Yukawa Couplings in Heterotic Calabi-Yau Models

Andre Lukas

University of Oxford

StringPheno 2015, 8-12 June, Madrid
based on:

- 1506.nnnn with Evgeny Buchbinder, Philip Candelas, Stefan Blasneag
- relates to 0904.2186 with Lara Anderson, James Gray, Dan Grayson, Yang-Hui He
- longer-term project, involving Lara Anderson, James Gray, Burt Ovrut
- Introduction: Heterotic Yukawa couplings
- Yukawa unification?
- Current status of calculation
- Our laboratory: the tetra-quadric CY
- Example 1: up-Yukawa couplings
- Example 2: singlet Yukawa couplings
- Conclusion

Introduction: Heterotic Yukawa couplings

- Consider heterotic string on CY 3-fold X
- observable bundle $V \rightarrow X$ with structure group $H \subset E_{8}$
- low-energy gauge group $G=\mathcal{C}_{E_{8}}(H)$
- matter multiplets from associated bundles $E_{i} \rightarrow V, i=1,2,3$

Introduction: Heterotic Yukawa couplings

- Consider heterotic string on CY 3-fold X
- observable bundle $V \rightarrow X$ with structure group $H \subset E_{8}$
- low-energy gauge group $G=\mathcal{C}_{E_{8}}(H)$
- matter multiplets from associated bundles $E_{i} \rightarrow V, i=1,2,3$

Matter multiplets described by harmonic $(0,1)$ forms:

$$
\nu_{i} \in H^{1}\left(X, E_{i}\right) \quad \bar{\partial}_{E_{i}} \nu_{i}=\bar{\partial}_{E_{i}}^{\dagger} \nu_{i}=0 \quad i=1,2,3
$$

Holomorphic Yukawa couplings:

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

Holomorphic Yukawa couplings:

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

Holomorphic Yukawa couplings are independent of representative:

$$
\lambda\left(\nu_{1}+\bar{\partial}_{E_{1}} a_{1}, \nu_{2}+\bar{\partial}_{E_{2}} a_{2}, \nu_{3}+\bar{\partial}_{E_{3}} a_{3}\right)=\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)
$$

Holomorphic Yukawa couplings:

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

Holomorphic Yukawa couplings are independent of representative:

$$
\lambda\left(\nu_{1}+\bar{\partial}_{E_{1}} a_{1}, \nu_{2}+\bar{\partial}_{E_{2}} a_{2}, \nu_{3}+\bar{\partial}_{E_{3}} a_{3}\right)=\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)
$$

Holomorphic Yukawa couplings can be computed algebraically!

Normalisation (proportional to):

$$
\left(\nu_{i}, \mu_{i}\right):=\int_{X} \nu_{i} \wedge \bar{\star}_{E_{i}} \mu_{i}=\frac{1}{2} \int_{X} J \wedge J \wedge \nu_{i} \wedge\left(H \bar{\mu}_{i}\right)
$$

Normalisation (proportional to):

$$
\left(\nu_{i}, \mu_{i}\right):=\int_{X} \nu_{i} \wedge \bar{\star}_{E_{i}} \mu_{i}=\frac{1}{2} \int_{X} J \wedge J \wedge \nu_{i} \wedge\left(H \bar{\mu}_{i}\right)
$$

Normalization is not independent of representative and needs to be computed for harmonic $(0,1)$ forms.

Normalisation (proportional to):

$$
\left(\nu_{i}, \mu_{i}\right):=\int_{X} \nu_{i} \wedge \bar{\star}_{E_{i}} \mu_{i}=\frac{1}{2} \int_{X} J \wedge J \wedge \nu_{i} \wedge\left(H \bar{\mu}_{i}\right)
$$

Normalization is not independent of representative and needs to be computed for harmonic $(0,1)$ forms.

Algebraic computation (probably) not possible. Requires methods of differential geometry.

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

- models from SO(10) GUTs: V has structure group $S U(4)$

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

- models from SO(10) GUTs: V has structure group $S U(4)$

Yukawa coupling $101616 . \quad 10 \leftrightarrow \nu_{1} \in H^{1}\left(X, \wedge^{2} V\right)$

$$
16 \leftrightarrow \nu_{2,3} \in H^{1}(X, V)
$$

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

- models from SO(10) GUTs: V has structure group $S U(4)$

Yukawa coupling 101616. $10 \leftrightarrow \nu_{1} \in H^{1}\left(X, \wedge^{2} V\right)$

$$
16 \leftrightarrow \nu_{2,3} \in H^{1}(X, V)
$$

$$
\nu_{1} \wedge \nu_{2} \wedge \nu_{3} \in H^{3}\left(X, \wedge^{4} V\right)=H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

- models from SO(10) GUTs: V has structure group $S U(4)$

- models from $\operatorname{SU(5)}$ GUTs: V has structure group $S U(5)$

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

- models from SO(10) GUTs: V has structure group $S U(4)$

Yukawa coupling 101616 :

$$
\begin{aligned}
& 10 \leftrightarrow \nu_{1} \in H^{1}\left(X, \wedge^{2} V\right) \\
& 16 \leftrightarrow \nu_{2,3} \in H^{1}(X, V)
\end{aligned}
$$

$$
\nu_{1} \wedge \nu_{2} \wedge \nu_{3} \in H^{3}\left(X, \wedge^{4} V\right)=H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

- models from $\operatorname{SU}(5)$ GUTs: V has structure group $S U(5)$

$$
\text { up-Yukawa } 51010 \text { : }
$$

$$
\begin{aligned}
\mathbf{5} & \leftrightarrow \nu_{1} \in H^{1}\left(X, \wedge^{2} V^{*}\right) \\
\mathbf{1 0} & \leftrightarrow \nu_{2,3} \in H^{1}(X, V)
\end{aligned}
$$

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

- models from SO(10) GUTs: V has structure group $S U(4)$

Yukawa coupling 101616 :

$$
\begin{aligned}
& 10 \leftrightarrow \nu_{1} \in H^{1}\left(X, \wedge^{2} V\right) \\
& 16 \leftrightarrow \nu_{2,3} \in H^{1}(X, V)
\end{aligned}
$$

$$
\nu_{1} \wedge \nu_{2} \wedge \nu_{3} \in H^{3}\left(X, \wedge^{4} V\right)=H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

- models from $\operatorname{SU(5)}$ GUTs: V has structure group $S U(5)$ up-Yukawa 51010 :

$$
\begin{aligned}
\mathbf{5} & \leftrightarrow \nu_{1} \in H^{1}\left(X, \wedge^{2} V^{*}\right) \\
\mathbf{1 0} & \leftrightarrow \nu_{2,3} \in H^{1}(X, V)
\end{aligned}
$$

$$
\nu_{1} \wedge \nu_{2} \wedge \nu_{3} \in H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

down-Yukawa $\overline{5} \overline{5} 10$:

$$
\overline{\mathbf{5}} \leftrightarrow \nu_{1,2} \in H^{1}\left(X, \wedge^{2} V\right)
$$

$$
10 \leftrightarrow \nu_{3} \in H^{1}(X, V)
$$

down-Yukawa $\overline{5} \overline{5} 10$:

$$
\overline{\mathbf{5}} \leftrightarrow \nu_{1,2} \in H^{1}\left(X, \wedge^{2} V\right)
$$

$$
10 \leftrightarrow \nu_{3} \in H^{1}(X, V)
$$

$$
\nu_{1} \wedge \nu_{2} \wedge \nu_{3} \in H^{3}\left(X, \wedge^{5} V\right)=H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

down-Yukawa $\overline{5} \overline{5} 10$:

$$
\begin{aligned}
\overline{\mathbf{5}} & \leftrightarrow \nu_{1,2} \in H^{1}\left(X, \wedge^{2} V\right) \\
\mathbf{1 0} & \leftrightarrow \nu_{3} \in H^{1}(X, V)
\end{aligned}
$$

$$
\nu_{1} \wedge \nu_{2} \wedge \nu_{3} \in H^{3}\left(X, \wedge^{5} V\right)=H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

SM Yukawa couplings are obtained after taking quotient by discrete symmetry Γ, adding a Wilson line and keeping the Γ-invariant parts.

Consider, for example, $S U(5)$ GUT with $\Gamma=\mathbb{Z}_{2}$ and down-Yukawa:

Consider, for example, $S U(5)$ GUT with $\Gamma=\mathbb{Z}_{2}$ and down-Yukawa:
upstairs: 6 families

$$
\sum_{I, J=1}^{6} \lambda_{I J} \overline{5}^{H} \overline{5}^{I} \mathbf{1 0}^{J}
$$

Yukawa unification?

