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Our	
  goal	
  is	
  to	
  find	
  infla=onary	
  models	
  which	
  are	
  
flexible	
  enough	
  to	
  fit	
  the	
  data,	
  which	
  can	
  be	
  
implemented	
  in	
  string	
  theory	
  or	
  supergravity,	
  and	
  
which	
  may	
  tell	
  us	
  something	
  interes=ng	
  and	
  
instruc=ve.	
  
	
  	
  



	
  	
  The	
  simplest	
  chao=c	
  infla=on	
  model	
  

Eternal	
  	
  Infla=on	
  



Planck	
  data	
  suggest	
  that	
  this	
  simple	
  model	
  should	
  be	
  
modified.	
  The	
  two	
  ver=cal	
  yellow	
  lines	
  in	
  the	
  next	
  
slide	
  will	
  show	
  the	
  consequences	
  of	
  a	
  minor	
  
modifica=on	
  of	
  this	
  simple	
  chao=c	
  infla=on	
  model	
  
versus	
  the	
  results	
  of	
  Planck	
  2015.	
  





1p
�g

L =
1

2
R� 1

2
@�2 � 1

2
m2�2

Start	
  with	
  the	
  simplest	
  chao=c	
  infla=on	
  model	
  

Modify	
  its	
  kine=c	
  term	
  

Switch	
  to	
  canonical	
  variables	
   � =
p
6↵ tanh

'p
6↵

The	
  poten=al	
  becomes	
  

V = 3↵m2 tanh2
'p
6↵

1p
�g

L =
1

2
R� 1

2

@�2

(1� �2

6↵ )
2
� 1

2
m2�2



ns = 1� 2

N
, r = ↵

12

N2

-15 -10 -5 0 5 10 15 φ
0.2

0.4

0.6

0.8

1.0

�

V = f(tanh2
'p
6↵

)



ns = 1� 2

N
⇡ 0.967, r ⇠ 4⇥ 10�4

-15 -10 -5 0 5 10 15 φ
0.2

0.4

0.6

0.8

1.0

�

Red	
  line	
  –	
  GL	
  model	
  1984	
  

Similar	
  models	
  have	
  been	
  discussed	
  for	
  the	
  first	
  =me	
  by	
  
Goncharov	
  and	
  A.L.	
  Phys.	
  LeU.	
  139B	
  (1984)	
  28.	
  It	
  was	
  the	
  first	
  
paper	
  on	
  chao=c	
  infla=on	
  in	
  supergravity,	
  but	
  then	
  it	
  was	
  
nearly	
  forgoUen.	
  It	
  corresponds	
  to	
  	
  ↵ = 1/9
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2. TOY MODELS OF ↵-ATTRACTORS

The bosonic T-model corresponding to Fig. 1 in a form
familiar to cosmologists is
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see for example [9], eq. (1.1). Here �(x) is the scalar field, the
inflaton, ↵ can take any positive value, and �

2

< 6↵, so that
the sign of the inflaton kinetic term is positive. The kinetic
term of the inflaton is not canonical and has a geometric
origin associated with a moduli space geometry. At ↵ ! 1
this is the simple chaotic inflation model with a quadratic
potential for a canonical field. At present the �

2 model of
inflation is disfavored by the data, which implies that the
moduli space is not flat.

For any finite ↵ one can solve equation @�

1��2

6↵

= @', which

yields � =
p

6↵ tanh 'p
6↵

. The boundary of the moduli

space � = ±
p

6↵ becomes ±1 in terms of the canoni-
cally normalized field ', and the quadratic potential be-
comes V = 3↵m

2 tanh2 'p
6↵

. We called such ↵-attractors

T-models: their potentials depend on tanh2 'p
6↵

, they are

symmetric with respect to the change ' ! �' and look like
letter T [3]. All potentials V (�2) belong to the general class
of T-models, which includes the GL model [7], which was
the first implementation of chaotic inflation in supergravity,
with ↵ = 1/9 and V (�) ⇠ �

2(1 � 3

8

�

2).

FIG. 4. Blue, brown and green lines show the potentials of the T-
models with V ⇠ tanh2 'p

6↵
for ↵ = 1, 2, 3 correspondingly. The red

line in the center shows the potential of the GL model [7].

The bosonic E-model corresponding to Fig. 2 is
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The potential of E-models has an explicit exponential de-
pendence on the canonically normalized field ', asymmetric

with respect to the change ' ! �': V ⇠ (1� e

�
p

2
3↵')2.

In the special case ↵ = 1 this potential coincides with the po-
tential in the Starobinsky model [11], which represents this
model as a member of the general class of ↵-attractors.

All of these models have the same kinetic term but dif-
ferent potentials. They have two common features. First of
all, they have two attractor points, shown by the red and
blue stars in Figs. 2 and 3, describing the limiting behavior
for ↵ ! 1 and ↵ ! 0. More importantly, for su�ciently
small ↵ (i.e. in the limit when the size of the moduli space
becomes small) their cosmological predictions are very sta-
ble with respect to even very significant modifications of the
potentials.

This property was explained in [3–5], and it was formu-
lated in a particularly general way in [8]: The kinetic term
in this class of models, as well as in many other models of
cosmological attractors, has a pole near the boundary of the
moduli space. If inflation occurs in a vicinity of such a pole
(which happens for su�ciently small ↵), and the potential
near the pole can be well represented by its value and its
first derivative near the pole, all other details of the poten-
tial far away from the pole (from the boundary of the moduli
space) become unimportant for making cosmological predic-
tions. In particular, the spectral index depends solely on
the order of the pole, while the tensor-to-scalar ratio also
involves the residue [8]. All the rest is practically irrelevant,
as long as the field after inflation falls into a stable minimum
of the potential with a tiny value of the vacuum energy and
stays there.

