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Normalization is not independent of representative and needs


to be computed for harmonic (0,1) forms.

Algebraic computation (probably) not possible. Requires methods


of differential geometry.
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This holds for any symmetry   and all types of Yukawa couplings. �
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In heterotic GUT models with Wilson line breaking


Yukawa unification in the traditional sense (i.e. enforced


by the GUT symmetry) never arises.

Yukawa unification may arise from additional symmetries


which constraints the upstairs Yukawa couplings     .    �IJ
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• general vector bundle

•             matter fields with  h1(X,Ei) ⌫i 2 H1(X,Ei)

Holomorphic Yukawa couplings can be computed algebraically


by ``multiplying” Cech representatives of cohomologies.

limitations:

• Sometimes not obvious how to carry out in practice  
 when objects isomorphic to Cech representatives are used.  

• Normalisation unkown and cannot be computed in this  
 language.

H1(X,E1)⌦H1(X,E2)⌦H1(X,E3) ! H3(X,OX) ⇠= C



We would like to….

• understand how to compute hol. Yukawa couplings using  
 differential geometry language.  

• clarify how such a differential geometry calculation relates  
 to the algebraic one 

• set the scene for a computation of the normalisation  
 which requires differential geometry.
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                 polynomial in ambient space                         . A = P1 ⇥ P1 ⇥ P1 ⇥ P1

Consider line bundle sums

V =
nM

a=1

La n = 3, 4, 5 c1(V ) = 0

Leads to structure groups                     and gauge groups

S(U(1)n) ⇢ SU(n)

E6, SO(10), SU(5)

Line bundles L = OX(k1, . . . k4) = OA(k1, . . . , k4)|X

X ⇠
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Tetra-quadric is simplest CICY which leads to


 line bundle standard models.
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Excursion: line bundles on P1

•           : all cohomologies zero OP1(�1)

•         where        :                         ,    OP1(k) k � 0 h0(P1,O(k)) = k + 1 h1(P1, O(k)) = 0

•         where          :                           ,    OP1(k) k  �2 h1(P1, O(k)) = �k � 1 h0(P1, O(k)) = 0

harmonic (0,1)-forms:

 = 1 + |z|2
↵ = �kP(�k�2)(z̄)dz̄

 harmonic (0,0)-forms: ↵ = P(k)(z)
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How to ``multiply” harmonic forms on P1

Clear for two harmonic (0,0) forms.

What about                                               , for          ?  p(�) : H
1(P1,O(k � �)) ! H1(P1,O(k)) k  �2

where k  �2 and p = p(�)(z) is a degree � polynomial in z. Evidently, the map acts by simple multiplication
with p, so ↵k�� ! p↵k�� but the resulting representative of H1(P1,OP1(k)) is not harmonic. To find the
corresponding harmonic representative we set m = �k + � � 1 in Eq. (51) (this appears to be the right choice
for this equivalence) and then search for an s and a harmonic ↵k satisfying

p↵k�� + @̄s = ↵k . (54)

Using the explicit expressions (50) for the harmonic one-forms written as

↵k�� = k��P(�2�k+�)(z̄)dz̄ , ↵k = kQ(�2�k)(z̄)dz̄ (55)

as well as (51) for the sections
s = �mS(��1,�k+��1)(z, z̄) , (56)

this condition translates into
pP + @z̄S � (�k + � � 1)zS = �Q . (57)

The idea is that this equation, for a given map p and a given element P in the source space, will determine both
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5.6 Examples
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has a simply solution which can be used to express Q directly in terms of P and p. To formulate this solution,
I introduce the homogeneous version of these polynomials which I denote by

P̃ = P̃(�2�k+�)(x̄0, x̄1) , p̃ = p̃(�)(x0, x1) , Q̃ = Q̃(�2�k)(x̄0, x̄1) . (58)

Then the solution to Eq. (57) can we written as

Q̃(x̄) = ck��,� p̃(@x̄) P̃ (x̄) . (59)

Here, p̃(@
x̄

) denotes the polynomial p̃ with the coordinates replaced by the corresponding partial derivatives and
the ck��,� are numbers. In short, the map defined by the polynomial p̃ simply acts in a derivative fashion. In
particular, note that this is consistent with the degrees of the various polynomials involved. For the constants
ck��,� I find, for example,

ck�1,1 = �1

k
, c�2��,� =

1

(� + 1)!
, (60)

and, in general, from Evgeny’s proof

ck��,� =
(�k � 1)!