Consider, for example, $S U(5)$ GUT with $\Gamma=\mathbb{Z}_{2}$ and down-Yukawa:
upstairs: 6 families
downstairs: 3families

$$
\sum_{I, J=1}^{6} \lambda_{I J} \overline{\mathbf{5}}^{H} \overline{\mathbf{5}}^{I} \mathbf{1 0}^{J}
$$

$$
\begin{aligned}
& \rightarrow \quad \sum_{i, j=1}^{3} \lambda_{i j}^{(d)} H d^{i} Q^{j} \\
& \rightarrow \quad \sum_{i, j=1}^{3} \lambda_{i j}^{(e)} H L^{i} e^{j}
\end{aligned}
$$

Yukawa unification?

Consider, for example, $S U(5)$ GUT with $\Gamma=\mathbb{Z}_{2}$ and down-Yukawa:
upstairs: 6 families
downstairs: 3families

$$
\begin{aligned}
& \rightarrow \quad \sum_{i, j=1}^{3} \lambda_{i j}^{(d)} H d^{i} Q^{j} \\
& \rightarrow \quad \sum_{i, j=1}^{3} \lambda_{i j}^{(e)} H L^{i} e^{j}
\end{aligned}
$$

Wilson line described by Γ-representations χ_{2}, χ_{3} satisfying $\chi_{2}^{2} \otimes \chi_{3}^{3}=1$. For $\Gamma=\mathbb{Z}_{2}$ we have $\chi_{2}=(1)$ and $\chi_{3}=(0)$.

$$
\begin{array}{lll}
\chi_{H}=\chi_{2}^{*}=(1) & \chi_{d}=\chi_{3}^{*}=(0) & \chi_{Q}=\chi_{2} \otimes \chi_{3}=(1) \\
\chi_{L}=\chi_{2}^{*}=(1) & \chi_{e}=\chi_{2} \otimes \chi_{2}=(0)
\end{array}
$$

$$
\begin{array}{lll}
\chi_{H}=\chi_{2}^{*}=(1) & \chi_{d}=\chi_{3}^{*}=(0) & \chi_{Q}=\chi_{2} \otimes \chi_{3}=(1) \\
\chi_{L}=\chi_{2}^{*}=(1) & \chi_{e}=\chi_{2} \otimes \chi_{2}=(0)
\end{array}
$$

$$
\left(\lambda_{I J}\right)=\left(\begin{array}{ll}
\lambda_{(0,1)} & \lambda_{(0,0)} \\
\lambda_{(1,1)} & \lambda_{(1,0)}
\end{array}\right)
$$

$$
\begin{array}{lll}
\chi_{H}=\chi_{2}^{*}=(1) & \chi_{d}=\chi_{3}^{*}=(0) & \chi_{Q}=\chi_{2} \otimes \chi_{3}=(1) \\
\chi_{L}=\chi_{2}^{*}=(1) & \chi_{e}=\chi_{2} \otimes \chi_{2}=(0)
\end{array}
$$

$$
\left(\lambda_{I J}\right)=\left(\begin{array}{cc}
\chi_{\mathbf{1 0}} & (1) \\
\lambda_{(0,1)} & \lambda_{(0,0)} \\
\lambda_{(1,1)} & \lambda_{(1,0)}
\end{array}\right) \quad \begin{aligned}
& \chi_{\overline{\mathbf{5}}} \\
& (0) \\
& (1)
\end{aligned}
$$

$$
\begin{array}{lll}
\chi_{H}=\chi_{2}^{*}=(1) & \chi_{d}=\chi_{3}^{*}=(0) & \chi_{Q}=\chi_{2} \otimes \chi_{3}=(1) \\
\chi_{L}=\chi_{2}^{*}=(1) & \chi_{e}=\chi_{2} \otimes \chi_{2}=(0)
\end{array}
$$

$$
\left(\lambda_{I J}\right)=\begin{array}{|ll}
\left.\begin{array}{lll}
\chi_{\mathbf{1 0}} & (1) & (0) \\
\lambda_{(0,1)} & \lambda_{(0,0)} \\
\lambda_{(1,1)} & \lambda_{(1,0)}
\end{array}\right) \\
\lambda^{(d)}
\end{array}
$$

$$
\chi_{H}=\chi_{2}^{*}=(1) \quad \chi_{d}=\chi_{3}^{*}=(0) \quad \chi_{Q}=\chi_{2} \otimes \chi_{3}=(1)
$$

$$
\chi_{H}=\chi_{2}^{*}=(1) \quad \chi_{d}=\chi_{3}^{*}=(0) \quad \chi_{Q}=\chi_{2} \otimes \chi_{3}=(1)
$$

$\lambda^{(e)}$ and $\lambda^{(d)}$ are (in general) unrelated!

$$
\chi_{H}=\chi_{2}^{*}=(1)
$$

$$
\chi_{d}=\chi_{3}^{*}=(0) \quad \chi_{Q}=\chi_{2} \otimes \chi_{3}=(1)
$$

$$
\chi_{L}=\chi_{2}^{*}=(1) \quad \chi_{e}=\chi_{2} \otimes \chi_{2}=(0)
$$

$\lambda^{(e)}$ and $\lambda^{(d)}$ are (in general) unrelated!

This holds for any symmetry Γ and all types of Yukawa couplings.

In heterotic GUT models with Wilson line breaking Yukawa unification in the traditional sense (i.e. enforced by the GUT symmetry) never arises.

> In heterotic GUT models with Wilson line breaking Yukawa unification in the traditional sense (i.e. enforced by the GUT symmetry) never arises.

Yukawa unification may arise from additional symmetries which constraints the upstairs Yukawa couplings $\lambda_{I J}$.

Current status of calculation

- standard embedding
$V=T X$, gauge group E_{6}

Current status of calculation

- standard embedding

$$
V=T X, \text { gauge group } E_{6}
$$

- $h^{1,1}(X)$ matter fields $\mathbf{2 7}^{(I)}$ with $\nu_{(I)} \in H^{1}\left(X, T X^{*}\right)$

Current status of calculation

- standard embedding

$$
V=T X, \text { gauge group } E_{6}
$$

- $h^{1,1}(X)$ matter fields $\mathbf{2 7}^{(I)}$ with $\nu_{(I)} \in H^{1}\left(X, T X^{*}\right)$
$\lambda_{I J K} \sim d_{I J K}$
$\left(\nu_{(I)}, \nu_{(J)}\right) \sim G_{I J}^{(1,1)} \quad$ (Kahler moduli space metric)

Current status of calculation

- standard embedding

$$
V=T X, \text { gauge group } E_{6}
$$

- $h^{1,1}(X)$ matter fields $\mathbf{2 7}^{(I)}$ with $\nu_{(I)} \in H^{1}\left(X, T X^{*}\right)$
$\lambda_{I J K} \sim d_{I J K}$

$$
\left(\nu_{(I)}, \nu_{(J)}\right) \sim G_{I J}^{(1,1)} \quad \text { (Kahler moduli space metric) }
$$

- $h^{2,1}(X)$ matter fields $\overline{\mathbf{2 7}}^{(I)}$ with $\nu_{(I)} \in H^{1}(X, T X)$

Current status of calculation

- standard embedding

$$
V=T X, \text { gauge group } E_{6}
$$

- $h^{1,1}(X)$ matter fields $2 \mathbf{7}^{(I)}$ with $\nu_{(I)} \in H^{1}\left(X, T X^{*}\right)$

$$
\lambda_{I J K} \sim d_{I J K} \quad \text { (intersection numbers) }
$$

$$
\left(\nu_{(I)}, \nu_{(J)}\right) \sim G_{I J}^{(1,1)} \quad \text { (Kahler moduli space metric) }
$$

- $h^{2,1}(X)$ matter fields $\overline{\mathbf{2 7}}^{(I)}$ with $\nu_{(I)} \in H^{1}(X, T X)$

Similar: Yukawa couplings and normalization determined by complex structure moduli space quantities.