From the point of view of a phenomenology of inflation,
everything becomes nearly trivial: Take a simple model with
a pole in the kinetic term and a potential which has a mini-
mum, and we are done, independently of many other details
of the theory, in perfect agreement with observations. But
can we do it in some models which are believed to be related
to fundamental interactions? And if the properties of the
kinetic term are so important, is it possible that this class of
models may have some interesting interpretation in terms of
geometry of the moduli space? The rest of the paper will be
dedicated to the discussion of these issues, under the guid-
ance of Poincaré and Escher, as well as of many our friends
in the supergravity/string theory community.

3. THE HYPERBOLIC PLANE H2

The hyperbolic plane H2 has a long history in mathemat-
ics and physics, see for example [13]. A set of user-friendly
references with pictures and applications in physics include
http://mathworld.wolfram.com/PoincareHyperbolicDisk.html
https://www.youtube.com/watch?v=JkhuMvFQWz4

The Poincaré disk model of a hyperbolic geometry is pre-
sented by the Escher’s picture Circle Limit IV, see Fig. 3.
The boundary circle (which is not part of the hyperbolic
plane) is called the absolute. One can place an infinite
amount of angels and devils, of the size which looks decreas-
ing, towards the boundary in this circle, as Escher did. How-
ever, in fact, the correct understanding of hyperbolic geom-
etry means that the angels and devils close to the boundary
are of the same ‘physical’ size as the ones near the centrum
of the circle. How do we explain this? As always in a curved
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Suppose	
  infla=on	
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THE BASIC RULE: 

For	
  a	
  broad	
  class	
  of	
  cosmological	
  aUractors,	
  the	
  spectral	
  index	
  ns	
  
depends	
  mostly	
  on	
  the	
  order	
  of	
  the	
  pole	
  in	
  the	
  kine=c	
  term,	
  while	
  
the	
  tensor-­‐to-­‐scalar	
  ra=o	
  r	
  depends	
  on	
  the	
  residue.	
  Choice	
  of	
  the	
  
poten=al,	
  as	
  long	
  as	
  it	
  is	
  non-­‐singular	
  near	
  the	
  pole,	
  almost	
  does	
  
not	
  maUer.	
  Geometry	
  of	
  the	
  moduli	
  space,	
  not	
  the	
  poten=al,	
  
determines	
  much	
  of	
  the	
  answer.	
  

THE REMAINING PROBLEM: 

Can	
  we	
  get	
  a	
  pole	
  in	
  the	
  kine=c	
  term	
  from	
  something	
  more	
  
fundamental	
  than	
  a	
  theory	
  of	
  a	
  single	
  scalar	
  field,	
  for	
  example	
  in	
  
supergravity?	
  





Simplest	
  model:	
  	
  

V ⇠ ↵µ2 tanh2
'p
6↵

In	
  this	
  simple	
  model	
  SUSY	
  is	
  unbroken	
  and	
  V	
  =	
  0	
  in	
  the	
  minimum	
  
(no	
  cosmological	
  constant).	
  Can	
  be	
  modified	
  to	
  account	
  for	
  SUSY	
  
breaking	
  and	
  cosmological	
  constant	
  (the	
  talk	
  by	
  Kallosh).	
  

General	
  se:ng:	
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of the moduli space in the supergravity realizations of these
models, following [15, 17]. We will reformulate these models
in terms of Kähler potentials and field variables which keep
their geometric properties manifest. This new formulation
will allow us to approach the problem of initial conditions for
inflation in these models in a novel, more transparent way.

The problem of initial conditions in these models is not
quite trivial. In the simplest chaotic inflation models such
as m

2

2

�2 inflation may start very close to the Planck density.
According to [16, 18–22], this makes initial conditions for
inflation quite natural. However, in the new class of mod-
els discussed above, as well as in the Starobinsky model and
Higgs inflation, the inflationary regime begins at the energy
density 10 orders below the Planck energy density. A solu-
tion of the problem of initial conditions in such models was
discussed in [23]. Here we will revisit it; we will show how
this problem can be solved in the supergravity realizations
of ↵-attractors. Most of our conclusions will have more gen-
eral validity, being applicable, in particular, to generic non-
supersymmetric attractor models (1.1). We will also show
that in some cases, such as supergravity ↵-attractors with
↵ ⌧ 1, inflation can begin at the density approaching the
Planck density, thus reducing the problem of initial condi-
tions to the one already addressed in [16, 18–22].

There are two types of technical improvements of our ↵-
models which we will develop in this paper. The first one,
following [15, 17], will allow us to use the Kähler frame where
the inflaton shift symmetry is present in the new Kähler
potentials. The second improvement with respect to earlier
models corresponds to changing the Kähler potential for the
goldstino multiplet, making it canonical rather than part
of the logarithmic structure, which has a consequence: an
improved manifest stability.

We will make a choice of variables in which the infla-
ton forms a Killing direction of the moduli space geometry.
Namely, our holomorphic disk variable Z and the half-plane
variable T used in [1, 4, 5] will be represented by the Killing
adapted moduli space coordinates

Z =
T � 1

T + 1
= tanh

' + i#p
6↵

. (1.4)

Here the inflaton ' and the orthogonal field # form a geom-
etry independent on a Killing direction ':

g
''
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1
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2
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#
(1.5)

As a result, the time evolution in our models with initial large
kinetic energy, when the role of the potential is negligible,
will be controlled by the fact that the momentum in the
inflaton direction is preserved, namely

Ṗ
'

= 0 where P
'

= a3(t)g
''

(#)'̇ (1.6)

This geometric fact helps us to argue that the total shift of
the field ' due to its initial velocity is about 10 Planck units

or less, after which all memory about the initial velocity of
the field ' at the Planckian time completely disappears.