(� � k � 1)!
. (61)

I believe that Eq. (59) is the key to converting the calculation of the Yukawa couplings to an algebraic one.

5.6 Examples

To see how Eqs. (57) and (59) work it may be useful to consider a few explicit examples.
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Holomorphic Yukawa couplings on the tetra-quadric

K3 = Le.

The upshot of this discussion is that all Yukawa couplings for the three cases can be discussed uniformly in terms
of three line bundles Ka = OX(ka), with

P3
a=1 ka = 0 and the three types of matter multiplets are described

by one-forms ⌫a 2 H1(X,Ka). These one forms can be obtained as restrictions of ambient space one forms ⌫̂a,
so that ⌫a = ⌫̂a|X . The Yukawa couplings are then explicitly given by

�(⌫1, ⌫2, ⌫3) =

Z

X
⌦ ^ ⌫1 ^ ⌫2 ^ ⌫3 . (105)

This can be converted into an ambient space integral inserting the two-form dp^dp̄�2(p). After using �2(p)dp̄ =
1
⇡ @̄

⇣
1
p

⌘
, integrating by parts and writing ⌦̂ ^ dp = dz1 ^ · · · ^ dz4 we have

�(⌫1, ⌫2, ⌫3) =
1

⇡

Z

C4

1

p

�
@̄⌫̂1 ^ ⌫̂2 ^ ⌫̂3 � ⌫̂1 ^ @̄⌫̂2 ^ ⌫̂3 + ⌫̂1 ^ ⌫̂2 ^ @̄⌫̂3

� ^ dz1 ^ · · · ^ dz4 . (106)

If all three line bundles Ka are of type (1) then the corresponding forms ⌫̂a are all @̄-closed and (modulo the
issue with 1/p) it seems to follow that

�(⌫1, ⌫2, ⌫3) = 0 . (107)

If indeed true, this is an interesting general vanishing result.

For a less trivial case, assume that one of the forms, say ⌫3, is of type (2), so that @̄⌫̂3 = p!̂, for a two-form !̂
and the other two forms are of type (1). Then the Yukawa coupling turns into

�(⌫1, ⌫2, ⌫3) =
1

⇡

Z

C4
⌫̂1 ^ ⌫̂2 ^ !̂ ^ dz1 ^ · · · ^ dz4 . (108)

The three line bundles Ka are described by vector ka with
P3

a=1 ka = 0 and, for the case at hand, we need
that k1 and k2 have precisely on entry  �2 each (to get one-forms) and k3 � q has precisely two entries  �2
(to get two-forms). These four negative entries must arise in four di↵erent entries or else the Yukawa coupling
vanishes (since, in this case, one of the dz̄↵ di↵erentials would be missing). So, for definiteness, let me assume
that k1,1  �2, k2,2  �2 and k3,3, k3,4  0 so that the forms can be written as

⌫̂1 = 
k1,1
1 P(k1)dz̄1 , ⌫̂2 = 

k2,2
2 Q(k2)dz̄2 , !̂ = 

k3,3�2
3 

k3,4�2
4 R(k3�q)dz̄3 ^ dz̄4 . (109)

Inserting these forms, the Yukawa coupling becomes

�(⌫1, ⌫2, ⌫3) =
1

⇡

Z

C4

k1,1
1 

k2,2
2 

k3,3�2
3 

k3,4�2
4 P(k1)Q(k2)R(k3�q)d

4z d4z̄ (110)

This integral can be carried out explicitly once the polynomials P , Q, R are being inserted. As a general rule,
the result will only be non-zero if all powers of coordinates z↵ are accompanied by same powers of z̄↵ (since,
otherwise, the angular integration vanishes).

Another way to carry out this integral is as follows. First, note that ⌫̂1^ ⌫̂2^ !̂ is a harmonic form in H4(A, N⇤)
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Another way to carry out this integral is as follows. First, note that ⌫̂1^ ⌫̂2^ !̂ is a harmonic form in H4(A, N⇤)
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This integral can be carried out explicitly once the polynomials P , Q, R are being inserted. As a general rule,
the result will only be non-zero if all powers of coordinates z↵ are accompanied by same powers of z̄↵ (since,
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This integral can be carried out explicitly once the polynomials P , Q, R are being inserted. As a general rule,
the result will only be non-zero if all powers of coordinates z↵ are accompanied by same powers of z̄↵ (since,
otherwise, the angular integration vanishes).

