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A

Properties of Ordinary GUT's



Gauge coupling unification
Assembling of SM fermions in a few irreps.
Charge Quantisation
% deficiencies
A fermion mass hierarchy and mixing not predicted
A Yukawa Lagrangian poorly constrained
A Baryon number non-conservation

... Solution requires new insights ... such as:

Discrete and U (1) symmetry extensions

A These appear naturally in constructions A



New Ingredients from F-theory

Discrete and U (1) symmetries:

® necessary tools to suppress or eliminate undesired superpotential terms
Fluxes :

® ... truncate GUT irreps, eliminate Higgs triplets, induce chirality...
“Internal” Geometry :

® ... determines SM arbitrary parameters from a handful of properties



F-theory and Elliptic Fibration



% F-theory %
(Vafa 1996)

Geometrisation of Type |I-B superstring

lI-B: closed string spectrum obtained by combining left and right moving open strings with NS and

R-boundary conditions:

 (NS.,R_), (R_,NS,)

Bosonic spectrum:

. graviton, dilaton and 2-form KB-field:

Juv, o, Bw/ — By
. scalar, 2- and 4-index fields (p-form potentials)

CO) C,UJ/7 CFL)\,UJ/ — Cpa p=0,2,4



Definitions (F'-theory bosonic part)
1. String coupling: g5 = e~ ?

2. Combining the two scalars C'y, ¢ to one modulus:

1
T:CQ+i€¢—>CO+—
Js

lIB - action (see e.g. Denef, 0803:1194):

1 1
Srrp /leZC\/—gR— —/ dr N\ *dT
2 )] (Imr)?
1 — 1 -~ ~
+ —Gg/\*G3+—F5/\*F5—|—C4/\H3/\F3
Im7 2

Property:

Invariant under S L(2, Z) S-duality:

aT+b

T = ct+d




FIBRATION
F-theory R3>! x X
— X, elliptically fibered CY 4-fold over B3

4

atorus 7 = Cy + 2/ g, at each point of Bj




described by WWeierstral £ quation

vt o= a7+ f(w) 2zt + g(w)2"
For each point of B3, the above equation describes a torus
1. x,vy, z homogeneous coordinates
2. f(w), g(w) — 8" and 12!" degree polynomials.

3. Discriminant

A(w) =4 f° + 27 ¢

Fiber singularities at
A(w) = 0 — 24 roots w;

4
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Manifold Singularities

CY 4-fold: Red points: pinched torus = 7-branes | B3
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e Type of Manifold singularity is specified by the vanishing order of f(w), g(w) and A(w)
e Singularities are classified in terms of A D £ Lie groups (Kodaira).

Interpretation of geometric singularities

4

C'Y,-Singularities < gauge symmetries

/

SU (n)
— ¢ SO(m)
gn
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Tate’s Algorithm

6

y2 —|—oz1xyz—|—oz3yz3 :x3+a2x2z2—|—a4x24—|—a6z

Table: Classification of Elliptic Singularities w.r.t. vanishing order of Tate’s form coefficients «;:

Group a1 | as | as oy g A
SU (2n) 0| 1 | n n 2n 2n
SU2n+1)| 0 | 2 | n |n+1|2n+1|2n+1
SU(5) o | 1 | 2 3 5 5
SO(10) 1|1 | 2 3 5 7
Ee 1|2 | 3 3 5 8
Eq 1| 2| 3 3 5 9
Es 1 2 3 4 5 10
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Basic ingredient in F-theory:
DT - brane

GUTs are associated to 7-branes wrapping certain classes of ‘internal’ 2-complex dim. surface S C Bj

A Gauge symmetry:

88 — GGUT x C

AGoyr = SU<5>, 50(10),

C Commutant ... — monodromies:
U(1)", ordiscrete symmetry S,,, A,, D,, Z,

... acting as family or discrete symmetries

14



Model in this talk: SU(5): Eg — SU(5) x SU(5)L — C =SU(5) ..
Spectral Cover C described by

C: Zbks5_k =0, by =0, roots — ¢;
k

Matter resides in 10 and 5 along intersections with other 7-branes

SU(5) bulk

S0(12)

)\t,b-Yukawas at intersections and gauge symmetry enhancements
( Heckman et al 0811.2417; Font et al 0907.4895; GG Ross, GKL, 1009.6000);
( Cecotti et al 0910.0477; Camara et al, 1110,2206; Aparicio et al, 1104.2609,...)
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Non-Abelian Discrete Symmetries
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Application: Spectral Cover splitting: Cs — C4 X Cy

Motivation: The neutrino sector (TB-mixing)

C4 X C; implies the splitting of the Cs polynomial in two factors

Zbks a1 + a9s + azs® + ass —|—a53‘i)(96 —|—a7§)

na

C4 Cl

Topological properties of a; are fixed in terms of those of b, by equating coefficients of same powers of s
bo = asa7, bs = ajag, etc...