Current status of calculation

- standard embedding

$$
V=T X, \text { gauge group } E_{6}
$$

- $h^{1,1}(X)$ matter fields $27^{(I)}$ with $\nu_{(I)} \in H^{1}\left(X, T X^{*}\right)$

$$
\lambda_{I J K} \sim d_{I J K} \quad \text { (intersection numbers) }
$$

$$
\left(\nu_{(I)}, \nu_{(J)}\right) \sim G_{I J}^{(1,1)} \quad \text { (Kahler moduli space metric) }
$$

- $h^{2,1}(X)$ matter fields $\overline{\mathbf{2 7}}^{(I)}$ with $\nu_{(I)} \in H^{1}(X, T X)$

Similar: Yukawa couplings and normalization determined by complex structure moduli space quantities.

Phys. Yukawa couplings can be computed for standard embedding

- general vector bundle
- $h^{1}\left(X, E_{i}\right)$ matter fields with $\nu_{i} \in H^{1}\left(X, E_{i}\right)$
- general vector bundle
- $h^{1}\left(X, E_{i}\right)$ matter fields with $\nu_{i} \in H^{1}\left(X, E_{i}\right)$

$$
H^{1}\left(X, E_{1}\right) \otimes H^{1}\left(X, E_{2}\right) \otimes H^{1}\left(X, E_{3}\right) \rightarrow H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

- general vector bundle
- $h^{1}\left(X, E_{i}\right)$ matter fields with $\nu_{i} \in H^{1}\left(X, E_{i}\right)$

$$
H^{1}\left(X, E_{1}\right) \otimes H^{1}\left(X, E_{2}\right) \otimes H^{1}\left(X, E_{3}\right) \rightarrow H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

Holomorphic Yukawa couplings can be computed algebraically by "multiplying" Cech representatives of cohomologies.

- general vector bundle
- $h^{1}\left(X, E_{i}\right)$ matter fields with $\nu_{i} \in H^{1}\left(X, E_{i}\right)$

$$
H^{1}\left(X, E_{1}\right) \otimes H^{1}\left(X, E_{2}\right) \otimes H^{1}\left(X, E_{3}\right) \rightarrow H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

Holomorphic Yukawa couplings can be computed algebraically by "multiplying" Cech representatives of cohomologies.
limitations:

- Sometimes not obvious how to carry out in practice when objects isomorphic to Cech representatives are used.
- Normalisation unkown and cannot be computed in this language.

We would like to....

- understand how to compute hol. Yukawa couplings using differential geometry language.
- clarify how such a differential geometry calculation relates to the algebraic one
- set the scene for a computation of the normalisation which requires differential geometry.

Our laboratory: the tetra quadric CY

Tetra-quadric: defined as zero locus of multi-degree $(2,2,2,2)$ polynomial in ambient space $\mathcal{A}=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$.

Our laboratory: the tetra quadric CY

Tetra-quadric: defined as zero locus of multi-degree $(2,2,2,2)$ polynomial in ambient space $\mathcal{A}=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$.

$$
X \sim\left[\begin{array}{l|l}
1 & 2 \\
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right]_{-128}^{4,68}
$$

Our laboratory: the tetra quadric CY

Tetra-quadric: defined as zero locus of multi-degree $(2,2,2,2)$ polynomial in ambient space $\mathcal{A}=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$.

$$
X \sim\left[\begin{array}{l|l}
1 & 2 \\
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right]_{-128}^{4,68}
$$

Line bundles $L=\mathcal{O}_{X}\left(k_{1}, \ldots k_{4}\right)=\left.\mathcal{O}_{\mathcal{A}}\left(k_{1}, \ldots, k_{4}\right)\right|_{X}$

Our laboratory: the tetra quadric CY

Tetra-quadric: defined as zero locus of multi-degree $(2,2,2,2)$ polynomial in ambient space $\mathcal{A}=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$.

$$
X \sim\left[\begin{array}{l|l}
1 & 2 \\
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right]_{-128}^{4,68}
$$

Line bundles $L=\mathcal{O}_{X}\left(k_{1}, \ldots k_{4}\right)=\left.\mathcal{O}_{\mathcal{A}}\left(k_{1}, \ldots, k_{4}\right)\right|_{X}$
Consider line bundle sums

$$
V=\bigoplus_{a=1}^{n} L_{a} \quad n=3,4,5 \quad c_{1}(V)=0
$$

Our laboratory: the tetra quadric CY

Tetra-quadric: defined as zero locus of multi-degree $(2,2,2,2)$ polynomial in ambient space $\mathcal{A}=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$.

$$
X \sim\left[\begin{array}{l|l}
1 & 2 \\
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right]_{-128}^{4,68}
$$

Line bundles $L=\mathcal{O}_{X}\left(k_{1}, \ldots k_{4}\right)=\left.\mathcal{O}_{\mathcal{A}}\left(k_{1}, \ldots, k_{4}\right)\right|_{X}$
Consider line bundle sums

$$
V=\bigoplus_{a=1}^{n} L_{a} \quad n=3,4,5 \quad c_{1}(V)=0
$$

Leads to structure groups $S\left(U(1)^{n}\right) \subset S U(n)$ and gauge groups $E_{6}, S O(10), S U(5)$

Tetra-quadric is simplest CICY which leads to line bundle standard models.

Line bundle cohomology on the tetra-quadric
Kozsul sequence: $0 \rightarrow N^{*} \otimes \mathcal{L} \rightarrow \mathcal{L} \rightarrow L \rightarrow 0$ where

$$
N=\mathcal{O}_{\mathcal{A}}(2,2,2,2) \text { and } L=\left.\mathcal{L}\right|_{X}
$$

Line bundle cohomology on the tetra-quadric
Kozsul sequence: $0 \rightarrow N^{*} \otimes \mathcal{L} \rightarrow \mathcal{L} \rightarrow L \rightarrow 0$ where

$$
N=\mathcal{O}_{\mathcal{A}}(2,2,2,2) \text { and } L=\left.\mathcal{L}\right|_{X}
$$

$$
\begin{aligned}
& \cdots \rightarrow H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\mathcal{A}, \mathcal{L}) \xrightarrow{i^{*}} H^{1}(X, L) \\
& \stackrel{\delta}{\rightarrow} H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L}) \rightarrow \cdots
\end{aligned}
$$

Line bundle cohomology on the tetra-quadric
Kozsul sequence: $0 \rightarrow N^{*} \otimes \mathcal{L} \rightarrow \mathcal{L} \rightarrow L \rightarrow 0$ where

$$
N=\mathcal{O}_{\mathcal{A}}(2,2,2,2) \text { and } L=\left.\mathcal{L}\right|_{X}
$$

$$
\begin{aligned}
\cdots & \rightarrow H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\mathcal{A}, \mathcal{L}) \xrightarrow{i^{*}} H^{1}(X, L) \\
& \stackrel{\delta}{\rightarrow} H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L}) \rightarrow \cdots
\end{aligned}
$$

Line bundle cohomology on the tetra-quadric
Kozsul sequence: $0 \rightarrow N^{*} \otimes \mathcal{L} \rightarrow \mathcal{L} \rightarrow L \rightarrow 0$ where

$$
N=\mathcal{O}_{\mathcal{A}}(2,2,2,2) \text { and } L=\left.\mathcal{L}\right|_{X}
$$

$$
\begin{aligned}
\cdots & \rightarrow H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\mathcal{A}, \mathcal{L}) \xrightarrow{i^{*}} H^{1}(X, L) \\
& \stackrel{ }{\rightarrow} H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L}) \rightarrow \cdots
\end{aligned}
$$

$$
H^{1}(X, L) \cong \operatorname{Coker}\left(H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\mathcal{A}, \mathcal{L})\right) \oplus
$$

$$
\operatorname{Ker}\left(H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L})\right)
$$

Line bundle cohomology on the tetra-quadric
Kozsul sequence: $0 \rightarrow N^{*} \otimes \mathcal{L} \rightarrow \mathcal{L} \rightarrow L \rightarrow 0$ where

$$
N=\mathcal{O}_{\mathcal{A}}(2,2,2,2) \text { and } L=\left.\mathcal{L}\right|_{X}
$$

$$
\begin{aligned}
\cdots & \rightarrow H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\mathcal{A}, \mathcal{L}) \xrightarrow{i^{*}} H^{1}(X, L) \\
& \stackrel{\delta}{\rightarrow} H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L}) \rightarrow \cdots
\end{aligned}
$$

$$
\begin{aligned}
H^{1}(X, L) \cong & \operatorname{Coker}\left(H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\mathcal{A}, \mathcal{L})\right) \oplus \\
& \operatorname{Ker}\left(H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L})\right)
\end{aligned}
$$

Can understand tetra-quadric line bundle cohomology in terms of line bundle cohomology on \mathbb{P}^{1}.

