F-theory GUTs with Discrete Symmetry Extensions

George Leontaris

Ioannina University
GREEC

Outline of the Talk
A Introductory remarks
A F-theory and Elliptic Fibration
A F-GUTs with discrete symmetries
© Mordell-Weil $U(1)$ and GUTs
© Concluding Remarks

\mathcal{A}

Properties of Ordinary GUTs

interesting features

Δ Gauge coupling unification
\triangle Assembling of SM fermions in a few irreps.
\triangle Charge Quantisation

A fermion mass hierarchy and mixing not predicted
© Yukawa Lagrangian poorly constrained

- Baryon number non-conservation
... Solution requires new insights ... such as:
Discrete and $U(1)$ symmetry extensions
Δ These appear naturally in $\mathcal{F}-\mathcal{T} \mathcal{H} \mathcal{O} \mathcal{R} \mathcal{V}$ constructions Δ

New Ingredients from F-theory

* Discrete and $U(1)$ symmetries:
- necessary tools to suppress or eliminate undesired superpotential terms
* Fluxes:
- ... truncate GUT irreps, eliminate coloured Higgs triplets, induce chirality...
* "Internal" Geometry :
- ... determines SM arbitrary parameters from a handful of topological properties

F-theory and Elliptic Fibration

\star F-theory

(Vafa 1996)

Geometrisation of Type II-B superstring

II-B: closed string spectrum obtained by combining left and right moving open strings with NS and R-boundary conditions:

$$
\left(N S_{+}, N S_{+}\right),\left(R_{-}, R_{-}\right),\left(N S_{+}, R_{-}\right),\left(R_{-}, N S_{+}\right)
$$

Bosonic spectrum:

$\left(N S_{+}, N S_{+}\right)$: graviton, dilaton and 2-form KB-field:

$$
g_{\mu \nu}, \phi, B_{\mu \nu} \rightarrow B_{2}
$$

$\left(R_{-}, R_{-}\right)$: scalar, 2- and 4-index fields (p-form potentials)

$$
C_{0}, C_{\mu \nu}, C_{\kappa \lambda \mu \nu} \rightarrow C_{p}, p=0,2,4
$$

Definitions (F-theory bosonic part)

1. String coupling: $g_{s}=e^{-\phi}$
2. Combining the two scalars C_{0}, ϕ to one modulus:

$$
\tau=C_{0}+i e^{\phi} \rightarrow C_{0}+\frac{i}{g_{s}}
$$

$$
\begin{aligned}
& \text { IIB - action (see e.g. Denef, 0803:1194): } \\
& S_{I I B} \propto \int d^{10} x \sqrt{-g} R-\frac{1}{2} \int \frac{1}{(\operatorname{Im} \tau)^{2}} d \tau \wedge * d \bar{\tau} \\
&+\frac{1}{\operatorname{Im} \tau} G_{3} \wedge * \bar{G}_{3}+\frac{1}{2} \tilde{F}_{5} \wedge * \tilde{F}_{5}+C_{4} \wedge H_{3} \wedge F_{3}
\end{aligned}
$$

Property:
Invariant under $S L(2, Z)$ S-duality:

$$
\tau \rightarrow \frac{a \tau+b}{c \tau+d}
$$

FIBRATION

F-theory $\mathcal{R}^{3,1} \times \mathcal{X}$
$\rightrightarrows \mathcal{X}$, elliptically fibered $\mathbf{C Y} 4$-fold over $B_{3} \leftleftarrows$
\Downarrow
Δ a torus $\tau=C_{0}+\imath / g_{s}$ at each point of B_{3}