Another way to carry out this integral is as follows. First, note that ⌫̂1^ ⌫̂2^ !̂ is a harmonic form in H4(A, N⇤)
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This integral can be carried out explicitly once the polynomials P , Q, R are being inserted. As a general rule,
the result will only be non-zero if all powers of coordinates z↵ are accompanied by same powers of z̄↵ (since,
otherwise, the angular integration vanishes).

Another way to carry out this integral is as follows. First, note that ⌫̂1^ ⌫̂2^ !̂ is a harmonic form in H4(A, N⇤)
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This integral can be carried out explicitly once the polynomials P , Q, R are being inserted. As a general rule,
the result will only be non-zero if all powers of coordinates z↵ are accompanied by same powers of z̄↵ (since,
otherwise, the angular integration vanishes).

Another way to carry out this integral is as follows. First, note that ⌫̂1^ ⌫̂2^ !̂ is a harmonic form in H4(A, N⇤)

16

• Case 1: All    originate from    ⌫i ⌫̂i 2 H1(A,Ki) ) @̄⌫̂i = 0

⌫i 2 H1(X,Ki)



Holomorphic Yukawa couplings on the tetra-quadric

K3 = Le.

The upshot of this discussion is that all Yukawa couplings for the three cases can be discussed uniformly in terms
of three line bundles Ka = OX(ka), with

P3
a=1 ka = 0 and the three types of matter multiplets are described

by one-forms ⌫a 2 H1(X,Ka). These one forms can be obtained as restrictions of ambient space one forms ⌫̂a,
so that ⌫a = ⌫̂a|X . The Yukawa couplings are then explicitly given by

�(⌫1, ⌫2, ⌫3) =

Z

X
⌦ ^ ⌫1 ^ ⌫2 ^ ⌫3 . (105)

This can be converted into an ambient space integral inserting the two-form dp^dp̄�2(p). After using �2(p)dp̄ =
1
⇡ @̄

⇣
1
p

⌘
, integrating by parts and writing ⌦̂ ^ dp = dz1 ^ · · · ^ dz4 we have

�(⌫1, ⌫2, ⌫3) =
1

⇡

Z

C4

1

p

�
@̄⌫̂1 ^ ⌫̂2 ^ ⌫̂3 � ⌫̂1 ^ @̄⌫̂2 ^ ⌫̂3 + ⌫̂1 ^ ⌫̂2 ^ @̄⌫̂3

� ^ dz1 ^ · · · ^ dz4 . (106)

If all three line bundles Ka are of type (1) then the corresponding forms ⌫̂a are all @̄-closed and (modulo the
issue with 1/p) it seems to follow that

�(⌫1, ⌫2, ⌫3) = 0 . (107)

If indeed true, this is an interesting general vanishing result.

For a less trivial case, assume that one of the forms, say ⌫3, is of type (2), so that @̄⌫̂3 = p!̂, for a two-form !̂
and the other two forms are of type (1). Then the Yukawa coupling turns into

�(⌫1, ⌫2, ⌫3) =
1

⇡

Z

C4
⌫̂1 ^ ⌫̂2 ^ !̂ ^ dz1 ^ · · · ^ dz4 . (108)

The three line bundles Ka are described by vector ka with
P3

a=1 ka = 0 and, for the case at hand, we need
that k1 and k2 have precisely on entry  �2 each (to get one-forms) and k3 � q has precisely two entries  �2
(to get two-forms). These four negative entries must arise in four di↵erent entries or else the Yukawa coupling
vanishes (since, in this case, one of the dz̄↵ di↵erentials would be missing). So, for definiteness, let me assume
that k1,1  �2, k2,2  �2 and k3,3, k3,4  0 so that the forms can be written as

⌫̂1 = 
k1,1
1 P(k1)dz̄1 , ⌫̂2 = 

k2,2
2 Q(k2)dz̄2 , !̂ = 

k3,3�2
3 

k3,4�2
4 R(k3�q)dz̄3 ^ dz̄4 . (109)