We will also numerically solve the Friedmann equations in
FRW space-time metric for generic initial values of #, ', #̇, '̇
confirming our analytic analysis: we have an inflationary
attractor behavior, where the memory about initial values
of #, ', #̇, '̇ disappears and period of slow-roll inflation at
the minimum of the potential at # = 0 takes place.

We will show that with new Kähler potentials which have
the inflaton shift symmetry in Z or T variables, the superpo-
tentials are simpler and the relation between models in disk
and half-plane variables simplifies.

We will than proceed with the analysis of initial condi-
tions for inflation in these models, with our new choice of
variables, by making choices of initial values of the inflaton
and its partner and by studying the time evolution of these
fields, before and during inflation. The geometric nature of
our models, and the existence of infinite dS valleys of con-
stant width in our potentials, help to resolve this issue and
allowing us to argue that the vast majority of initial condi-
tions in these models leads to successful inflation.

2. FROM DISK TO HALF-PLANE: NEW KÄHLER
POTENTIALS

The cosmological attractor models can be described either
in disk or in half-plane variables [5, 15]. The corresponding
boundary of the moduli space, which plays an important role
in these models, is either at ZZ̄ < 1, or a half-plane with
T + T̄ > 0.

Here we summarize the relation between disk and half-
plane variables for generic case of 2-superfield models with
our choice of the Kähler potentials and most general super-
potentials.

The relation between the Kähler potentials and superpo-
tentials in the disk and half-plane variables requires a simple
Caley transform, as suggested in [5]

Z =
T � 1

T + 1
, T =

1 + Z

1� Z
. (2.1)

We will represent the Kähler potential in the following form:

KD = �3↵

2
log


(1� ZZ̄)2

(1� Z2)(1� Z̄2)

�
+ SS̄ , (2.2)

WD = A(Z) + S B(Z) . (2.3)

where S is a supermultiplet with a goldstino fermion and a
sgoldstino scalar. This field may either belong to the usual
unconstrained chiral multiplet, or it may be a nilpotent su-
perfield as studied in [13]. We will discuss both options in
this paper.

W =
p
↵µS Z



In	
  the	
  simplest	
  chao=c	
  infla=on	
  model	
  m2φ2,	
  infla=on	
  begins	
  
at	
  the	
  Planck	
  density	
  under	
  a	
  trivial	
  condi=on:	
  the	
  poten=al	
  
energy	
  should	
  be	
  greater	
  than	
  the	
  kine=c	
  and	
  gradient	
  energy	
  
in	
  a	
  smallest	
  possible	
  domain	
  of	
  a	
  Planckian	
  size.	
  

However,	
  in	
  a	
  broad	
  class	
  of	
  cosmological	
  aUractor	
  models,	
  
infla=on	
  can	
  begin	
  only	
  when	
  the	
  energy	
  density	
  drops	
  from	
  
its	
  Planck	
  value	
  by	
  10	
  orders	
  of	
  magnitude.	
  Is	
  it	
  a	
  problem?	
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This	
  is	
  the	
  simplest	
  quadra=c	
  infla=onary	
  poten=al,	
  with	
  angels	
  
and	
  devils	
  concentrated	
  near	
  the	
  boundary	
  of	
  the	
  moduli	
  space	
  



The	
  same	
  poten<al	
  in	
  terms	
  of	
  the	
  canonical	
  	
  
inflaton	
  field	
  for	
  α	
  =	
  1/3	
  

W = µS Z

V = µ2 tanh2
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2

Z = ei# tanh
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Poten<al	
  defines	
  infinite	
  dS	
  space,	
  everywhere	
  
except	
  a	
  small	
  vicinity	
  of	
  the	
  minimum	
  	
  	
  

The	
  universe	
  is	
  born	
  at	
  the	
  Planck	
  density,	
  10	
  orders	
  of	
  magnitude	
  
above	
  the	
  dS	
  disk.	
  It	
  may	
  be	
  very	
  inhomogeneous,	
  but	
  if	
  it	
  expands,	
  
density	
  of	
  maUer	
  decreases.	
  In	
  10-­‐28	
  seconds	
  it	
  becomes	
  dominated	
  
by	
  dS	
  energy	
  density.	
  Aier	
  that,	
  the	
  field	
  slowly	
  rolls	
  to	
  the	
  minimum.	
  

This	
  solves	
  the	
  problem	
  of	
  ini=al	
  condi=ons	
  for	
  infla=on	
  



In	
  terms	
  of	
  the	
  original	
  variables	
  Z	
  =	
  z+	
  ix,	
  the	
  poten=al	
  looks	
  
like	
  a	
  liUle	
  boat.	
  	
  Where	
  is	
  the	
  place	
  for	
  infla=on	
  to	
  begin?	
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We will assume for definiteness that c > 0. The potential
has a minimum at Z = 1/c, which belongs to the required
range |Z| < 1 for c > 1. In terms of the canonical field ',
the potential is

V = ↵µ2

✓
c tanh

'p
6↵

� 1

◆
2

. (6.3)

At large negative values of the inflaton field, the potential
has a “shoulder” at V� = (c+1)2, and at large positive ' the
potential has a shoulder of a di↵erent height, V

+

= (c� 1)2,
so that

V
+

V�
=

✓
c � 1

c + 1

◆
2

. (6.4)

This ratio can be arbitrarily small for 0 < c � 1 ⌧ 1.