Elliptic Fibration

described by \mathcal{W} eierstraß \mathcal{E} quation

$$
y^{2}=x^{3}+f(w) x z^{4}+g(w) z^{6}
$$

For each point of B_{3}, the above equation describes a torus

1. x, y, z homogeneous coordinates
2. $f(w), g(w) \rightarrow 8^{t h}$ and $12^{\text {th }}$ degree polynomials.
3. Discriminant

$$
\Delta(w)=4 f^{3}+27 g^{2}
$$

Fiber singularities at

$$
\Delta(w)=0 \rightarrow 24 \text { roots } w_{i}
$$

\Downarrow

Manifold Singularities

CY 4-fold: Red points: pinched torus $\Rightarrow 7$-branes $\perp B_{3}$

Kodaira classification:

- Type of Manifold singularity is specified by the vanishing order of $f(w), g(w)$ and $\Delta(w)$
- Singularities are classified in terms of $\mathcal{A} \mathcal{D} \mathcal{E}$ Lie groups (Kodaira).

Interpretation of geometric singularities

\qquad
$\qquad Y_{4}$-Singularities \rightleftarrows
\rightleftarrows
gauge symmetries

$$
\text { Groups } \rightarrow\left\{\begin{array}{c}
S U(n) \\
S O(m) \\
\mathcal{E}_{n}
\end{array}\right.
$$

Tate's Algorithm

$$
y^{2}+\alpha_{1} x y z+\alpha_{3} y z^{3}=x^{3}+\alpha_{2} x^{2} z^{2}+\alpha_{4} x z^{4}+\alpha_{6} z^{6}
$$

Table: Classification of Elliptic Singularities w.r.t. vanishing order of Tate's form coefficients α_{i} :

Group	α_{1}	α_{2}	α_{3}	α_{4}	α_{6}	Δ
$S U(2 n)$	0	1	n	n	$2 n$	$2 n$
$S U(2 n+1)$	0	1	n	$n+1$	$2 n+1$	$2 n+1$
$S U(5)$	0	1	2	3	5	5
$S O(10)$	1	1	2	3	5	7
\mathcal{E}_{6}	1	2	3	3	5	8
\mathcal{E}_{7}	1	2	3	3	5	9
\mathcal{E}_{8}	1	2	3	4	5	10

Basic ingredient in F-theory:

$$
D 7 \text { - brane }
$$

GUTs are associated to 7-branes wrapping certain classes of 'internal' $\mathbf{2}$-complex dim. surface $\mathbf{S} \subset B_{3}$
© Gauge symmetry:

$$
\mathcal{E}_{8} \rightarrow \mathbf{G}_{\mathbf{G U T}} \times \mathcal{C}
$$

$\Delta G_{G U T}=S U(5), S O(10), \ldots$
$\star \mathcal{C}$ Commutant ... \rightrightarrows monodromies:

$$
U(1)^{n}, \text { or discrete symmetry } S_{n}, A_{n}, D_{n}, Z_{n}
$$

... acting as family or discrete symmetries

Model in this talk: $S U(5): \mathcal{E}_{8} \rightarrow S U(5) \times S U(5)_{\perp} \rightarrow \mathcal{C}=S U(5)_{\perp}$.
Spectral Cover \mathcal{C} described by

$$
\mathcal{C}: \sum_{k} b_{k} s^{5-k}=0, b_{1}=0, \text { roots } \rightarrow t_{i}
$$

Matter resides in 10 and $\overline{5}$ along intersections with other 7 -branes

$\lambda_{t, b}$-Yukawas at intersections and gauge symmetry enhancements (Heckman et al 0811.2417; Font et al 0907.4895; GG Ross, GKL, 1009.6000); (Cecotti et al 0910.0477; Camara et al, 1110,2206; Aparicio et al, 1104.2609,...)