Inserting these forms, the Yukawa coupling becomes

�(⌫1, ⌫2, ⌫3) =
1

⇡

Z

C4

k1,1
1 

k2,2
2 

k3,3�2
3 

k3,4�2
4 P(k1)Q(k2)R(k3�q)d

4z d4z̄ (110)

This integral can be carried out explicitly once the polynomials P , Q, R are being inserted. As a general rule,
the result will only be non-zero if all powers of coordinates z↵ are accompanied by same powers of z̄↵ (since,
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Another way to carry out this integral is as follows. First, note that ⌫̂1^ ⌫̂2^ !̂ is a harmonic form in H4(A, N⇤)
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This integral can be carried out explicitly once the polynomials P , Q, R are being inserted. As a general rule,
the result will only be non-zero if all powers of coordinates z↵ are accompanied by same powers of z̄↵ (since,
otherwise, the angular integration vanishes).
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Another way to carry out this integral is as follows. First, note that ⌫̂1^ ⌫̂2^ !̂ is a harmonic form in H4(A, N⇤)
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K3 = Le.
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a=1 ka = 0 and the three types of matter multiplets are described

by one-forms ⌫a 2 H1(X,Ka). These one forms can be obtained as restrictions of ambient space one forms ⌫̂a,
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Z

X
⌦ ^ ⌫1 ^ ⌫2 ^ ⌫3 . (105)

This can be converted into an ambient space integral inserting the two-form dp^dp̄�2(p). After using �2(p)dp̄ =
1
⇡ @̄

⇣
1
p

⌘
, integrating by parts and writing ⌦̂ ^ dp = dz1 ^ · · · ^ dz4 we have

�(⌫1, ⌫2, ⌫3) =
1

⇡

Z

C4
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p

�
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issue with 1/p) it seems to follow that

�(⌫1, ⌫2, ⌫3) = 0 . (107)

If indeed true, this is an interesting general vanishing result.

For a less trivial case, assume that one of the forms, say ⌫3, is of type (2), so that @̄⌫̂3 = p!̂, for a two-form !̂
and the other two forms are of type (1). Then the Yukawa coupling turns into
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1
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Z

C4
⌫̂1 ^ ⌫̂2 ^ !̂ ^ dz1 ^ · · · ^ dz4 . (108)

The three line bundles Ka are described by vector ka with
P3

a=1 ka = 0 and, for the case at hand, we need
that k1 and k2 have precisely on entry  �2 each (to get one-forms) and k3 � q has precisely two entries  �2
(to get two-forms). These four negative entries must arise in four di↵erent entries or else the Yukawa coupling
vanishes (since, in this case, one of the dz̄↵ di↵erentials would be missing). So, for definiteness, let me assume
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k2,2
2 Q(k2)dz̄2 , !̂ = 

k3,3�2
3 

k3,4�2
4 R(k3�q)dz̄3 ^ dz̄4 . (109)

Inserting these forms, the Yukawa coupling becomes
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1
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1 
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2 

k3,3�2
3 

k3,4�2
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This integral can be carried out explicitly once the polynomials P , Q, R are being inserted. As a general rule,
the result will only be non-zero if all powers of coordinates z↵ are accompanied by same powers of z̄↵ (since,
otherwise, the angular integration vanishes).

Another way to carry out this integral is as follows. First, note that ⌫̂1^ ⌫̂2^ !̂ is a harmonic form in H4(A, N⇤)
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Can always be explicitly integrated, or calculated algebraically:
which is one-dimensional. Hence, with the previous understanding on how to multiply the (homogeneous version)
of the polynomials we define

µ(P,Q,R) = P̃ Q̃R̃ , (111)

a complex number depends on the choice of the three polynomials. If we further use the integrals
Z

C

dz dz̄

2
= 2⇡i , (112)

the Yukawa couplings are given by
�(⌫1, ⌫2, ⌫3) = 16⇡3cµ(P,Q,R) . (113)

where c is the appropriate combination of c factors as they appear in Eq. (59).