Line bundle cohomology on the tetra-quadric
Kozsul sequence: $0 \rightarrow N^{*} \otimes \mathcal{L} \rightarrow \mathcal{L} \rightarrow L \rightarrow 0$ where

$$
N=\mathcal{O}_{\mathcal{A}}(2,2,2,2) \text { and } L=\left.\mathcal{L}\right|_{X}
$$

$$
\begin{aligned}
\cdots & \rightarrow H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\mathcal{A}, \mathcal{L}) \xrightarrow{i^{*}} H^{1}(X, L) \\
& \stackrel{\delta}{\rightarrow} H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L}) \rightarrow \cdots
\end{aligned}
$$

$H^{1}(X, L) \cong \operatorname{Coker}\left(H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\mathcal{A}, \mathcal{L})\right) \oplus$

$$
\operatorname{Ker}\left(H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L})\right)
$$

Can understand tetra-quadric line bundle cohomology in terms of line bundle cohomology on \mathbb{P}^{1}.

Line bundle cohomology on the tetra-quadric
Kozsul sequence: $0 \rightarrow N^{*} \otimes \mathcal{L} \rightarrow \mathcal{L} \rightarrow L \rightarrow 0$ where

$$
N=\mathcal{O}_{\mathcal{A}}(2,2,2,2) \text { and } L=\left.\mathcal{L}\right|_{X}
$$

$$
\begin{aligned}
\cdots & \rightarrow H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\mathcal{A}, \mathcal{L}) \xrightarrow{i^{*}} H^{1}(X, L) \\
& \stackrel{\delta}{\rightarrow} H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L}) \rightarrow \cdots
\end{aligned}
$$

$H^{1}(X, L) \cong \operatorname{Coker}\left(H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\mathcal{A}, \mathcal{L})\right) \oplus$

$$
\operatorname{Ker}\left(H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L})\right)
$$

harder (co-boundary map)

Can understand tetra-quadric line bundle cohomology in terms of line bundle cohomology on \mathbb{P}^{1}.

Excursion: line bundles on \mathbb{P}^{1}

- $\mathcal{O}_{\mathbb{P}^{1}}(k)$ where $k \geq 0: h^{0}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)=k+1, \quad h^{1}\left(\mathbb{P}^{1}, O(k)\right)=0$

Excursion: line bundles on \mathbb{P}^{1}

- $\mathcal{O}_{\mathbb{P}^{1}}(k)$ where $k \geq 0: h^{0}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)=k+1, \quad h^{1}\left(\mathbb{P}^{1}, O(k)\right)=0$ harmonic (0,0)-forms: $\alpha=P_{(k)}(z)$

Excursion: line bundles on \mathbb{P}^{1}

- $\mathcal{O}_{\mathbb{P}^{1}}(k)$ where $k \geq 0: h^{0}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)=k+1, \quad h^{1}\left(\mathbb{P}^{1}, O(k)\right)=0$

$$
\text { harmonic }(0,0) \text {-forms: } \alpha=P_{(k)}(z)
$$

- $\mathcal{O}_{\mathbb{P}^{1}}(-1)$: all cohomologies zero

Excursion: line bundles on \mathbb{P}^{1}

- $\mathcal{O}_{\mathbb{P}^{1}}(k)$ where $k \geq 0: h^{0}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)=k+1, \quad h^{1}\left(\mathbb{P}^{1}, O(k)\right)=0$ harmonic (0,0)-forms: $\alpha=P_{(k)}(z)$
- $\mathcal{O}_{\mathbb{P}^{1}}(-1)$: all cohomologies zero
- $\mathcal{O}_{\mathbb{P}^{1}}(k)$ where $k \leq-2: h^{1}\left(\mathbb{P}^{1}, O(k)\right)=-k-1, h^{0}\left(\mathbb{P}^{1}, O(k)\right)=0$

Excursion: line bundles on \mathbb{P}^{1}

- $\mathcal{O}_{\mathbb{P}^{1}}(k)$ where $k \geq 0: h^{0}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)=k+1, \quad h^{1}\left(\mathbb{P}^{1}, O(k)\right)=0$ harmonic (0,0)-forms: $\alpha=P_{(k)}(z)$
- $\mathcal{O}_{\mathbb{P}^{1}}(-1)$: all cohomologies zero
- $\mathcal{O}_{\mathbb{P}^{1}}(k)$ where $k \leq-2: h^{1}\left(\mathbb{P}^{1}, O(k)\right)=-k-1, h^{0}\left(\mathbb{P}^{1}, O(k)\right)=0$
harmonic (0,1)-forms: $\quad \alpha=\kappa^{-k} P_{(-k-2)}(\bar{z}) d \bar{z}$

$$
\kappa=1+|z|^{2}
$$

How to "multiply" harmonic forms on \mathbb{P}^{1}
Clear for two harmonic $(0,0)$ forms.

How to "multiply" harmonic forms on \mathbb{P}^{1}
Clear for two harmonic $(0,0)$ forms.
What about $p_{(\delta)}: H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k-\delta)\right) \rightarrow H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)$, for $k \leq-2$?

How to "multiply" harmonic forms on \mathbb{P}^{1}

Clear for two harmonic $(0,0)$ forms.
What about $p_{(\delta)}: H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k-\delta)\right) \rightarrow H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)$, for $k \leq-2$?

$$
\alpha_{k-\delta}=\kappa^{k-\delta} P_{(-2-k+\delta)}(\bar{z}) d \bar{z} \quad \xrightarrow{p_{(\delta)}} \quad \alpha_{k}=\kappa^{k} Q_{(-2-k)}(\bar{z}) d \bar{z}
$$

How to "multiply" harmonic forms on \mathbb{P}^{1}

Clear for two harmonic $(0,0)$ forms.
What about $p_{(\delta)}: H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k-\delta)\right) \rightarrow H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)$, for $k \leq-2$?

$$
\alpha_{k-\delta}=\kappa^{k-\delta} P_{(-2-k+\delta)}(\bar{z}) d \bar{z} \quad \xrightarrow{p_{(\delta)}} \quad \alpha_{k}=\kappa^{k} Q_{(-2-k)}(\bar{z}) d \bar{z}
$$

$p \alpha_{k-\delta}$ is not harmonic, so $p \alpha_{k-\delta}+\bar{\partial} s=\alpha_{k}$

How to "multiply" harmonic forms on \mathbb{P}^{1}

Clear for two harmonic $(0,0)$ forms.
What about $p_{(\delta)}: H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k-\delta)\right) \rightarrow H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)$, for $k \leq-2$?

$$
\alpha_{k-\delta}=\kappa^{k-\delta} P_{(-2-k+\delta)}(\bar{z}) d \bar{z} \quad \xrightarrow{p_{(\delta)}} \quad \alpha_{k}=\kappa^{k} Q_{(-2-k)}(\bar{z}) d \bar{z}
$$

$p \alpha_{k-\delta}$ is not harmonic, so $p \alpha_{k-\delta}+\bar{\partial} s=\alpha_{k}$
The polynomials Q and S are determined by

How to "multiply" harmonic forms on \mathbb{P}^{1}

Clear for two harmonic $(0,0)$ forms.
What about $p_{(\delta)}: H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k-\delta)\right) \rightarrow H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)$, for $k \leq-2$?

$$
\alpha_{k-\delta}=\kappa^{k-\delta} P_{(-2-k+\delta)}(\bar{z}) d \bar{z} \quad \xrightarrow{p_{(\delta)}} \quad \alpha_{k}=\kappa^{k} Q_{(-2-k)}(\bar{z}) d \bar{z}
$$

$p \alpha_{k-\delta}$ is not harmonic, so $p \alpha_{k-\delta}+\bar{\partial} s=\alpha_{k}$
The polynomials Q and S are determined by

$$
p P+\kappa \partial_{\bar{z}} S-(-k+\delta-1) z S=\kappa^{\delta} Q
$$

How to "multiply" harmonic forms on \mathbb{P}^{1}
Clear for two harmonic $(0,0)$ forms.
What about $p_{(\delta)}: H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k-\delta)\right) \rightarrow H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)$, for $k \leq-2$?

$$
\alpha_{k-\delta}=\kappa^{k-\delta} P_{(-2-k+\delta)}(\bar{z}) d \bar{z} \quad \xrightarrow{p_{(\delta)}} \quad \alpha_{k}=\kappa^{k} Q_{(-2-k)}(\bar{z}) d \bar{z}
$$

$p \alpha_{k-\delta}$ is not harmonic, so $p \alpha_{k-\delta}+\bar{\partial} s=\alpha_{k}$
The polynomials Q and S are determined by

$$
p P+\kappa \partial_{\bar{z}} S-(-k+\delta-1) z S=\kappa^{\delta} Q
$$

or

$$
\tilde{Q}(\overline{\mathbf{x}})=c_{k-\delta, \delta} \tilde{p}\left(\partial_{\overline{\mathbf{x}}}\right) \tilde{P}(\overline{\mathbf{x}})
$$

How to "multiply" harmonic forms on \mathbb{P}^{1}
Clear for two harmonic $(0,0)$ forms.
What about $p_{(\delta)}: H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k-\delta)\right) \rightarrow H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)$, for $k \leq-2$?