Non-Abelian Discrete Symmetries
Δ Application: Spectral Cover splitting: $\mathcal{C}_{5} \rightarrow \mathcal{C}_{4} \times \mathcal{C}_{1}$
\triangle Motivation: The neutrino sector (TB-mixing)
$\Delta \mathcal{C}_{4} \times \mathcal{C}_{1}$ implies the splitting of the \mathcal{C}_{5} polynomial in two factors

$$
\sum_{k} b_{k} s^{5-k}=(\underbrace{a_{1}+a_{2} s+a_{3} s^{2}+a_{4} s^{3}+a_{5} s^{4}}_{\mathcal{C}_{4}})(\underbrace{a_{6}+a_{7} s}_{\mathcal{C}_{1}})
$$

Topological properties of a_{i} are fixed in terms of those of b_{k}, by equating coefficients of same powers of s

$$
b_{0}=a_{5} a_{7}, b_{5}=a_{1} a_{6}, \text { etc } \ldots
$$

Moreover:
$\Delta \mathcal{C}_{1}$: associated to a $\mathcal{U}(1)$
$\Delta \mathcal{C}_{4}$: reduction to
(i) continuous $S U(4)$ subgroup, or
(ii) to Galois group $\in S_{4}$
(see Heckman et al, 0906.0581, Marsano et al, 09012.0272, I. Antoniadis and GKL 1308.1581)

Properties and Residual Spectral Cover Symmetry

Δ If $\mathcal{H} \in S_{4}$ the Galois group, final symmetry of the model is:

$\Delta \mathcal{H} \in S_{4}$ is linked to specific topological properties of the polynomial coefficients a_{i}.
Δa_{i} coefficients determine useful properties of the model, such as
i) Geometric symmetries $\rightarrow \mathcal{R}$-parity
ii) Flux restrictions on the matter curves
Δ Fluxes determine useful properties on the matter curves including:
Multiplicities and Chirality of matter/Higgs representations

Figure 1: S_{4} and the relevant discrete subgroups

The Galois group in \mathcal{C}_{4}

Determination of the Galois group, requires examination of (partially) symmetric functions of roots t_{i} of the polynomial \mathcal{C}_{4}. For our purposes, it suffices to examine the Discriminant and the Resolvent
1.) The Discriminant Δ

$$
\Delta=\delta^{2} \text { where } \delta=\prod_{i<j}\left(t_{i}-t_{j}\right)
$$

$\Delta \delta$ is invariant under S_{4}-even permutations $\Rightarrow \mathcal{A}_{4}$
Δ symmetric \rightarrow can be expressed in terms of coefficients $a_{i} \in \mathcal{F}$

$$
\Delta\left(t_{i}\right) \rightarrow \Delta\left(a_{i}\right)
$$

If $\Delta=\delta^{2}$, such that $\delta\left(a_{i}\right) \in \mathcal{F}$, then

$$
\mathcal{H} \subseteq \mathcal{A}_{4} \text { or } V_{4} \quad(=\text { Klein group })
$$

If $\Delta \neq \delta^{2}$, (i.e. $\delta\left(a_{i}\right) \notin \mathcal{F}$), then

$$
\mathcal{H} \subseteq \mathcal{S}_{4} \text { or } \mathcal{D}_{4}
$$

2.) To study possible reductions of S_{4}, A_{4} to their subgroups, we examine the resolvent:

$$
\begin{gathered}
f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
x_{1}=t_{1} t_{2}+t_{3} t_{4}, \quad x_{2}=t_{1} t_{3}+t_{2} t_{4}, \quad x_{3}=t_{2} t_{3}+t_{1} t_{4}
\end{gathered}
$$

$x_{1,2,3}$ are invariant under the three Dihedral groups $D_{4} \in S_{4}$.
Combined results of Δ and $f(x)$:

	$\Delta \neq \delta^{2}$	$\Delta=\delta^{2}$
$f(x)$ irreducible	S_{4}	A_{4}
$f(x)$ reducible	D_{4}, Z_{4}	V_{4}