9 Examples

9.1 Example 1

Let me try this out for a simple example, given by

K1 = OX(�2, 0, 1, 0) ! 2 271 ⌫̂1 = �2
1 P(�2,0,1,0)dz̄1 P = p0 + p1z3

K2 = OX(0,�2, 0, 1) ! 2 272 ⌫̂2 = �2
2 Q(0,�2,0,1)dz̄2 Q = q0 + q1z4

K3 = OX(2, 2,�1,�1) ! 4 273 ⌫̂3 = �3
3 �3

4 R(0,0,�3,�3)dz̄3 ^ dz̄4 R = r0 + r1z̄3 + r2z̄4 + r3z̄3z̄4
(114)

For the multiplets, I have just indicated 27 representations for the E6 case but, depending on the case, and in
accordance with the discussion at the beginning of Section 8, they can represent multiplets of the two other
gauge groups as well. The integral (110) specialized to

�(P,Q,R) =
1

⇡

Z

C4

PQR

21
2
2

3
3

3
4

d4z d4z̄ . (115)

Multiplying the three polynomials and discarding terms where z↵ and z̄↵ coordinates do not match up gives

PQR = p0q0r0 + p0q1r2|z4|2 + p1q0r1|z3|2 + p1q1r3|z3|2|z4|2 + non-matching terms (116)

With Z

C

|z|2q
p

dz dz̄ = 2⇡iIp,q , Ip,q = 2

Z 1

0
dr

r2q+1

(1 + r2)p
=

q!

(p� 1) · · · (p� q � 1)
, (117)

and, in particular, with I2,0 = 1, I3,0 = 1/2, I3,1 = 1/2 this gives

�(P,Q,R) = 4⇡3 (p0q0r0 + p0q1r2 + p1q0r1 + p1q1r3) . (118)

So much for the explicit calculation.

For the “algebraic” calculation first note from Eq. (113) that

�(P,Q,R) = 4⇡3µ(P,Q,R) (119)
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• Case 2:    originates from  
           other    from        ⌫i ⌫̂i 2 H1(A,Ki) ) @̄⌫̂i = 0

!̂ 2 H2(A, N⇤ ⌦K3) ) @̄⌫̂3 = p!̂⌫3

K3 = Le.

The upshot of this discussion is that all Yukawa couplings for the three cases can be discussed uniformly in terms
of three line bundles Ka = OX(ka), with

P3
a=1 ka = 0 and the three types of matter multiplets are described

by one-forms ⌫a 2 H1(X,Ka). These one forms can be obtained as restrictions of ambient space one forms ⌫̂a,
so that ⌫a = ⌫̂a|X . The Yukawa couplings are then explicitly given by

�(⌫1, ⌫2, ⌫3) =

Z

X
⌦ ^ ⌫1 ^ ⌫2 ^ ⌫3 . (105)

This can be converted into an ambient space integral inserting the two-form dp^dp̄�2(p). After using �2(p)dp̄ =
1
⇡ @̄

⇣
1
p

⌘
, integrating by parts and writing ⌦̂ ^ dp = dz1 ^ · · · ^ dz4 we have

�(⌫1, ⌫2, ⌫3) =
1

⇡

Z

C4

1

p

�
@̄⌫̂1 ^ ⌫̂2 ^ ⌫̂3 � ⌫̂1 ^ @̄⌫̂2 ^ ⌫̂3 + ⌫̂1 ^ ⌫̂2 ^ @̄⌫̂3

� ^ dz1 ^ · · · ^ dz4 . (106)

If all three line bundles Ka are of type (1) then the corresponding forms ⌫̂a are all @̄-closed and (modulo the
issue with 1/p) it seems to follow that

�(⌫1, ⌫2, ⌫3) = 0 . (107)

If indeed true, this is an interesting general vanishing result.

For a less trivial case, assume that one of the forms, say ⌫3, is of type (2), so that @̄⌫̂3 = p!̂, for a two-form !̂
and the other two forms are of type (1). Then the Yukawa coupling turns into

�(⌫1, ⌫2, ⌫3) =
1

⇡

Z

C4
⌫̂1 ^ ⌫̂2 ^ !̂ ^ dz1 ^ · · · ^ dz4 . (108)

The three line bundles Ka are described by vector ka with
P3

a=1 ka = 0 and, for the case at hand, we need
that k1 and k2 have precisely on entry  �2 each (to get one-forms) and k3 � q has precisely two entries  �2
(to get two-forms). These four negative entries must arise in four di↵erent entries or else the Yukawa coupling
vanishes (since, in this case, one of the dz̄↵ di↵erentials would be missing). So, for definiteness, let me assume
that k1,1  �2, k2,2  �2 and k3,3, k3,4  0 so that the forms can be written as

