmetry:

$\mathcal{E}_8 \to \mathbf{G_{GUT}} \times \mathcal{C}$

 $G_{GUT} = SU(5), \ SO(10), \ \dots$

 $\star C$ Commutant ... \Rightarrow monodromies:

 $U(1)^n$, or discrete symmetry S_n , A_n , D_n , Z_n

... acting as family or discrete symmetries

Model in this talk: $SU(5) : \mathcal{E}_8 \to SU(5) \times SU(5)_{\perp} \to \mathcal{C} = SU(5)_{\perp}$. Spectral Cover \mathcal{C} described by

$$\mathcal{C}: \sum_{k} b_k s^{5-k} = 0, \ b_1 = 0, \ \text{roots} \to \underline{t_i}$$

Matter resides in 10 and 5 along intersections with other 7-branes

 $\lambda_{t,b}$ -Yukawas at intersections and gauge symmetry enhancements (Heckman et al 0811.2417; Font et al 0907.4895; GG Ross, GKL, 1009.6000); (Cecotti et al 0910.0477; Camara et al, 1110,2206; Aparicio et al, 1104.2609,...) \mathcal{C}

Non-Abelian Discrete Symmetries

- Application: Spectral Cover splitting: $\mathcal{C}_5 o \mathcal{C}_4 imes \mathcal{C}_1$
- ▲ Motivation: The neutrino sector (*TB-mixing*)
- $\land C_4 \times C_1$ implies the splitting of the C_5 polynomial in two factors

$$\sum_{k} b_{k} s^{5-k} = (\underbrace{a_{1} + a_{2} s + a_{3} s^{2} + a_{4} s^{3} + a_{5} s^{4}}_{\mathcal{C}_{4}}) (\underbrace{a_{6} + a_{7} s}_{\mathcal{C}_{1}})$$

Topological properties of a_i are fixed in terms of those of b_k , by equating coefficients of same powers of s

$$b_0 = a_5 a_7, \ b_5 = a_1 a_6, \ etc...$$

Moreover:

- $\land C_1$: associated to a $\mathcal{U}(1)$
- $\land C_4$: reduction to
- (i) continuous SU(4) subgroup, or
- (ii) to Galois group $\in S_4$

(see Heckman et al, 0906.0581, Marsano et al, 09012.0272, I. Antoniadis and GKL 1308.1581)

Properties and Residual Spectral Cover Symmetry

▲ If $\mathcal{H} \in S_4$ the **Galois** group, final symmetry of the model is:

- $\land \mathcal{H} \in S_4$ is linked to specific topological properties of the polynomial coefficients a_i .
- \land a_i coefficients determine useful properties of the model, such as

i) **Geometric** symmetries $\rightarrow \mathcal{R}$ -parity

- *ii*) Flux restrictions on the matter curves
- Fluxes determine useful properties on the matter curves including :

Multiplicities and Chirality of matter/Higgs representations

Figure 1: S_4 and the relevant discrete subgroups

The Galois group in \mathcal{C}_4

Determination of the **Galois** group, requires examination of *(partially)* symmetric functions of roots t_i of the polynomial C_4 . For our purposes, it suffices to examine the Discriminant and the Resolvent

1.) The Discriminant Δ

$$\Delta = \delta^2$$
 where $\delta = \prod_{i < j} (t_i - t_j)$

 \land δ is invariant under S_4 -even permutations \Rightarrow \mathcal{A}_4

 Δ symmetric ightarrow can be expressed in terms of coefficients $a_i \in \mathcal{F}$

 $\Delta(t_i) \rightarrow \Delta(a_i)$

If $\Delta = \delta^2$, such that $\delta(a_i) \in \mathcal{F}$, then

 $\mathcal{H} \subseteq \mathcal{A}_4 \text{ or } V_4 \ (= Klein \ group)$

If $\Delta
eq \delta^2$, (i.e. $\delta(a_i) \notin \mathcal{F}$), then

 $\mathcal{H} \subseteq \mathcal{S}_4 \text{ or } \mathcal{D}_4$

2.) To study possible reductions of S_4 , A_4 to their subgroups, we examine the resolvent:

 $f(x) = (x - x_1)(x - x_2)(x - x_3)$

 $x_1 = t_1 t_2 + t_3 t_4, \ x_2 = t_1 t_3 + t_2 t_4, \ x_3 = t_2 t_3 + t_1 t_4$

 $x_{1,2,3}$ are invariant under the three *Dihedral groups* $D_4 \in S_4$.