Figure 2: S_{4} to D_{4}

The induced restrictions on the coefficients a_{i}

1. Tracelessness condition $b_{1}=0$ demands (Dudas\& Palti 1007.1297)

$$
a_{4}=a_{0} a_{6}, \quad a_{5}=-a_{0} a_{7}
$$

2. For $S_{4} \rightarrow D_{4}, \Delta \neq \delta^{2}$ (arXiv:1308.1581)

$$
\left(a_{2}^{2} a_{5}-a_{4}^{2} a_{1}\right)^{2} \neq\left(\frac{16 a_{1} a_{5}-a_{2} a_{4}}{3}\right)^{3}
$$

3. Reducibility of the function $f(x)$ is achieved if

$$
f(0)=4 a_{5} a_{3} a_{1}-a_{1} a_{4}^{2}-a_{5} a_{2}^{2}=0
$$

Matter Parity

Spectral Cover eq. $\sum_{k} b_{k} s^{5-k}$, invariant under (see Hayashi et. al., 0910.2762)

$$
s \rightarrow-s, b_{k} \rightarrow(-1)^{k} e^{i \chi} b_{k}
$$

For C_{4} (see I. Antoniadis, GKL, 1205.6930)

$$
\begin{gathered}
b_{k}=\sum_{n+m=12-k} a_{m} a_{n} \rightarrow \\
a_{n} \rightarrow e^{i \psi} e^{i(3-n)} a_{n}
\end{gathered}
$$

Defining Equs of matter curves are expressed in terms of a_{n} 's.
... a Geometric Z_{2} symmetry assigned to Matter Curves

$S U(5)$	Def. Eqn.	Parity	Content	D_{4}	t_{5}
10_{1}	κ	-	$Q_{L}+u_{L}^{c}+e_{L}^{c}$	1_{+-}	0
10_{2}	a_{2}	+	$u_{L}^{c}+\bar{e}_{L}^{c}$	1_{++}	0
10_{3}	a_{2}	+	$u_{L}^{c}+\bar{e}_{L}^{c}$	1_{++}	1
10_{4}	μ	-	$2 Q_{L}+4 e_{L}^{c}$	2	0
5_{a}	a_{2}	+	$2 \bar{d}_{L}^{c}$	2	0
5_{b}	a_{7}	+	H_{u}	1_{++}	0
5_{c}	κa_{7}	-	$4 d_{L}^{c}+3 L$	1_{+-}	0
5_{d}	a_{2}	+	H_{d}	1_{++}	-1
5_{e}	a_{2}	+	$\overline{d_{L}^{c}}$	1_{+-}	-1
5_{f}	a_{7}	+	$2 d_{L}^{c}$	2	-1

Table 1: Full spectrum for $S U(5) \times D_{4} \times U(1)_{t_{5}}$ model.

Low Energy Spectrum	D_{4} rep	$U(1)_{t_{5}}$	Z_{2}
$Q_{3}, u_{3}^{c}, e_{3}^{c}$	1_{+-}	0	-
u_{2}^{c}	1_{++}	1	+
u_{1}^{c}	1_{++}	0	+
$Q_{1,2}, e_{1,2}^{c}$	2	0	-
L_{i}, d_{i}^{c}	1_{+-}	0	-
ν_{3}^{c}	1_{+-}	0	-
$\nu_{1,2}^{c}$	2	0	-
H_{u}	1_{++}	0	+
H_{d}	1_{++}	-1	+

Table 2: SM spectrum with $D_{4} \times U(1)_{t_{5}} \times Z_{2}$ symmetry. (Karozas et al 1505.00937)

\mathcal{D}_{4}
 Phenomenology

Neutrino Sector

(Main Motivation for Non-Abelian Discrete Symmetries)

$$
m_{\nu}=-m_{D} M_{R}^{-1} m_{D}^{T}
$$

result...

$$
m_{\nu} \propto\left(\begin{array}{ccc}
1+\left(z_{1}-2 y\right) g z_{1} & \left(1-g y z_{1}\right) x_{2}+\left(z_{1}-y\right) g z_{2} & \left(1-g y z_{1}\right) x_{3} \\
\left(1-g y z_{1}\right) x_{2}+\left(z_{1}-y\right) g z_{2} & x_{2}^{2}-2 g y z_{2} x_{2}+g z_{2}^{2} & \left(x_{2}-g y z_{2}\right) x_{3} \\
\left(1-g y z_{1}\right) x_{3} & \left(x_{2}-g y z_{2}\right) x_{3} & x_{3}^{2}
\end{array}\right)
$$