⌫̂1 = 
k1,1
1 P(k1)dz̄1 , ⌫̂2 = 

k2,2
2 Q(k2)dz̄2 , !̂ = 

k3,3�2
3 

k3,4�2
4 R(k3�q)dz̄3 ^ dz̄4 . (109)

Inserting these forms, the Yukawa coupling becomes

�(⌫1, ⌫2, ⌫3) =
1

⇡

Z

C4

k1,1
1 

k2,2
2 

k3,3�2
3 

k3,4�2
4 P(k1)Q(k2)R(k3�q)d

4z d4z̄ (110)

This integral can be carried out explicitly once the polynomials P , Q, R are being inserted. As a general rule,
the result will only be non-zero if all powers of coordinates z↵ are accompanied by same powers of z̄↵ (since,
otherwise, the angular integration vanishes).

Another way to carry out this integral is as follows. First, note that ⌫̂1^ ⌫̂2^ !̂ is a harmonic form in H4(A, N⇤)
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This integral can be carried out explicitly once the polynomials P , Q, R are being inserted. As a general rule,
the result will only be non-zero if all powers of coordinates z↵ are accompanied by same powers of z̄↵ (since,
otherwise, the angular integration vanishes).

Another way to carry out this integral is as follows. First, note that ⌫̂1^ ⌫̂2^ !̂ is a harmonic form in H4(A, N⇤)
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Can always be explicitly integrated, or calculated algebraically:
which is one-dimensional. Hence, with the previous understanding on how to multiply the (homogeneous version)
of the polynomials we define

µ(P,Q,R) = P̃ Q̃R̃ , (111)

a complex number depends on the choice of the three polynomials. If we further use the integrals
Z

C

dz dz̄

2
= 2⇡i , (112)

the Yukawa couplings are given by
�(⌫1, ⌫2, ⌫3) = 16⇡3cµ(P,Q,R) . (113)

where c is the appropriate combination of c factors as they appear in Eq. (59).

9 Examples

9.1 Example 1

Let me try this out for a simple example, given by

K1 = OX(�2, 0, 1, 0) ! 2 271 ⌫̂1 = �2
1 P(�2,0,1,0)dz̄1 P = p0 + p1z3

K2 = OX(0,�2, 0, 1) ! 2 272 ⌫̂2 = �2
2 Q(0,�2,0,1)dz̄2 Q = q0 + q1z4

K3 = OX(2, 2,�1,�1) ! 4 273 ⌫̂3 = �3
3 �3

4 R(0,0,�3,�3)dz̄3 ^ dz̄4 R = r0 + r1z̄3 + r2z̄4 + r3z̄3z̄4
(114)

For the multiplets, I have just indicated 27 representations for the E6 case but, depending on the case, and in
accordance with the discussion at the beginning of Section 8, they can represent multiplets of the two other
gauge groups as well. The integral (110) specialized to

�(P,Q,R) =
1

⇡

Z

C4

PQR

21
2
2

3
3

3
4

d4z d4z̄ . (115)

Multiplying the three polynomials and discarding terms where z↵ and z̄↵ coordinates do not match up gives

PQR = p0q0r0 + p0q1r2|z4|2 + p1q0r1|z3|2 + p1q1r3|z3|2|z4|2 + non-matching terms (116)

With Z

C

|z|2q
p

dz dz̄ = 2⇡iIp,q , Ip,q = 2

Z 1

0
dr

r2q+1

(1 + r2)p
=

q!

(p� 1) · · · (p� q � 1)
, (117)

and, in particular, with I2,0 = 1, I3,0 = 1/2, I3,1 = 1/2 this gives

�(P,Q,R) = 4⇡3 (p0q0r0 + p0q1r2 + p1q0r1 + p1q1r3) . (118)

So much for the explicit calculation.

For the “algebraic” calculation first note from Eq. (113) that

�(P,Q,R) = 4⇡3µ(P,Q,R) (119)
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• Case 3: More than one    originates from ambient 2-form ⌫i

Slightly more complicated but can always be integrated.