The situation becomes even more interesting in the theory

W exp

D =
p

↵ µ S (1� e�� Z) (6.5)

with � � 1. Exponentially suppressed terms e�� Z may
appear e.g. due to non-perturbative e↵ects [28]. The po-
tential in this case has a minimum at Z = ' = 0. It has
two shoulders of di↵erent height, each of which is capable of
supporting inflation, with the inflaton potential

V = ↵ µ2 (1� e�� tanh

2n 'p
6↵ )2 . (6.6)

Independently of ↵, for � � 1, the two shoulders have rela-
tive height V

+

/V� ⇡ e�2� . Thus for large � the potential has
two shoulders of exponentially di↵erent heights, see Fig. 5 for
a particular case of a potential with ↵ = 1, � = 2.

FIG. 5. Asymmetric shoulders.

Despite the exponential di↵erence in the height the values
of the inflationary parameters n

s

and r for inflation at each
of these two shoulders coincide and are given by (4.4), at
least for not too large values of ↵. However, the amplitudes
of scalar perturbations produced at these two branches are
exponentially di↵erent from each other. At the upper branch
the amplitude of the perturbations is proportional to µ(e� �
1), and at the lower branch it is proportional to µ(1� e��),
thus smaller by a factor of e�� .

Suppose that the last stage of inflation, which determines
the large scale structure of our universe, occurs at the lower
shoulder with large positive '. Then, according to [6], one
should take

V
+

/↵ ⇡ µ2 ⇡ 10�10 (6.7)

in Planck units. Considering ↵ = O(1), one finds V
+

⇠
10�10. However, the left shoulder can be arbitrarily high,
e.g, by taking � ⇠ 11 one can easily have V� = O(1) in
Planck units in this model. This fact will be important for
the discussion of the problem of initial conditions in this
scenario. But before discussing the cosmological evolution
in these models, we will return to the simplest symmetric
T-models and study their potentials more attentively.

7. HYPERBOLIC GEOMETRY AND PROPERTIES
OF T-MODEL POTENTIAL

Consider the simplest T-model (4.1), (4.2), see Fig. 1. We
would like to describe this model in a more detailed way,
which should help us to analyze initial conditions for inflation
and the probability that it will take place in this model and
its generalizations. In order to do so, we will the inflationary
potential in a form most suitable for our investigation.

In terms of Z = z + ix the metric of the moduli space,
which determines kinetic terms, and the potential are given
by

ds2 =
3↵

(1� ZZ̄)2
dZdZ̄ = 3↵

dz2 + dx2

(1� z2 � x2)2
, (7.1)

V = ↵µ2 (z2 + x2)
hz4 + 2z2(x2 � 1) + (x2 + 1)2

(1� z2 � x2)2

i 3↵
2

. (7.2)

The existence of the flat inflaton direction is not obvious if
one is looking at the potential (7.2) in the original variables
z and x, see Fig. 6. That is why one should try to represent
the potential in terms of more adequate variables.

One can understand the situation better by making a
change of variables z = tanh 'p

6↵

. For x = 0, the field '

plays a role of a canonically normalized inflaton field, and
the existence of the inflationary shoulders of the potential
becomes manifest in the variables ', x, see Fig. 7.

By looking at Fig. 7 one could get a wrong impression that
the potential in the vicinity of the inflationary trajectory at
x = 0 is incredibly steep: it looks like a gorge which becomes
more and more narrow at large |'|. However, this is just an
illusion. As we have found, the curvature of this potential
in the direction orthogonal to the inflationary trajectory is
given by 2V (') = 6H2, which is almost exactly constant
during inflation, see (3.6). We found this result by taking
into account that the field x is not canonically normalized.

2

of the moduli space in the supergravity realizations of these
models, following [15, 17]. We will reformulate these models
in terms of Kähler potentials and field variables which keep
their geometric properties manifest. This new formulation
will allow us to approach the problem of initial conditions for
inflation in these models in a novel, more transparent way.

The problem of initial conditions in these models is not
quite trivial. In the simplest chaotic inflation models such
as m

2

2

�2 inflation may start very close to the Planck density.
According to [16, 18–22], this makes initial conditions for
inflation quite natural. However, in the new class of mod-
els discussed above, as well as in the Starobinsky model and
Higgs inflation, the inflationary regime begins at the energy
density 10 orders below the Planck energy density. A solu-
tion of the problem of initial conditions in such models was
discussed in [23]. Here we will revisit it; we will show how
this problem can be solved in the supergravity realizations
of ↵-attractors. Most of our conclusions will have more gen-
eral validity, being applicable, in particular, to generic non-
supersymmetric attractor models (1.1). We will also show
that in some cases, such as supergravity ↵-attractors with
↵ ⌧ 1, inflation can begin at the density approaching the
Planck density, thus reducing the problem of initial condi-
tions to the one already addressed in [16, 18–22].

There are two types of technical improvements of our ↵-
models which we will develop in this paper. The first one,
following [15, 17], will allow us to use the Kähler frame where
the inflaton shift symmetry is present in the new Kähler
potentials. The second improvement with respect to earlier
models corresponds to changing the Kähler potential for the
goldstino multiplet, making it canonical rather than part
of the logarithmic structure, which has a consequence: an
improved manifest stability.