Figure 3: Left: $\sin ^{2} \theta_{12}(3 \sigma)$ (blue-0.270, pink-0.304, yellow-0.344); Middle: $\sin ^{2} \theta_{23}(3 \sigma)$ (blue-0.382, pink-0.452, yellow-0.5); Right: $R=\Delta m_{23}^{2} / \Delta m_{12}^{2}=31.34$ (blue) and $R=34.16$ (yellow).

$$
\begin{gathered}
\text { Baryon Number Violation } \\
\text { eliminated by flux } \\
10_{2} \rightarrow\left(Q, u^{c}, e^{c}\right) \rightarrow\left(-, u^{c}, e^{c}\right)
\end{gathered}
$$

\exists parity violating term $102 \overline{5}_{c} \overline{5}_{c} \rightarrow \lambda_{d b u} u^{c} d^{c} d^{c}$ only! \rightarrow Neutron-antineutron oscillations

Figure 4: Feynman box graph for $n-\bar{n}$ oscillations (Goity\&Sher PLB 346(1995)69)

Figure 5: $\lambda_{d b u}$ bounds for: Blue: $M_{\tilde{u}}=M_{\tilde{c}}=0.8 \mathrm{TeV}$, Dashed: $M_{\tilde{u}}=M_{\tilde{c}}=1 \mathrm{TeV}$, Dotted: $M_{\tilde{u}}=M_{\tilde{c}}=1.2 \mathrm{TeV} .\left(M_{\tilde{b}_{L}}=M_{\tilde{b}_{R}}=500 \mathrm{GeV}, \tau=10^{8}\right.$ sec. $)$.

\mathcal{E}

Mordell-Weil $U(1)$ and GUT s
\star A new class of Abelian Symmetries associated to Rational Sections of elliptic curves
Mordell-Weil group ... finitely generated:

$$
\underbrace{\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{r} \oplus \mathcal{G}
$$

Abelian group: Rank - r (unknown) Torsion part: $\mathcal{G} \rightarrow$:

$$
\mathcal{G}= \begin{cases}\mathbb{Z}_{n} & n=1,2, \ldots, 10,12 \\ \mathbb{Z}_{k} \times \mathbb{Z}_{2} & k=2,4,6,8\end{cases}
$$

\rightarrow... models with new $U(1)$'s and Discrete Symmetries from Mordell-Weil
(Cvetic et al 1210.6094,1307.6425; Mayhofer et al, 1211.6742; Borchmann et al 1307.2902; Krippendorf et al, 1401.7844)

Simplest (and perhaps most viable) Case: Rank-1 Mordell-Weil
Sections required: $[u: v: w]=[1: 1: 2] \rightarrow$

$$
\mathbb{P}_{(1,1,2) \text {-weighted projective space }}
$$

... described by the equation: (see Morrison \& Park 1208.2695)

$$
w^{2}+a_{2} v^{2} w=u\left(b_{0} u^{3}+b_{1} u^{2} v+b_{2} u v^{2}+b_{3} v^{3}\right)
$$

Weierstrass model obtained
Birational Map

$$
\begin{align*}
v & =\frac{a_{2} y}{b_{3}^{2} u^{2}-a_{2}^{2}\left(b_{2} u^{2}+x\right)} \tag{1}\\
w & =\frac{b_{3} u y}{b_{3}^{2} u^{2}-a_{2}^{2}\left(b_{2} u^{2}+x\right)}-\frac{x}{a_{2}} \tag{2}\\
u & =z \tag{3}
\end{align*}
$$