$p \alpha_{k-\delta}$ is not harmonic, so $p \alpha_{k-\delta}+\bar{\partial} s=\alpha_{k}$
The polynomials Q and S are determined by

$$
p P+\kappa \partial_{\bar{z}} S-(-k+\delta-1) z S=\kappa^{\delta} Q
$$

or

$$
\tilde{Q}(\overline{\mathbf{x}})=c_{k-\delta, \delta} \tilde{p}\left(\partial_{\overline{\mathbf{x}}}\right) \tilde{P}(\overline{\mathbf{x}})
$$

"For negative degree maps, replace variables by derivatives."

Holomorphic Yukawa couplings on the tetra-quadric

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

Holomorphic Yukawa couplings on the tetra-quadric

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3} \quad \nu_{i} \in H^{1}\left(X, K_{i}\right)
$$

Holomorphic Yukawa couplings on the tetra-quadric

$$
\begin{aligned}
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right) & =\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3} \quad \nu_{i} \in H^{1}\left(X, K_{i}\right) \\
& =\frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{1}{p}\left(\bar{\partial} \hat{\nu}_{1} \wedge \hat{\nu}_{2} \wedge \hat{\nu}_{3}-\hat{\nu}_{1} \wedge \bar{\partial} \hat{\nu}_{2} \wedge \hat{\nu}_{3}+\hat{\nu}_{1} \wedge \hat{\nu}_{2} \wedge \bar{\partial} \hat{\nu}_{3}\right) \wedge d z_{1} \wedge \cdots \wedge d z_{4}
\end{aligned}
$$

Holomorphic Yukawa couplings on the tetra-quadric
$\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3} \quad \nu_{i} \in H^{1}\left(X, K_{i}\right)$

Holomorphic Yukawa couplings on the tetra-quadric
$\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3} \quad \quad \nu_{i} \in H^{1}\left(X, K_{i}\right)$

- Case 1: All ν_{i} originate from $\hat{\nu}_{i} \in H^{1}\left(\mathcal{A}, \mathcal{K}_{i}\right) \Rightarrow \bar{\partial} \hat{\nu}_{i}=0$

Holomorphic Yukawa couplings on the tetra-quadric
$\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3} \quad \quad \nu_{i} \in H^{1}\left(X, K_{i}\right)$

- Case 1: All ν_{i} originate from $\hat{\nu}_{i} \in H^{1}\left(\mathcal{A}, \mathcal{K}_{i}\right) \Rightarrow \bar{\partial} \hat{\nu}_{i}=0$

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=0
$$

Yukawa couplings vanish due to structure of cohomology.

- Case 2: ν_{3} originates from $\hat{\omega} \in H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{K}_{3}\right) \Rightarrow \bar{\partial}_{3}=p \hat{\omega}$ other ν_{i} from $\hat{\nu}_{i} \in H^{1}\left(\mathcal{A}, \mathcal{K}_{i}\right) \quad \Rightarrow \quad \bar{\partial} \hat{\nu}_{i}=0$
- Case 2: ν_{3} originates from $\hat{\omega} \in H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{K}_{3}\right) \Rightarrow \bar{\partial} \hat{\nu}_{3}=p \hat{\omega}$ other ν_{i} from $\hat{\nu}_{i} \in H^{1}\left(\mathcal{A}, \mathcal{K}_{i}\right) \quad \Rightarrow \quad \bar{\partial} \hat{\nu}_{i}=0$

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\frac{1}{\pi} \int_{\mathbb{C}^{4}} \hat{\nu}_{1} \wedge \hat{\nu}_{2} \wedge \hat{\omega} \wedge d z_{1} \wedge \cdots \wedge d z_{4}
$$

- Case 2: ν_{3} originates from $\hat{\omega} \in H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{K}_{3}\right) \Rightarrow \bar{\partial} \hat{\nu}_{3}=p \hat{\omega}$ other ν_{i} from $\hat{\nu}_{i} \in H^{1}\left(\mathcal{A}, \mathcal{K}_{i}\right) \quad \Rightarrow \quad \bar{\partial} \hat{\nu}_{i}=0$

$$
\begin{aligned}
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right) & =\frac{1}{\pi} \int_{\mathbb{C}^{4}} \hat{\nu}_{1} \wedge \hat{\nu}_{2} \wedge \hat{\omega} \wedge d z_{1} \wedge \cdots \wedge d z_{4} \\
& =\frac{1}{\pi} \int_{\mathbb{C}^{4}} \kappa_{1}^{k_{1,1}} \kappa_{2}^{k_{2,2}} \kappa_{3}^{k_{3,3}-2} \kappa_{4}^{k_{3,4}-2} P_{\left(\mathbf{k}_{1}\right)} Q_{\left(\mathbf{k}_{2}\right)} R_{\left(\mathbf{k}_{3}-\mathbf{q}\right)} d^{4} z d^{4} \bar{z}
\end{aligned}
$$

- Case 2: ν_{3} originates from $\hat{\omega} \in H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{K}_{3}\right) \Rightarrow \bar{\partial} \hat{\nu}_{3}=p \hat{\omega}$ other ν_{i} from $\hat{\nu}_{i} \in H^{1}\left(\mathcal{A}, \mathcal{K}_{i}\right) \quad \Rightarrow \quad \bar{\partial} \hat{\nu}_{i}=0$

$$
\begin{aligned}
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right) & =\frac{1}{\pi} \int_{\mathbb{C}^{4}} \hat{\nu}_{1} \wedge \hat{\nu}_{2} \wedge \hat{\omega} \wedge d z_{1} \wedge \cdots \wedge d z_{4} \\
& =\frac{1}{\pi} \int_{\mathbb{C}^{4}} \kappa_{1}^{k_{1,1}} \kappa_{2}^{k_{2,2}} \kappa_{3}^{k_{3,3}-2} \kappa_{4}^{k_{3,4}-2} P_{\left(\mathbf{k}_{1}\right)} Q_{\left(\mathbf{k}_{2}\right)} R_{\left(\mathbf{k}_{3}-\mathbf{q}\right)} d^{4} z d^{4} \bar{z}
\end{aligned}
$$

Can always be explicitly integrated, or calculated algebraically:

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=16 \pi^{3} c \mu(P, Q, R)
$$

$$
\mu(P, Q, R)=\tilde{P} \tilde{Q} \tilde{R}
$$

- Case 2: ν_{3} originates from $\hat{\omega} \in H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{K}_{3}\right) \Rightarrow \bar{\partial} \hat{\nu}_{3}=p \hat{\omega}$ other ν_{i} from $\hat{\nu}_{i} \in H^{1}\left(\mathcal{A}, \mathcal{K}_{i}\right) \quad \Rightarrow \quad \bar{\partial} \hat{\nu}_{i}=0$

$$
\begin{aligned}
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right) & =\frac{1}{\pi} \int_{\mathbb{C}^{4}} \hat{\nu}_{1} \wedge \hat{\nu}_{2} \wedge \hat{\omega} \wedge d z_{1} \wedge \cdots \wedge d z_{4} \\
& =\frac{1}{\pi} \int_{\mathbb{C}^{4}} \kappa_{1}^{k_{1,1}} \kappa_{2}^{k_{2,2}} \kappa_{3}^{k_{3,3}-2} \kappa_{4}^{k_{3,4}-2} P_{\left(\mathbf{k}_{1}\right)} Q_{\left(\mathbf{k}_{2}\right)} R_{\left(\mathbf{k}_{3}-\mathbf{q}\right)} d^{4} z d^{4} \bar{z}
\end{aligned}
$$

Can always be explicitly integrated, or calculated algebraically:

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=16 \pi^{3} c \mu(P, Q, R)
$$

$$
\mu(P, Q, R)=\tilde{P} \tilde{Q} \tilde{R}
$$

- Case 3: More than one ν_{i} originates from ambient 2-form

Slightly more complicated but can always be integrated.