We will make a choice of variables in which the infla-
ton forms a Killing direction of the moduli space geometry.
Namely, our holomorphic disk variable Z and the half-plane
variable T used in [1, 4, 5] will be represented by the Killing
adapted moduli space coordinates

Z =
T � 1

T + 1
= tanh

' + i#p
6↵

. (1.4)

Here the inflaton ' and the orthogonal field # form a geom-
etry independent on a Killing direction ':

g
''

(#) = g
##

(#) =
1

cos2
q

2

3↵

#
(1.5)

As a result, the time evolution in our models with initial large
kinetic energy, when the role of the potential is negligible,
will be controlled by the fact that the momentum in the
inflaton direction is preserved, namely

Ṗ
'

= 0 where P
'

= a3(t)g
''

(#)'̇ (1.6)

This geometric fact helps us to argue that the total shift of
the field ' due to its initial velocity is about 10 Planck units

or less, after which all memory about the initial velocity of
the field ' at the Planckian time completely disappears.

We will also numerically solve the Friedmann equations in
FRW space-time metric for generic initial values of #, ', #̇, '̇
confirming our analytic analysis: we have an inflationary
attractor behavior, where the memory about initial values
of #, ', #̇, '̇ disappears and period of slow-roll inflation at
the minimum of the potential at # = 0 takes place.

We will show that with new Kähler potentials which have
the inflaton shift symmetry in Z or T variables, the superpo-
tentials are simpler and the relation between models in disk
and half-plane variables simplifies.

We will than proceed with the analysis of initial condi-
tions for inflation in these models, with our new choice of
variables, by making choices of initial values of the inflaton
and its partner and by studying the time evolution of these
fields, before and during inflation. The geometric nature of
our models, and the existence of infinite dS valleys of con-
stant width in our potentials, help to resolve this issue and
allowing us to argue that the vast majority of initial condi-
tions in these models leads to successful inflation.

2. FROM DISK TO HALF-PLANE: NEW KÄHLER
POTENTIALS

The cosmological attractor models can be described either
in disk or in half-plane variables [5, 15]. The corresponding
boundary of the moduli space, which plays an important role
in these models, is either at ZZ̄ < 1, or a half-plane with
T + T̄ > 0.

Here we summarize the relation between disk and half-
plane variables for generic case of 2-superfield models with
our choice of the Kähler potentials and most general super-
potentials.

The relation between the Kähler potentials and superpo-
tentials in the disk and half-plane variables requires a simple
Caley transform, as suggested in [5]

Z =
T � 1

T + 1
, T =

1 + Z

1� Z
. (2.1)

We will represent the Kähler potential in the following form:

KD = �3↵

2
log


(1� ZZ̄)2

(1� Z2)(1� Z̄2)

�
+ SS̄ , (2.2)

WD = A(Z) + S B(Z) . (2.3)

where S is a supermultiplet with a goldstino fermion and a
sgoldstino scalar. This field may either belong to the usual
unconstrained chiral multiplet, or it may be a nilpotent su-
perfield as studied in [13]. We will discuss both options in
this paper.

W = µS Z



Things	
  start	
  looking	
  beUer	
  if	
  one	
  goes	
  from	
  z	
  =	
  Re	
  Z	
  to	
  a	
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But	
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mass	
  squared	
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  field	
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  that	
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  large	
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  constant…	
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We present our models as functions of a complex variable

� ⌘ ' + i# , (2.4)

where ' will be the inflaton in cosmological models and #
will describe the orthogonal direction and

Z = tanh
�p
6↵

. (2.5)

Our Kähler potential (2.2) in these variables has a manifest
inflaton shift symmetry, '0 = ' + c

KD(Z, Z̄) ) K = �3↵ log
h
cosh

⇣�� �̄p
6↵

⌘i
+ SS̄ .

(2.6)
The superpotential is now

WD ) W = A
⇣
tanh

�p
6↵

⌘
+S B

⇣
tanh

�p
6↵

⌘
. (2.7)

Note that in our models # = 0 during inflation and therefore
the new holomorphic variable � during inflation becomes a
real canonical variable. This is also easy to see from the
kinetic terms in these variables, which are conformal to flat,

ds2 =
d'2 + d#2

2 cos2
q

2

3↵

#
=

1

2
g
''

d'2 +
1

2
g
##

d#2 . (2.8)

At # = 0 they are canonical

ds2|
#=0

=
d'2 + d#2

2
. (2.9)

We can also use the half-plane variables T + T̄ > 0 where we
have

KH = �3↵

2
log

"�
T + T̄

�
2

4T T̄

#
+ SS̄, (2.10)

WH = G(T ) + SF (T ) . (2.11)

Now the disk and the half-plane models are related simply
by the Caley transform (2.1), so that transition from one
picture to the other is a simple substitution

KD
⇣
Z =

T � 1

T + 1
, Z̄ =

T̄ � 1

T̄ + 1

⌘
= KH(T, T̄ ) . (2.12)

and

WD
⇣
Z =

T � 1

T + 1
, S

⌘
= WH(T ) . (2.13)

This also means that

G(T ) = A
⇣
Z =

T � 1

T + 1

⌘
, F (T ) = B

⇣
Z =

T � 1

T + 1

⌘
.

(2.14)
When we hold SS̄ outside of the log part of the Kähler po-
tential, the field S does not change from one picture to the
other. However, for any models with SS̄ inside the log part

of the Kähler the potential which we used before, the rela-
tion between the goldstino multiplets in Z and T variables
involves the dependence on the inflaton superfield, as shown
in [5]. We will explain below that when the field S is outside
the log in the Kähler potential the inflaton partner is sta-
ble for any ↵. Therefore we will focus here on models with
canonical Kähler potentials for the S field as shown in eqs.
(2.2), (2.6) and (2.10).