Moreover:
C; : associatedto a /(1)
C, : reduction to
() continuous subgroup, or
(47) to Galois group € Sy
(see Heckman et al, 0906.0581, Marsano et al, 09012.0272, |. Antoniadis and GKL 1308.1581)
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Properties and Residual Spectral Cover Symmetry

If H € S, the Galois group, final symmetry of the model is:

SU(5)GUT X H X Z/[(l)

~
famaly symmetry

‘H € S, is linked to specific topological properties of the polynomial coefficients a;.

a,; coefficients determine useful properties of the model, such as

7) symmetries — R-parity

11) Flux restrictions on the matter curves
Fluxes determine useful properties on the matter curves including :

Multiplicities and Chirality of matter/Higgs representations

18
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Figure 1: .S, and the relevant discrete subgroups
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The Galois groupin Cy4

Determination of the Galois group, requires examination of (partially) symmetric functions of roots ¢; of

the polynomial C4. For our purposes, it suffices to examine the Discriminant and the Resolvent

1.) The Discriminant A
A = §% where § = I_I(tZ —t5)
1<J
0 is invariant under S4-even permutations = A4

/A symmetric — can be expressed in terms of coefficients a; € F
A(t;)) — Alay)
If A = 62, such that (a;) € F, then
H C AyorVy (= Klein group)
It A # 62, (i.e. 6(a;) ¢ F), then

H C SyorDy
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2.) To study possible reductions of S1, A4 to their subgroups, we examine the resolvent:
fx) = (x —z1)(x — 22)(x — x3)

r1 = l1tg +13ts, To =11l3 + tals, 3 = tal3 + t1ly
x'1,2,3 are invariant under the three Dihedral groups Dy e 5,.

Combined results of A and f(x) :

A#52 A=52

f(x) irreducible Sy Ay

f(x) reducible Dy, Zy

21



7
Figure 2: S4 to D,
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The induced restrictions on the coefficients a;

1. Tracelessness condition b; = 0 demands (Dudas& Palti 1007.1297)
a4 = aple, A5 = —Aagar

2. For Sy — D4, A # 5% (arXivi1308.1581)

3
1661,161,5 — CLQCL4>

(a22a5 — a42a1)2 = ( 3

3. Reducibility of the function f(x) is achieved if

f(0) = 4asaza; — a1a4° — asas® =0
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Matter Parity

Spectral Cover eq. Zk bks5_k, invariant under (see Hayashi et. al., 0910.2762)
S — —S, bk — (—1)k6ixbk

For C4 (see . Antoniadis, GKL, 1205.6930)

b, = Z Uy by —

n+m=12—k

Ay — ewei(?’_")an

Defining Equs of matter curves are expressed in terms of a,,’s.

... a Geometric Z5 symmetry assigned to Matter Curves
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SU(5) | Def. Egn. | Parity Content D, | ts
104 K — | Qr+uf +ef | 14— | O
102 a2 + u§ + €5 ly4. | O
103 az + u§ + €5 Iy | 1
104 7] — 2Q 1, + 4ef 2 0
54 as + 2d¢ 2 0
Dp a7 + H, I,y | O
Se Ka7 — 4d$ + 3L | - 0
Dd a2 + Hyg 1., | —1
Be as + d$ 1, | -1
5f az + 2d 2 | —1

Table 1: Full spectrum for SU (5) x Dy x U (1), model.
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Low Energy Spectrum | Dyrep | U(1),

3, u3, €3 1 0 B

us Ly 1 +

u ey | 0 |+

(1,2, €1 2 2 0 B
L;,dS Ly 0 -

Y | 0 |-

2% 2 0 N

i, 1oy 0 | +

Hy Lyq —1 +

Table 2: SM spectrum with Dy x U(1);, X 7> symmetry.
(Karozas et al 1505.00937)
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Dy

Phenomenology
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Neutrino Sector