Example 1: up-Yukawa couplings

Standard model based on SU(5) GUT with line bundles

$$
\begin{aligned}
& L_{1}=\mathcal{O}_{X}(-1,0,0,1), L_{2}=\mathcal{O}_{X}(-1,-3,2,2), L_{3}=\mathcal{O}_{X}(0,1,-1,0) \\
& L_{4}=\mathcal{O}_{X}(1,1,-1,-1), L_{5}=\mathcal{O}_{X}(1,1,0,-2)
\end{aligned}
$$

Example 1: up-Yukawa couplings

Standard model based on SU(5) GUT with line bundles

$$
\begin{aligned}
& L_{1}=\mathcal{O}_{X}(-1,0,0,1), L_{2}=\mathcal{O}_{X}(-1,-3,2,2), L_{3}=\mathcal{O}_{X}(0,1,-1,0) \\
& L_{4}=\mathcal{O}_{X}(1,1,-1,-1), L_{5}=\mathcal{O}_{X}(1,1,0,-2)
\end{aligned}
$$

Relevant line bundles for up-Yukawa coupling:

$$
\begin{array}{lll}
K_{1}=L_{2}^{*} \otimes L_{5}^{*} & 3 \mathbf{5}_{2,5}^{H} & \hat{\nu}_{1}=\kappa_{3}^{-2} Q_{(0,2,-2,0)} d \bar{z}_{3} \\
K_{2}=L_{5} & 4 \mathbf{1 0}_{2} & \hat{\nu}_{2}=\kappa_{4}^{-2} R_{(1,1,0,-2)} d \bar{z}_{4} \\
K_{3}=L_{2} & 8 \mathbf{1 0}_{5} & \hat{\omega}=\kappa_{1}^{-3} \kappa_{2}^{-5} S_{(-3,-5,0,0)} d \bar{z}_{1} \wedge d \bar{z}_{2}
\end{array}
$$

Example 1: up-Yukawa couplings

Standard model based on SU(5) GUT with line bundles

$$
\begin{aligned}
& L_{1}=\mathcal{O}_{X}(-1,0,0,1), L_{2}=\mathcal{O}_{X}(-1,-3,2,2), L_{3}=\mathcal{O}_{X}(0,1,-1,0) \\
& L_{4}=\mathcal{O}_{X}(1,1,-1,-1), L_{5}=\mathcal{O}_{X}(1,1,0,-2)
\end{aligned}
$$

Relevant line bundles for up-Yukawa coupling:

$$
\begin{array}{lll}
K_{1}=L_{2}^{*} \otimes L_{5}^{*} & 3 \mathbf{5}_{2,5}^{H} & \hat{\nu}_{1}=\kappa_{3}^{-2} Q_{(0,2,-2,0)} d \bar{z}_{3} \\
K_{2}=L_{5} & 4 \mathbf{1 0}_{2} & \hat{\nu}_{2}=\kappa_{4}^{-2} R_{(1,1,0,-2)} d \bar{z}_{4} \\
K_{3}=L_{2} & 8 \mathbf{1 0}_{5} & \hat{\omega}=\kappa_{1}^{-3} \kappa_{2}^{-5} S_{(-3,-5,0,0)} d \bar{z}_{1} \wedge d \bar{z}_{2}
\end{array}
$$

where

$$
\begin{aligned}
Q & =q_{0}+q_{1} z_{2}+q_{2} z_{2}^{2} \\
R & =r_{0}+r_{1} z_{1}+r_{2} z_{2}+r_{3} z_{1} z_{2} \\
S & =s_{0}+s_{1} \bar{z}_{2}+s_{2} \bar{z}_{2}^{2}+s_{3} \bar{z}_{2}^{3}+s_{4} \bar{z}_{1}+s_{5} \bar{z}_{1} \bar{z}_{2}+s_{6} \bar{z}_{1} \bar{z}_{2}^{2}+s_{7} \bar{z}_{1} \bar{z}_{2}^{3}
\end{aligned}
$$

Yukawa couplings, explicit calculation:
$\lambda(Q, R, S)=\frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{Q R S}{\kappa_{1}^{3} \kappa_{2}^{5} \kappa_{3}^{2} \kappa_{4}^{2}} d^{4} z d^{4} \bar{z}$

Yukawa couplings, explicit calculation:

$$
\begin{aligned}
\lambda(Q, R, S)= & \frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{Q R S}{\kappa_{1}^{3} \kappa_{2}^{5} \kappa_{3}^{2} \kappa_{4}^{2}} d^{4} z d^{4} \bar{z} \\
= & \frac{2 \pi^{3}}{3}\left[3 q_{0} r_{0} s_{0}+3 q_{0} r_{1} s_{4}+q_{0} r_{2} s_{1}+q_{0} r_{3} s_{5}+q_{1} r_{0} s_{1}+q_{1} r_{1} s_{5}+\right. \\
& \left.q_{1} r_{2} s_{2}+q_{1} r_{3} s_{6}+q_{2} r_{0} s_{2}+q_{2} r_{1} s_{6}+3 q_{2} r_{2} s_{3}+3 q_{2} r_{3} s_{7}\right]
\end{aligned}
$$

Yukawa couplings, explicit calculation:

$$
\begin{aligned}
\lambda(Q, R, S)= & \frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{Q R S}{} \frac{Q 1}{\kappa_{1}^{3} \kappa_{2}^{5} \kappa_{3}^{2} \kappa_{4}^{2}} d^{4} z d^{4} \bar{z} \\
= & \frac{2 \pi^{3}}{3}\left[3 q_{0} r_{0} s_{0}+3 q_{0} r_{1} s_{4}+q_{0} r_{2} s_{1}+q_{0} r_{3} s_{5}+q_{1} r_{0} s_{1}+q_{1} r_{1} s_{5}+\right. \\
& \left.q_{1} r_{2} s_{2}+q_{1} r_{3} s_{6}+q_{2} r_{0} s_{2}+q_{2} r_{1} s_{6}+3 q_{2} r_{2} s_{3}+3 q_{2} r_{3} s_{7}\right]
\end{aligned}
$$

Yukawa couplings, algebraic calculation:

$$
\begin{aligned}
\tilde{Q} & =q_{0} y_{0}^{2}+q_{1} y_{0} y_{1}+q_{2} y_{1}^{2} \\
\tilde{R} & =r_{0} x_{0} y_{0}+r_{1} x_{1} y_{0}+r_{2} x_{0} y_{1}+r_{3} x_{1} y_{1} \\
\tilde{S} & =s_{0} x_{0} y_{0}^{3}+s_{1} x_{0} y_{0}^{2} y_{1}+s_{2} x_{0} y_{0} y_{1}^{2}+s_{3} x_{0} y_{1}^{3}+s_{4} x_{1} y_{0}^{3}+s_{5} x_{1} y_{0}^{2} y_{1}+s_{6} x_{1} y_{0} y_{1}^{2}+s_{7} x_{1} y_{1}^{3}
\end{aligned}
$$

Yukawa couplings, explicit calculation:

$$
\begin{aligned}
\lambda(Q, R, S)= & \frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{Q R S}{\kappa_{1}^{3} \kappa_{2}^{5} \kappa_{3}^{2} \kappa_{4}^{2}} d^{4} z d^{4} \bar{z} \\
= & \frac{2 \pi^{3}}{3}\left[3 q_{0} r_{0} s_{0}+3 q_{0} r_{1} s_{4}+q_{0} r_{2} s_{1}+q_{0} r_{3} s_{5}+q_{1} r_{0} s_{1}+q_{1} r_{1} s_{5}+\right. \\
& \left.q_{1} r_{2} s_{2}+q_{1} r_{3} s_{6}+q_{2} r_{0} s_{2}+q_{2} r_{1} s_{6}+3 q_{2} r_{2} s_{3}+3 q_{2} r_{3} s_{7}\right]
\end{aligned}
$$