3. ↵-ATTRACTORS AND THEIR STABILITY

We will begin with a rather simple and general class of ↵-
attractors in disk variables, with the Kähler potential (2.2)
and superpotential

WD =
p

↵ µ S f(Z) . (3.1)

Investigation of this theories simplifies considerably if during
and after inflation the field S vanishes, along with the imag-
inary part of the field Z. Indeed, as explained in [17], the
Kähler potential (2.2) has a shift symmetry under the shift
of the inflaton field during inflation, when x = ImZ = 0:
The Kähler potential vanishes independently of the value of
the inflaton field z = ReZ.

In that case, one can show that the potential of the canon-
ically normalized inflaton field ', which is defined by the
relation z = tanh 'p

6↵

, is given by

V = ↵µ2f2(z) = ↵µ2f2

�
tanh

'p
6↵

�
. (3.2)

The potential has an infinitely long dS plateau at ' � ↵,
exponentially rapidly approaching its asymptotic value

V
dS

= ↵µ2 . (3.3)

Predictions from such theories provide a very good fit to
observational data for a broad class of functions f(Z) as
discussed in [1, 4].

However, for such analysis to hold, it is important to verify
that S = s ei � = 0, and x = ImZ = 0, or to find a way to
stabilize these fields at their zero values. The point S = x =
0 is indeed an extremum of the potential for S and x, but
one should also check whether this extremum is a minimum,
or a maximum of the potential.

Let us start with the field x. One can show that its mass
squared is given by

m2

x

(z) =
V
dS

3
(6↵f2(z) + (1� z2)2[(f 0(z))2 � f(z)f 00(z)]) .

(3.4)
If we consider potentials V = ↵µ2f2(z) vanishing at z = 0,
then at the minimum one has f(0) = 0, and m2

x

(0) is positive
and coincides with the inflaton mass squared at that point,

m2

x

(0) = m2

z

(0) =
1

3
[(f 0(0))2]) . (3.5)
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FIG. 6. Inflation, in terms of the variables z and x, takes place in

the two corners of the potential. The existence of the inflationary flat

directions for |z|� 1 ⌧ 1 is not apparent in these variables.

FIG. 7. A narrowing trench in the potential in terms of ' and x

variables. We see here the same e↵ect as a decreasing size of angels and

devils towards the boundary of the Poincaré disk in Escher’s picture

Circle Limit IV. However, this narrowing of the trench is just an illusion,

which disappears when one plots the potential in proper coordinates,

as shown in Fig. 8.

Now we will make this conclusion manifest by plotting the
potential in terms of more adequate variables.

We will use the � variables as shown in eq. (2.5) with the
kinetic terms in (2.8) The potential in these variables is

V = ↵µ2

����tanh
' + i#p

6↵

����
2

·
⇣
cos

r
2

3↵
#
⌘�3↵

, (7.3)

where
�� tanh '+i#p

6↵

��2 = tanh '+i#p
6↵

· tanh '�i#p
6↵

. We may also

present it in the form

V = ↵µ2

cosh
q

2

3↵

' � cos
q

2

3↵

#

cosh
q

2

3↵

' + cos
q

2

3↵

#
·
⇣
cos

r
2

3↵
#
⌘�3↵

. (7.4)

FIG. 8. The T-model potential in terms of the variables ' and # has

two infinitely long dS valleys of constant width.

This potential is shown in Fig. 8. It has a minimum at # =
0 where the kinetic terms of both fields become canonical,
ds2 ! 1

2

(d'2 + d#2) at # ! 0. At large values of ' where
tanh 'p

6↵

approaches 1, the plot of the potential in terms of

' and # has a dS valley of constant, '-independent width,
instead of the rapidly narrowing gorge shown in Fig. 7. This
fact will be very important for us shortly, when we will study
the cosmological evolution of the fields ' and # and initial
conditions for inflation in these models.

For a better understanding of the structure of this po-
tential, it is instructive to simplify even a little further the
superpotential of our simplest T-model: Instead of W =p

↵ µ S Z (4.1), let us consider a Z-independent superpo-
tential

W =
p

↵ µ S . (7.5)

The potential in this model in the ' and # variables is

V = ↵µ2

⇣
cos

r
2

3↵
#
⌘�3↵

. (7.6)

Note that this potential does not depend on the inflaton field
', and has a dS minimum V = ↵µ2 at # = 0. It represents
an infinite '-independent dS valley as shown in Fig. 9.

As one can easily check, the shape of this valley coin-
cides with the shape of the dS valley in the simplest T-
model (7.4) in the large ' limit. This potential is manifestly
shift-symmetric with respect to the field '. It is singular at

cos
q

2

3↵

# ! 0, but this singularity disappears if one uses

canonical variables � defined by d� = d#

cos

p
2
3↵

. In the limit

cos
q

2

3↵

⌧ 1, which corresponds to V � ↵µ2, the potential

of the field # in terms of the canonically normalized field �

More	
  appropriate	
  coordinates:	
  



At	
  large	
  values	
  of	
  the	
  inflaton	
  field	
  everything	
  
becomes	
  shiG-­‐symmetric	
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Circle Limit IV. However, this narrowing of the trench is just an illusion,

which disappears when one plots the potential in proper coordinates,

as shown in Fig. 8.

Now we will make this conclusion manifest by plotting the
potential in terms of more adequate variables.