These lead to the Weierstraß equation in Tate's form

$$
\begin{aligned}
y^{2}+2 \frac{b_{3}}{a_{2}} x y z \pm b_{1} a_{2} y z^{3}= & x^{3} \pm\left(b_{2}-\frac{b_{3}^{2}}{a_{2}^{2}}\right) x^{2} z^{2} \\
& -b_{0} a_{2}^{2} x z^{4}-b_{0} a_{2}^{2}\left(b_{2}-\frac{b_{3}^{2}}{a_{2}^{2}}\right) z^{6}
\end{aligned}
$$

but now Tate's coefficients are not all independent!

$$
\begin{aligned}
y^{2}+2 \frac{b_{3}}{a_{2}} x y z \pm b_{1} a_{2} y z^{3}= & x^{3} \pm\left(b_{2}-\frac{b_{3}^{2}}{a_{2}^{2}}\right) x^{2} z^{2} \\
& -b_{0} a_{2}^{2} x z^{4}-b_{0} a_{2}^{2}\left(b_{2}-\frac{b_{3}^{2}}{a_{2}^{2}}\right) z^{6}
\end{aligned}
$$

... comparing with standard general Tate's form:

$$
y^{2}+\alpha_{1} x y z+\alpha_{3} y z^{3}=x^{3}+\alpha_{2} x^{2} z^{2}-\alpha_{4} x z^{4}-\alpha_{6} z^{6}
$$

Observation:

$$
\alpha_{6}=\alpha_{2} \alpha_{4}
$$

Implications on the non-abelian structure
Assume local expansion of Tate's coefficients

$$
\alpha_{k}=a_{k, 0}+\alpha_{k, 1} \xi+\cdots
$$

Vanishing orders for $S U(2 n)$:

$$
\begin{gathered}
\alpha_{2}=a_{2,1} \xi+\cdots \\
\alpha_{4}=\alpha_{4, n} \xi^{n}+\cdots \\
\alpha_{6}=\alpha_{6,2 n} \xi^{2 n}+\cdots \\
\alpha_{6}=\alpha_{2} \alpha_{4} \rightarrow \alpha_{2,1} \alpha_{4, n} \xi^{n+1}=\alpha_{6,2 n} \xi^{2 n} \Rightarrow n=1
\end{gathered}
$$

...from $S U(n)$ series, compatible are Only:

$$
S U(2), \text { and } S U(3)
$$

... extending the analysis to exceptional groups...
Viable non-Abelian GUTs with $U(1)_{M W}$
and the vanishing order of the coefficients $a_{2} \sim a_{2, m} \xi^{m}, b_{k} \sim b_{k, n} \xi^{n}$

Group	a_{2}	b_{0}	b_{1}	b_{2}	b_{3}
\mathcal{E}_{6}	1	1	1	2	2
	0	3	1	2	1
\mathcal{E}_{7}	1	1	2	2	2
	0	3	3	2	1

This simple property ... perhaps suggestive for a model

$$
\mathcal{E}_{6} \times U(1)_{\mathcal{M} \mathcal{W}}
$$

Remarks

Spectral Cover:

- Analysis of model with gauge symmetry

$$
S U(5) \times \mathcal{D}_{4} \times U(1)
$$

- Non-abelian discrete symmetries naturally incorporated
- $n-\bar{n}$ oscillations, suppressed proton decay

Mordell-Weil:

- ... gauge symmetries with one abelian Mordell-Weil:

$$
\mathcal{E}_{6} \times U(1)_{M W}, \mathcal{E}_{7} \times U(1)_{M W}
$$

- ... extra $U(1)_{M W}$ might have interesting implications to Model building ...
- Torsion group: possible explanation of discrete symmetries...

STRING PHENO 2016

15th conference in the
String Phenomenology Conference series

- Ioannina, Greece, June 20-24
http://stringpheno2016.physics.uoi.gr
e-mail: stringpheno2016@conf.uoi.gr