(Main Motivation for Non-Abelian Discrete Symmetries)

m, = —mDM]glmlT)
result...
1+ (21 — 2y)g921 (1 —gyz1)ze + (21 —y)gz2 (1 —gyz1)zs
my x| (1= gyz)xs + (21 — y)g2e x5 — 2gyzeta + 923 (22 — gyz2)z3
(1 — gyz1)zs (z2 — gyz2)xs 3
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Figure 3: Left: sin? 015 (30) (blue-0.270, pink-0.304, -0.344);
Middle: sin® fo3 (30) (blue-0.382, pink-0.452, -0.5):

10f°

Right: R = Am35/Am%, = 31.34(blue) and R = 34.16 (
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Baryon Number Violation
eliminated by flux
100 — (@, u,ef) — (—,uc, e)

3 parity violating term 1095.5, — A\ gp,,u€ d€ d°€ —

S

Figure 4: Feynman box graph for oscillations (Goity&Sher PLB 346(1995)69)
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A gpul
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1000

1400
M:(GeV)

Figure 5: \gp,, bounds for: Blue: Mz = Mz; = 0.8 TeV, Dashed: My = Mz =1T¢eV,

My = Mz;=12TeV. (MBL = MI;R = 500GeV, T = 10%sec.).

31



Mordell-Weil U (1) and GUT s
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% A new class of Abelian Symmetries associated to Rational Sections of elliptic curves

Mordell-Weil group ... finitely generated:

ZOLS-- - BLEG

r

Abelian group: Rank -  (unknown)

Torsion part: G — :

T n=1,2...,10,12
Ti X Zo k=2,4,6,8

— ... models with new U (1)’s and Discrete Symmetries from Mordell-Weil
(Cvetic et al 1210.6094,1307.6425; Mayhofer et al, 1211.6742; Borchmann et al 1307.2902; Krippendorf et
al, 1401.7844)
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Simplest (and perhaps most viable) Case: Rank-1 Mordell-Well
Sections required: [u v :w]=1[1:1:2] —
P(1,1,2)-weighted projective space
... described by the equation: (see Morrison & Park 1208.2695)

w? + asv*w = u(bgu® + biu®v 4 bauv? + bgv?®)
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Weierstrass model obtained

Birational Map

- 2 (1)
biu? — a3 (bou? + x)

— bty - @)

 b2u2 —a2 (but+ 1) as

35



These lead to the Weierstral3 equation in Tate’s form

b
y? + 2—3xyz + brasyz® =
az

2
Ay

b2
x>+ (b — —3> 1222

—boaszz* — boas (bg —
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but now Tate’s coefficients are not all independent !

b b3
y? + 2—3$yz + brasyz® = x°+ (bg — —;’) 222
b2
— Tzt — (bg — —3
Ay
... comparing with standard general Tate’s form:
y2 + 1 TYz + agyz3 = x° + 04231222 — 0443524 — a626

Observation:

Og — (a(¥yg
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Implications on the non-abelian structure

Assume local expansion of Tate’s coefficients

o = ag,o + o1l + -

Vanishing orders for SU (2n):

ay = a1+
a4 p— a4’n€n _|— . o e
Qg = 046,2n§2n +oee

Qg = Qaly — a2,1a4,n§”+1 = a6,2n§2n = n=1
...from SU (n) series, compatible are Only:

SU(2), and SU(3)
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... extending the analysis to exceptional groups...

Viable non-Abelian GUTs with U (1) y7p1

and the vanishing order of the coefficients aa ~ a2 ,,§"", b, ~ b "

Group as by b7 by b3

Ee 1 1 1 2 2
o 3 1 2

Ex 1 1 2 2 2

o 3 3 2 1

This simple property ... perhaps suggestive for a model

Ee X U(l)MW
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Remarks
Spectral Cover:

Analysis of model with gauge symmetry
SU(5) X D4 X U(l)

Non-abelian discrete symmetries naturally incorporated
n — N oscillations, suppressed proton decay
Mordell-Weil:

... gauge symmetries with one abelian Mordell-Weil:
56 X U(l)Mw, 57 X U(l)MW

.. extra U (1) 571 might have interesting implications to Model building ...

Torsion group: possible explanation of discrete symmetries...
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STRING PHENO 2016

15th conference in the
String Phenomenology Conference series

http://stringpheno201 6.physics.u‘oi.gr

e-mail: stringpheno2016@conf.uoi.gr
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