Combined results of Δ and f(x):

	$\Delta eq \delta^2$	$\Delta = \delta^2$
f(x) irreducible	S_4	A_4
f(x) reducible	D_4, Z_4	V_4

Figure 2: S_4 to D_4

The induced restrictions on the coefficients a_i

1. Tracelessness condition $b_1 = 0$ demands (*Dudas Palti 1007.1297*)

 $a_4 = a_0 a_6, \quad a_5 = -a_0 a_7$

2. For $S_4
ightarrow D_4$, $\Delta
eq \delta^2$ (arXiv:1308.1581)

$$\left(\frac{a_2^2 a_5 - a_4^2 a_1}{3}\right)^2 \neq \left(\frac{16a_1 a_5 - a_2 a_4}{3}\right)^3$$

3. Reducibility of the function f(x) is achieved if

$$f(0) = 4a_5a_3a_1 - a_1a_4^2 - a_5a_2^2 = 0$$

Matter Parity

Spectral Cover eq. $\sum_{k} b_k s^{5-k}$, invariant under (see Hayashi et. al., 0910.2762)

$$s \to -s, b_k \to (-1)^k e^{i\chi} b_k$$

For C_4 (see I. Antoniadis, GKL, 1205.6930)

$$b_k = \sum_{n+m=12-k} a_m a_n \to$$

$$a_n \to e^{i\psi} e^{i(3-n)} a_n$$

Defining Equs of matter curves are expressed in terms of a_n 's.

\downarrow

... a Geometric Z_2 symmetry assigned to Matter Curves

SU(5)	Def. Eqn.	Parity	Content	D_4	t_5
10_{1}	κ	_	$Q_L + u_L^c + e_L^c$	1_{+-}	0
10_{2}	a_2	+	$u_L^c + \bar{e}_L^c$	1_{++}	0
10_{3}	a_2	+	$u_L^c + \bar{e}_L^c$	1_{++}	1
10_{4}	μ	—	$2Q_L + 4e_L^c$	2	0
5_a	a_2	+	$2 \bar{d}_L^c$	2	0
5_b	a_7	+	H_u	1_{++}	0
5_c	κa_7	—	$4d_L^c + 3L$	1_{+-}	0
5_d	a_2	+	H_d	1_{++}	-1
5_e	a_2	+	$ar{d_L^c}$	1_{+-}	-1
5_f	a_7	+	$2d_L^c$	2	-1

Table 1: Full spectrum for $SU(5) imes D_4 imes U(1)_{t_5}$ model.

Low Energy Spectrum	D_4 rep	$U(1)_{t_{5}}$	Z_2
Q_3, u_3^c, e_3^c	1_{+-}	0	—
u_2^c	1_{++}	1	+
u_1^c	1_{++}	0	+
$Q_{1,2}, e_{1,2}^c$	2	0	—
L_i, d_i^c	1_{+-}	0	—
$ u_3^c$	1_{+-}	0	—
$ u_{1,2}^c$	2	0	—
H_u	1_{++}	0	+
H_d	1_{++}	-1	+

Table 2: SM spectrum with $D_4 imes U(1)_{t_5} imes Z_2$ symmetry. (*Karozas et al 1505.00937*)

 \mathcal{D}_4 Phenomenology

Neutrino Sector

(Main Motivation for Non-Abelian Discrete Symmetries)

 $m_{\nu} = -m_D M_R^{-1} m_D^T$

result...

$$m_{\nu} \propto \begin{pmatrix} 1 + (z_1 - 2y)gz_1 & (1 - gyz_1)x_2 + (z_1 - y)gz_2 & (1 - gyz_1)x_3 \\ (1 - gyz_1)x_2 + (z_1 - y)gz_2 & x_2^2 - 2gyz_2x_2 + gz_2^2 & (x_2 - gyz_2)x_3 \\ (1 - gyz_1)x_3 & (x_2 - gyz_2)x_3 & x_3^2 \end{pmatrix}$$

Figure 3: Left: $\sin^2 \theta_{12}$ (3 σ) (blue-0.270, pink-0.304, yellow-0.344); Middle: $\sin^2 \theta_{23}$ (3 σ) (blue-0.382, pink-0.452, yellow-0.5); Right: $R = \Delta m_{23}^2 / \Delta m_{12}^2 = 31.34 (blue)$ and R = 34.16 (yellow). **Baryon Number Violation**

eliminated by flux $10_2 \rightarrow (Q, u^c, e^c) \rightarrow (-, u^c, e^c)$

 \exists parity violating term $10_2 \overline{5}_c \overline{5}_c \rightarrow \lambda_{dbu} u^c d^c d^c$ only! \rightarrow Neutron-antineutron oscillations

Figure 4: Feynman box graph for $n - \bar{n}$ oscillations (*Goity&Sher PLB 346(1995)69*)

Figure 5: λ_{dbu} bounds for: Blue: $M_{\tilde{u}} = M_{\tilde{c}} = 0.8 TeV$, Dashed: $M_{\tilde{u}} = M_{\tilde{c}} = 1 TeV$, Dotted: $M_{\tilde{u}} = M_{\tilde{c}} = 1.2 TeV$. ($M_{\tilde{b}_L} = M_{\tilde{b}_R} = 500 GeV$, $\tau = 10^8 sec$.).