Yukawa couplings, algebraic calculation:

$$
\begin{aligned}
& \tilde{Q}=q_{0} y_{0}^{2}+q_{1} y_{0} y_{1}+q_{2} y_{1}^{2} \\
& \tilde{R}=r_{0} x_{0} y_{0}+r_{1} x_{1} y_{0}+r_{2} x_{0} y_{1}+r_{3} x_{1} y_{1} \\
& \tilde{S}=s_{0} x_{0} y_{0}^{3}+s_{1} x_{0} y_{0}^{2} y_{1}+s_{2} x_{0} y_{0} y_{1}^{2}+s_{3} x_{0} y_{1}^{3}+s_{4} x_{1} y_{0}^{3}+s_{5} x_{1} y_{0}^{2} y_{1}+s_{6} x_{1} y_{0} y_{1}^{2}+s_{7} x_{1} y_{1}^{3} \\
& \\
& \\
& \mu(Q, R, S)=\left(q_{0} \partial_{y_{0}}^{2}+q_{1} \partial_{y_{0}} \partial_{y_{1}}+q_{2} \partial_{y_{1}}^{2}\right)\left(r_{0} \partial_{x_{0}} \partial_{y_{0}}+r_{1} \partial_{x_{1}} \partial_{y_{0}}+r_{2} \partial_{x_{0}} \partial_{y_{1}}+r_{3} \partial_{x_{1}} \partial_{y_{1}}\right) \\
& \quad\left(s_{0} x_{0} y_{0}^{3}+s_{1} x_{0} y_{0}^{2} y_{1}+s_{2} x_{0} y_{0} y_{1}^{2}+s_{3} x_{0} y_{1}^{3}+s_{4} x_{1} y_{0}^{3}+s_{5} x_{1} y_{0}^{2} y_{1}+s_{6} x_{1} y_{0} y_{1}^{2}+s_{7} x_{1} y_{1}^{3}\right) \\
& =2\left[3 q_{0} r_{0} s_{0}+3 q_{0} r_{1} s_{4}+q_{0} r_{2} s_{1}+q_{0} r_{3} s_{5}+q_{1} r_{0} s_{1}+q_{1} r_{1} s_{5}+\right. \\
& \left.q_{1} r_{2} s_{2}+q_{1} r_{3} s_{6}+q_{2} r_{0} s_{2}+q_{2} r_{1} s_{6}+3 q_{2} r_{2} s_{3}+3 q_{2} r_{3} s_{7}\right] .
\end{aligned}
$$

After taking quotient by $\Gamma=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and adding Wilson line:

$$
\lambda^{(u)}=\frac{\pi^{3}}{3}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Example 1: singlet-Yukawa couplings

The same model has a coupling

$$
\mathbf{1}_{2,4} \overline{\mathbf{5}}_{4,5} \mathbf{5}_{2,5}
$$

Example 1: singlet-Yukawa couplings

The same model has a coupling

$$
\mathbf{1}_{2,4} \overline{\mathbf{5}}_{4,5} \mathbf{5}_{2,5}
$$

with associated line bundles

$$
\begin{aligned}
K_{1}=L_{2} \otimes L_{4}^{*}=\mathcal{O}_{X}(-2,-4,3,3) & \rightarrow 12 \mathbf{1}_{2,4} \in \delta^{-1} \operatorname{Ker}\left(H ^ { 2 } \left(\mathcal{O}_{\mathcal{A}}(-4,-6,1,1) \xrightarrow{p} H^{2}\left(\mathcal{O}_{\mathcal{A}}(-2,-4,3,3)\right)\right.\right. \\
K_{2}=L_{4} \otimes L_{5}=\mathcal{O}_{X}(2,2,-1,-3) & \rightarrow 8 \overline{\mathbf{5}}_{4,5} \in \delta^{-1} H^{2}\left(\mathcal{O}_{\mathcal{A}}(0,0,-3,-5)\right. \\
K_{3}=L_{2}^{*} \otimes L_{5}^{*}=\mathcal{O}_{X}(0,2,-2,0) & \rightarrow 3 \mathbf{5}_{2,5} \in H^{1}\left(\mathcal{O}_{\mathcal{A}}(0,2,-2,0)\right)
\end{aligned}
$$

Example 1: singlet-Yukawa couplings

The same model has a coupling

$$
\mathbf{1}_{2,4} \overline{\mathbf{5}}_{4,5} \mathbf{5}_{2,5}
$$

with associated line bundles

$$
\begin{aligned}
K_{1}=L_{2} \otimes L_{4}^{*}=\mathcal{O}_{X}(-2,-4,3,3) & \rightarrow 12 \mathbf{1}_{2,4} \in \delta^{-1} \operatorname{Ker}\left(H ^ { 2 } \left(\mathcal{O}_{\mathcal{A}}(-4,-6,1,1) \xrightarrow{p} H^{2}\left(\mathcal{O}_{\mathcal{A}}(-2,-4,3,3)\right)\right.\right. \\
K_{2}=L_{4} \otimes L_{5}=\mathcal{O}_{X}(2,2,-1,-3) & \rightarrow 8 \overline{\mathbf{5}}_{4,5} \in \delta^{-1} H^{2}\left(\mathcal{O}_{\mathcal{A}}(0,0,-3,-5)\right. \\
K_{3}=L_{2}^{*} \otimes L_{5}^{*}=\mathcal{O}_{X}(0,2,-2,0) & \rightarrow 3 \mathbf{5}_{2,5} \in H^{1}\left(\mathcal{O}_{\mathcal{A}}(0,2,-2,0)\right)
\end{aligned}
$$

and differential forms

$$
\begin{aligned}
\hat{\omega}_{1} & =\kappa_{1}^{-4} \kappa_{2}^{-6} Q_{(-4,-6,1,1)} d \bar{z}_{1} \wedge d \bar{z}_{2} \text { where } \tilde{p} \tilde{Q}=0 \\
\hat{\omega}_{2} & =\kappa_{3}^{-3} \kappa_{4}^{-5} R_{(0,0,-3,-5)} d \bar{z}_{3} \wedge d \bar{z}_{4} \\
\hat{\nu}_{3} & =\kappa_{3}^{-2} S_{(0,2,-2,0)} d \bar{z}_{3}
\end{aligned}
$$

Example 1: singlet-Yukawa couplings

The same model has a coupling

$$
\mathbf{1}_{2,4} \overline{\mathbf{5}}_{4,5} \mathbf{5}_{2,5}
$$

with associated line bundles

$$
\begin{aligned}
K_{1}=L_{2} \otimes L_{4}^{*}=\mathcal{O}_{X}(-2,-4,3,3) & \rightarrow 12 \mathbf{1}_{2,4} \in \delta^{-1} \operatorname{Ker}\left(H ^ { 2 } \left(\mathcal{O}_{\mathcal{A}}(-4,-6,1,1) \xrightarrow{p} H^{2}\left(\mathcal{O}_{\mathcal{A}}(-2,-4,3,3)\right)\right.\right. \\
K_{2}=L_{4} \otimes L_{5}=\mathcal{O}_{X}(2,2,-1,-3) & \rightarrow 8 \overline{\mathbf{5}}_{4,5} \in \delta^{-1} H^{2}\left(\mathcal{O}_{\mathcal{A}}(0,0,-3,-5)\right. \\
K_{3}=L_{2}^{*} \otimes L_{5}^{*}=\mathcal{O}_{X}(0,2,-2,0) & \rightarrow 3 \mathbf{5}_{2,5} \in H^{1}\left(\mathcal{O}_{\mathcal{A}}(0,2,-2,0)\right)
\end{aligned}
$$

and differential forms

$$
\begin{aligned}
& a_{0}, \ldots, a_{14} \\
& \hat{\omega}_{1}=\kappa_{1}^{-4} \kappa_{2}^{-6} Q_{(-4,-6,1,1)} d \bar{z}_{1} \wedge d \bar{z}_{2} \quad \text { where } \tilde{p} \tilde{Q}=0 \\
& \hat{\omega}_{2}=\kappa_{3}^{-3} \kappa_{4}^{-5} R_{(0,0,-3,-5)} d \bar{z}_{3} \wedge d \bar{z}_{4} \\
& \hat{\nu}_{3}=\kappa_{3}^{-2} S_{(0,2,-2,0)} d \bar{z}_{3} .
\end{aligned}
$$