We will use the � variables as shown in eq. (2.5) with the
kinetic terms in (2.8) The potential in these variables is
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FIG. 8. The T-model potential in terms of the variables ' and # has

two infinitely long dS valleys of constant width.

This potential is shown in Fig. 8. It has a minimum at # =
0 where the kinetic terms of both fields become canonical,
ds2 ! 1
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tanh 'p

6↵

approaches 1, the plot of the potential in terms of

' and # has a dS valley of constant, '-independent width,
instead of the rapidly narrowing gorge shown in Fig. 7. This
fact will be very important for us shortly, when we will study
the cosmological evolution of the fields ' and # and initial
conditions for inflation in these models.

For a better understanding of the structure of this po-
tential, it is instructive to simplify even a little further the
superpotential of our simplest T-model: Instead of W =p

↵ µ S Z (4.1), let us consider a Z-independent superpo-
tential

W =
p

↵ µ S . (7.5)

The potential in this model in the ' and # variables is

V = ↵µ2
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Note that this potential does not depend on the inflaton field
', and has a dS minimum V = ↵µ2 at # = 0. It represents
an infinite '-independent dS valley as shown in Fig. 9.

As one can easily check, the shape of this valley coin-
cides with the shape of the dS valley in the simplest T-
model (7.4) in the large ' limit. This potential is manifestly
shift-symmetric with respect to the field '. It is singular at
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Independently	
  of	
  its	
  ini=al	
  velocity,	
  the	
  inflaton	
  field	
  star<ng	
  at	
  
the	
  Planck	
  energy	
  does	
  not	
  move	
  by	
  more	
  than	
  10	
  un<l	
  it	
  stops	
  
and	
  the	
  slow-­‐roll	
  infla<on	
  begins.	
  The	
  problem	
  of	
  ini=al	
  condi=ons	
  
in	
  a	
  homogeneous	
  universe	
  is	
  solved	
  due	
  to	
  the	
  existence	
  of	
  an	
  
infinite	
  shii-­‐symmetric	
  dS	
  valley	
  



These	
  considera<ons	
  apply	
  not	
  only	
  to	
  cosmological	
  
aJractors	
  in	
  supergravity,	
  but	
  to	
  any	
  infla<onary	
  
model	
  with	
  a	
  sufficiently	
  long	
  and	
  flat	
  poten<al.	
  



What	
  can	
  go	
  wrong	
  with	
  this	
  argument?	
  

The	
  universe	
  as	
  a	
  whole	
  may	
  collapse	
  within	
  10-­‐28	
  second	
  

Three	
  op=ons:	
  	
  
	
  
1)	
  Universe	
  is	
  small	
  and	
  closed.	
  If	
  id	
  does	
  not	
  inflate	
  at	
  birth,	
  it	
  
instantly	
  dies,	
  so	
  in	
  a	
  sense,	
  it	
  is	
  like	
  a	
  virtual	
  par=cle,	
  not	
  even	
  
born.	
  	
  
	
  
2)	
  Universe	
  is	
  infinite.	
  Then	
  there	
  always	
  will	
  be	
  	
  
non-­‐collapsed	
  parts,	
  which	
  leads	
  to	
  infla=on.	
  
	
  
3)	
  Universe	
  is	
  open	
  or	
  flat,	
  but	
  COMPACT,	
  like	
  a	
  torus.	
  It	
  may	
  
easily	
  become	
  infla=onary.	
  



Take	
  a	
  box	
  (a	
  part	
  of	
  a	
  flat	
  universe)	
  and	
  glue	
  its	
  opposite	
  sides	
  to	
  
each	
  other.	
  What	
  we	
  obtain	
  is	
  a	
  torus,	
  which	
  is	
  a	
  topologically	
  
nontrivial	
  flat	
  universe.	
  

No	
  need	
  to	
  tunnel:	
  A	
  compact	
  open	
  infla=onary	
  universe	
  may	
  
be	
  arbitrarily	
  small	
  



The	
  size	
  of	
  a	
  torus	
  (our	
  universe)	
  with	
  
rela=vis=c	
  maUer	
  grows	
  as	
  	
  t1/2,	
  
whereas	
  the	
  mean	
  free	
  path	
  of	
  a	
  
rela=vis=c	
  par=cle	
  grows	
  much	
  faster,	
  
as	
  	
  t	
  

Therefore	
  un=l	
  the	
  
beginning	
  of	
  infla=on	
  the	
  
universe	
  remains	
  smaller	
  
that	
  the	
  size	
  of	
  the	
  
horizon	
  ~	
  t	
  

Cornish,	
  Starkman,	
  Spergel	
  1996;	
  	
  	
  A.L.	
  2004 



If	
   the	
   universe	
   ini=ally	
   had	
   a	
   Planck	
   size,	
   then	
   within	
   the	
  
cosmological	
   =me	
   t	
   >>	
   1	
   each	
   par=cle	
   runs	
   around	
   the	
   torus	
  
many	
   <mes	
   and	
   appear	
   in	
   all	
   parts	
   of	
   the	
   universe	
  with	
   equal	
  
probability,	
  which	
  makes	
  the	
  universe	
  homogeneous	
  and	
  keeps	
  it	
  
homogeneous	
  un=l	
  the	
  beginning	
  of	
  infla=on	
  	
  

Thus	
  chao=c	
  mixing	
  keeps	
  the	
  universe	
  uniform	
  un=l	
  the	
  onset	
  of	
  
infla=on,	
  even	
  if	
  it	
  can	
  occur	
  only	
  at	
  V<<	
  1.	
  This	
  is	
  yet	
  another	
  
solu=on	
  of	
  the	
  problem	
  of	
  ini=al	
  condi=ons.	
  