 ${\mathcal E}$

Mordell-Weil U(1) and $\operatorname{GUT}\operatorname{s}$

★ A new class of Abelian Symmetries associated to Rational Sections of elliptic curves Mordell-Weil group ... finitely generated:

$$\underbrace{\mathbb{Z}\oplus\mathbb{Z}\oplus\cdots\oplus\mathbb{Z}}_{r}\oplus\mathcal{G}$$

Abelian group: Rank - r (*unknown*)

Torsion part: $\mathcal{G} \rightarrow$:

$$\mathcal{G} = \begin{cases} \mathbb{Z}_n & n = 1, 2, \dots, 10, 12 \\ \mathbb{Z}_k \times \mathbb{Z}_2 & k = 2, 4, 6, 8 \end{cases}$$

 \rightarrow ... models with new U(1)'s and *Discrete Symmetries from Mordell-Weil* (*Cvetic et al 1210.6094,1307.6425; Mayhofer et al, 1211.6742; Borchmann et al 1307.2902; Krippendorf et al, 1401.7844*)

Simplest (and perhaps most viable) Case: Rank-1 Mordell-Weil

Sections required: $[u:v:w] = [1:1:2] \rightarrow$

 $\mathbb{P}_{(1,1,2)}$ -weighted projective space

... described by the equation: (see Morrison & Park 1208.2695)

$$w^2 + a_2 v^2 w = u(b_0 u^3 + b_1 u^2 v + b_2 u v^2 + b_3 v^3)$$

Weierstrass model obtained Birational Map

$$v = \frac{a_2 y}{b_3^2 u^2 - a_2^2 (b_2 u^2 + x)}$$
(1)

$$w = \frac{b_3 u y}{b_3^2 u^2 - a_2^2 (b_2 u^2 + x)} - \frac{x}{a_2}$$
(2)

$$u = z$$
(3)

These lead to the Weierstraß equation in Tate's form

$$y^{2} + 2\frac{b_{3}}{a_{2}}xyz \pm b_{1}a_{2}yz^{3} = x^{3} \pm \left(b_{2} - \frac{b_{3}^{2}}{a_{2}^{2}}\right)x^{2}z^{2}$$
$$-b_{0}a_{2}^{2}xz^{4} - b_{0}a_{2}^{2}\left(b_{2} - \frac{b_{3}^{2}}{a_{2}^{2}}\right)z^{6}$$

but now Tate's coefficients are not all independent !

$$y^{2} + 2\frac{b_{3}}{a_{2}}xyz \pm b_{1}a_{2}yz^{3} = x^{3} \pm \left(b_{2} - \frac{b_{3}^{2}}{a_{2}^{2}}\right)x^{2}z^{2}$$
$$-b_{0}a_{2}^{2}xz^{4} - b_{0}a_{2}^{2}\left(b_{2} - \frac{b_{3}^{2}}{a_{2}^{2}}\right)z^{6}$$

... comparing with standard general Tate's form:

$$y^{2} + \alpha_{1}xyz + \alpha_{3}yz^{3} = x^{3} + \alpha_{2}x^{2}z^{2} - \alpha_{4}xz^{4} - \alpha_{6}z^{6}$$

Observation:

$$\alpha_6 = \alpha_2 \alpha_4$$

Implications on the non-abelian structure

Assume local expansion of Tate's coefficients

$$\alpha_k = a_{k,0} + \alpha_{k,1} \xi + \cdots$$

Vanishing orders for SU(2n):

$$\alpha_2 = a_{2,1}\xi + \cdots$$
$$\alpha_4 = \alpha_{4,n}\xi^n + \cdots$$
$$\alpha_6 = \alpha_{6,2n}\xi^{2n} + \cdots$$

$$\alpha_6 = \alpha_2 \alpha_4 \to \alpha_{2,1} \alpha_{4,n} \xi^{n+1} = \alpha_{6,2n} \xi^{2n} \implies n = 1$$

...from SU(n) series, compatible are Only:

SU(2), and SU(3)

... extending the analysis to exceptional groups...

Viable non-Abelian GUTs with $U(1)_{MW}$

and the vanishing order of the coefficients $a_2 \sim a_{2,m} \xi^m, b_k \sim b_{k,n} \xi^n$

Group	a_2	b_0	b_1	b_2	b_3
${\cal E}_6$	1	1	1	2	2
	0	3	1	2	1
${\cal E}_7$	1	1	2	2	2
	0	3	3	2	1

This simple property ... perhaps suggestive for a model

 $\mathcal{E}_6 \times U(1)_{\mathcal{MW}}$

Remarks

Spectral Cover:

• Analysis of model with gauge symmetry

 $SU(5) \times \mathcal{D}_4 \times U(1)$

- Non-abelian discrete symmetries naturally incorporated
- $n \bar{n}$ oscillations, suppressed proton decay

Mordell-Weil:

• ... gauge symmetries with one abelian Mordell-Weil:

 $\mathcal{E}_6 \times U(1)_{MW}, \ \mathcal{E}_7 \times U(1)_{MW}$

- ... extra $U(1)_{MW}$ might have interesting implications to Model building ...
- Torsion group: possible explanation of discrete symmetries...

STRING PHENO 2016

15th conference in the String Phenomenology Conference series

Ioannina,Greece, June 20-24
 http://stringpheno2016.physics.uoi.gr
 e-mail: stringpheno2016@conf.uoi.gr