Example 1: singlet-Yukawa couplings

The same model has a coupling

$$
\mathbf{1}_{2,4} \overline{\mathbf{5}}_{4,5} \mathbf{5}_{2,5}
$$

with associated line bundles

$$
\begin{aligned}
K_{1}=L_{2} \otimes L_{4}^{*}=\mathcal{O}_{X}(-2,-4,3,3) & \rightarrow 12 \mathbf{1}_{2,4} \in \delta^{-1} \operatorname{Ker}\left(H ^ { 2 } \left(\mathcal{O}_{\mathcal{A}}(-4,-6,1,1) \xrightarrow{p} H^{2}\left(\mathcal{O}_{\mathcal{A}}(-2,-4,3,3)\right)\right.\right. \\
K_{2}=L_{4} \otimes L_{5}=\mathcal{O}_{X}(2,2,-1,-3) & \rightarrow 8 \overline{\mathbf{5}}_{4,5} \in \delta^{-1} H^{2}\left(\mathcal{O}_{\mathcal{A}}(0,0,-3,-5)\right. \\
K_{3}=L_{2}^{*} \otimes L_{5}^{*}=\mathcal{O}_{X}(0,2,-2,0) & \rightarrow 3 \mathbf{5}_{2,5} \in H^{1}\left(\mathcal{O}_{\mathcal{A}}(0,2,-2,0)\right)
\end{aligned}
$$

and differential forms

$$
\begin{aligned}
& a_{0}, \ldots, a_{14} \\
& \hat{\omega}_{1}=\kappa_{1}^{-4} \kappa_{2}^{-6} Q_{(-4,-6,1,1)} d \bar{z}_{1} \wedge d \bar{z}_{2} \quad \text { where } \tilde{p} \tilde{Q}=0 \\
& \hat{\omega}_{2}=\kappa_{3}^{-3} \kappa_{4}^{-5} R_{(0,0,-3,-5)} d \bar{z}_{3} \wedge d \bar{z}_{4} \\
& \hat{\nu}_{3}=\kappa_{3}^{-2} S_{(0,2,-2,0)} d \bar{z}_{3} . \\
& b_{0}, b_{1}
\end{aligned}
$$

Yukawa couplings for a 5-parameter family of tetra-quadrics:

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=-\frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{Q \mathcal{R} S}{\kappa_{1}^{4} \kappa_{2}^{6} \kappa_{3}^{4} \kappa_{4}^{5}} d^{4} z d^{4} \bar{z}
$$

Yukawa couplings for a 5-parameter family of tetra-quadrics:

$$
\begin{aligned}
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)= & -\frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{Q \mathcal{R} S}{\kappa_{1}^{4} \kappa_{2}^{6} \kappa_{3}^{4} \kappa_{4}^{5}} d^{4} z d^{4} \bar{z} \\
= & \frac{\pi^{3}}{3240}\left(2 a_{14} b_{1} c_{1}+9 a_{12} b_{0} c_{2}+9 a_{13} b_{0} c_{2}-8 a_{4} b_{1} c_{2}-8 a_{5} b_{1} c_{2}+3 a_{12} b_{1} c_{2}+3 a_{13} b_{1} c_{2}-36 a_{7} b_{0} c_{3}-\right. \\
& 12 a_{2} b_{1} c_{3}-12 a_{14} b_{0} c_{4}+6 a_{2} b_{1} c_{4}+6 a_{3} b_{1} c_{4}-6 a_{6} b_{1} c_{4}-6 a_{7} b_{1} c_{4}+4 a_{14} b_{1} c_{4}-36 a_{6} b_{0} c_{5}- \\
& \left.12 a_{3} b_{1} c_{5}-36 a_{2} b_{0} c_{6}-36 a_{3} b_{0} c_{6}-12 a_{6} b_{1} c_{6}-12 a_{7} b_{1} c_{6}\right)
\end{aligned}
$$

Yukawa couplings for a 5-parameter family of tetra-quadrics:

$$
\begin{aligned}
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)= & -\frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{Q \mathcal{R} S}{\kappa_{1}^{4} \kappa_{2}^{6} \kappa_{3}^{4} \kappa_{4}^{5}} d^{4} z d^{4} \bar{z} \\
= & \frac{\pi^{3}}{3240}\left(2 a_{14} b_{1} c_{1}+9 a_{12} b_{0} c_{2}+9 a_{13} b_{0} c_{2}-8 a_{4} b_{1} c_{2}-8 a_{5} b_{1} c_{2}+3 a_{12} b_{1} c_{2}+3 a_{13} b_{1} c_{2}-36 a_{7} b_{0} c_{3}-\right. \\
& 12 a_{2} b_{1} c_{3}-12 a_{14} b_{0} c_{4}+6 a_{2} b_{1} c_{4}+6 a_{3} b_{1} c_{4}-6 a_{6} b_{1} c_{4}-6 a_{7} b_{1} c_{4}+4 a_{14} b_{1} c_{4}-36 a_{6} b_{0} c_{5}- \\
& \left.12 a_{3} b_{1} c_{5}-36 a_{2} b_{0} c_{6}-36 a_{3} b_{0} c_{6}-12 a_{6} b_{1} c_{6}-12 a_{7} b_{1} c_{6}\right)
\end{aligned}
$$

Still need to find kernel Ma=0 where

Yukawa couplings for a 5-parameter family of tetra-quadrics:

$$
\begin{aligned}
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)= & -\frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{Q \mathcal{R} S}{\kappa_{1}^{4} \kappa_{2}^{6} \kappa_{3}^{4} \kappa_{4}^{5}} d^{4} z d^{4} \bar{z} \\
= & \frac{\pi^{3}}{3240}\left(2 a_{14} b_{1} c_{1}+9 a_{12} b_{0} c_{2}+9 a_{13} b_{0} c_{2}-8 a_{4} b_{1} c_{2}-8 a_{5} b_{1} c_{2}+3 a_{12} b_{1} c_{2}+3 a_{13} b_{1} c_{2}-36 a_{7} b_{0} c_{3}-\right. \\
& 12 a_{2} b_{1} c_{3}-12 a_{14} b_{0} c_{4}+6 a_{2} b_{1} c_{4}+6 a_{3} b_{1} c_{4}-6 a_{6} b_{1} c_{4}-6 a_{7} b_{1} c_{4}+4 a_{14} b_{1} c_{4}-36 a_{6} b_{0} c_{5}- \\
& \left.12 a_{3} b_{1} c_{5}-36 a_{2} b_{0} c_{6}-36 a_{3} b_{0} c_{6}-12 a_{6} b_{1} c_{6}-12 a_{7} b_{1} c_{6}\right)
\end{aligned}
$$

Still need to find kernel $M \mathbf{a}=0$ where

The Yukawa coupling

$$
\lambda_{i j} S^{i} L^{j} \bar{H}
$$

The Yukawa coupling

$$
\lambda_{i j} S^{i} L^{j} \bar{H}
$$

then becomes

$$
\lambda=\frac{\pi^{3}}{180}\left(\begin{array}{cc}
0 & \left(c_{3}-c_{5}\right)\left(4 c_{4}^{2}+c_{1}\left(c_{3}+c_{5}-2 c_{6}\right)\right)\left(c_{3}+c_{5}+2 c_{6}\right) \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

The Yukawa coupling

$$
\lambda_{i j} S^{i} L^{j} \bar{H}
$$

then becomes

$$
\lambda=\frac{\pi^{3}}{180}\left(\begin{array}{ll}
0 & \left(c_{3}-c_{5}\right)\left(4 c_{4}^{2}+c_{1}\left(c_{3}+c_{5}-2 c_{6}\right)\right)\left(c_{3}+c_{5}+2 c_{6}\right) \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

This is generically rank 1, but will be generally rank 2 away from the 5 -parameter family. For $c_{3}=c_{5}$ the Higgs remains massless even if $\left\langle S^{i}\right\rangle \neq 0$.

Conclusion

- Calculating Yukawa couplings in string theory is crucial in order to make contact with physics.
- Much remains to be done for Yukawa couplings in heterotic Calabi-Yau models with arbitrary vector bundles.
- We can now compute the holomorphic (perturbative) Yukawa couplings for heterotic line bundle models, both algebraically and in terms of differential geometry.
- First explicit calculation of complex structure dependence: rank of hol. Yukawa couplings can change in complex structure moduli space

Much remains to be done:

- Compute hol. Yukawa couplings for other manifolds.
- Compute hol. Yukawa couplings for non-Abelian bundles.
- Find a way to work out the normalisation.
- Find standard models with realistic Yukawa couplings.

Much remains to be done:

- Compute hol. Yukawa couplings for other manifolds.
- Compute hol. Yukawa couplings for non-Abelian bundles.
- Find a way to work out the normalisation.
- Find standard models with realistic Yukawa couplings.