Yes,	
  for	
  a	
  <<	
  1/3.	
  	
  In	
  this	
  case	
  the	
  poten=al	
  in	
  the	
  
direc=on	
  perpendicular	
  to	
  the	
  inflaton	
  field	
  θ 
becomes	
  flat.	
  Infla=on	
  may	
  begin	
  at	
  the	
  Planck	
  
density	
  when	
  the	
  field	
  θ was	
  falling	
  towards	
  the	
  dS	
  
valley.	
  Aier	
  that,	
  infla=on	
  in	
  the	
  φ direc=on	
  begins.	
  	
  



Ul=mately,	
  we	
  want	
  these	
  models	
  to	
  describe	
  not	
  only	
  
infla=on,	
  but	
  also	
  dark	
  energy	
  and	
  SUSY	
  breaking.	
  
	
  
There	
  is	
  some	
  urgency	
  in	
  learning	
  about	
  the	
  interplay	
  of	
  
SUSY	
  and	
  cosmology:	
  	
  LHC	
  restarted	
  in	
  March	
  2015,	
  the	
  
first	
  collisions	
  observed	
  in	
  May.	
  	
  Will	
  supersymmetry	
  be	
  
discovered?	
  	
  It	
  will	
  affect	
  cosmological	
  models.	
  

From	
  infla<on	
  to	
  dark	
  energy	
  and	
  SUSY	
  breaking	
  



m	
  -­‐	
  	
  inflaton	
  mass	
  scale	
  

M	
  	
  -­‐	
  	
  SUSY	
  breaking	
  mass	
  scale	
  

For	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  one	
  has	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  Changing	
  b	
  gives	
  
any	
  desirable	
  value	
  of	
  the	
  cosmological	
  constant.	
  

b =
p
3 ⇤ = 0

S	
  –	
  nilpotent	
  superfield	
  (no	
  scalar	
  component)	
  

Kallosh,	
  AL	
  	
  	
  1502.07733,	
  Carrasco,	
  Kallosh,	
  AL	
  	
  1506.01708	
  	
  

be added to the Kähler potential, to stabilize #. It is of the form A(Z, Z̄)SS̄(Z � Z̄)2 in disk variables.

This model for ↵ = 1 in half-plane variables in case of ⇤ = 0 was proposed in [6] in eqs. (28), (37).

For the generic case of ↵ 6= 1 a related model was given in eqs. (4.23), (4.24) in [13].

More general models can be constructed following the rules for this class of models proposed above

in eqs. (4.7) - (4.11).

5 General models of inflation with SUSY breaking and dark energy

We have learned above how to build supergravity models by reconstructing superpotentials to pro-

duce a given choice of the bosonic inflationary potential V (') = F2(') with our logarithmic Kähler

potential K = �3↵ log
h
cosh ��¯

�p
6↵

i
+SS̄ in Killing variables. The exact answer for W = g(�)+Sf(�)

can be obtained under condition g(�) = 1

bf(�) and requires simply an integration so that f(') is

reconstructed by integration f(') = bp
2

R
F('). Obviously this can be carried out in any variables

as long as one takes care of the Kähler measure relating the variables used to the functional form of

the canonical variables, but it is particularly transparent in Killing-adapted variables as the measure

is unity.

Instead of the reconstructing strategy we may start with our models in (3.17) with superpotentials

of the form

W = g(�) + Sf(�) (5.1)

without a constraint that g(�) = 1

bf(�). In such case the potentials are given by V
total

= 2|g0(')|2 �
3|g(')|2 + |f(')|2.

Near the minimum of the potential one has to check that we still satisfy the requirements that

DSW = M 6= 0 and D
�

W = 0 to preserve the nice de Sitter exit properties with SUSY breaking

as described in eq. (2.5). In these models we end up with more complicated bosonic potentials

describing some combination of our ↵-attractor models. However, these models are still capable to

fit the cosmological observables as well as providing the level of SUSY breaking in dS vacua with a

controllable gravitino mass. Some examples of these models were given in [13], in eqs. (2.4), (3.15) and

(2.7), (3.17). Here we will present an example where in disk variables the superpotential is relatively

simple whereas the potential is not simple but satisfactory for our purpose. We take the inflaton

shift-symmetric Kähler potential and the superpotential of the form

K = �3

2
↵ log

"
(1 � ZZ̄)2

(1 � Z2)(1 � Z
2

)

#
+ SS̄ , S2(x, ✓) = 0 , W =

⇣
S +

1 � Z2

b

⌘
(
p

3↵ m2 Z2 + M) .

(5.2)

The same model in Killing variables �, where Z = tanh �p
6↵

, is

K = �3↵ log
h
cosh

� � �̄p
6↵

i
+SS̄, W =

⇣1

b
cosh�2

⇣ �p
6↵

⌘
+S

⌘⇣p
3↵ m2 tanh2

⇣ �p
6↵

⌘
+M

⌘
. (5.3)

The potential at S = 0 and # = 0 has the form V
total

= 2|g0(')|2 �3|g(')|2 + |f(')|2 where in our case

g(') =
1

b
cosh�2

⇣ �p
6↵

⌘⇣p
3↵ m2 tanh2

⇣ �p
6↵

⌘
+ M

⌘
, f(') =

p
3↵ m2 tanh2

⇣ �p
6↵

⌘
+ M . (5.4)
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