Example 1: up-Yukawa couplings
Standard model based on SU(5) GUT with line bundles

where µ(P,Q,R) is defined by Eq. (111). Then we write down the homogeneous versions of the polynomials

P̃ = p0x3,0 + p1x3,1 , Q̃ = q0x4,0 + q1x4,1 , R̃ = r0x̄3,0x̄4,0 + r1x̄4,0x̄3,1 + r2x̄3,0x̄4,1 + r3x̄3,1x̄4,1 . (120)

and work out

µ(P,Q,R) =
�
p0@̄3,0 + p1@̄3,1

� �
q0@̄4,0 + q1@̄4,1

�
(r0x̄3,0x̄4,0 + r1x̄4,0x̄3,1 + r2x̄3,0x̄4,1 + r3x̄3,1x̄4,1) (121)

= p0q0r0 + p0q1r2 + p1q0r1 + p1q1r3 (122)

which indeed coincides with the result from the integral calculation (118).

9.2 Example 2: The B � L standard model

This is an SU(5) model based on the five line bundles

L1 = OX(�1, 0, 0, 1) , L2 = OX(�1,�3, 2, 2) , L3 = OX(0, 1,�1, 0)

L4 = OX(1, 1,�1,�1) , L5 = OX(1, 1, 0,�2) (123)

which was analysed in Ref. [11]. Upon taking an appropriate quotient with a Z2 ⇥ Z2 symmetry of the tetra-
quadric, this model gives rise to a standard model. Its non-Abelian structure away from the line bundle locus
can also be studied to some extent.

I would like to consider Yukawa couplings for this model, for now computed in the SU(5) GUT theory. The
relevant line bundles, which give rise to multiplets which can form SU(5)⇥S(U(1)5) invariant Yukawa couplings
are

K1 = L⇤
2 ⌦ L⇤

5 3 5

H
2,5 ⌫̂1 = �2

3 Q(0,2,�2,0)dz̄3
K2 = L5 4 102 ⌫̂2 = �2

4 R(1,1,0,�2)dz̄4
K3 = L2 8 105 !̂ = �3

1 �5
2 S(�3,�5,0,0)dz̄1 ^ dz̄2 .

(124)

The three types of polynomials involved can be explicitly written as

Q = q0 + q1z2 + q2z
2
2 (125)

R = r0 + r1z1 + r2z2 + r3z1z2 (126)

S = s0 + s1z̄2 + s2z̄
2
2 + s3z̄

3
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Yukawa couplings, explicit calculation:
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can also be studied to some extent.

I would like to consider Yukawa couplings for this model, for now computed in the SU(5) GUT theory. The
relevant line bundles, which give rise to multiplets which can form SU(5)⇥S(U(1)5) invariant Yukawa couplings
are

K1 = L⇤
2 ⌦ L⇤

5 3 5

H
2,5 ⌫̂1 = �2

3 Q(0,2,�2,0)dz̄3
K2 = L5 4 102 ⌫̂2 = �2

4 R(1,1,0,�2)dz̄4
K3 = L2 8 105 !̂ = �3

1 �5
2 S(�3,�5,0,0)dz̄1 ^ dz̄2 .

(124)

The three types of polynomials involved can be explicitly written as

Q = q0 + q1z2 + q2z
2
2 (125)

R = r0 + r1z1 + r2z2 + r3z1z2 (126)

S = s0 + s1z̄2 + s2z̄
2
2 + s3z̄

3
2 + s4z̄1 + s5z̄1z̄2 + s6z̄1z̄

2
2 + s7z̄1z̄

3
2 . (127)

Note that they carry 3, 4 and 8 degrees of freedom, respectively, as required to describe the correct number of
multiplets.

For the explicit calculation, we have

�(Q,R, S) =
1

⇡

Z

C4

QRS

31
5
2

2
3

2
4

d4z d4z̄ . (128)

Multiplying the polynomials and discarding “non-matching” terms gives

QRS = q0r0s0 + q0r1s4|z1|2 + q0r2s1|z2|2 + q0r3s5|z1|2|z2|2 + q1r0s1|z2|2 + (129)

q1r1s5|z1|2|z2|2 + q1r2s2|z2|4 + q1r3s6|z1|2|z2|4 + q2r0s2|z2|2 + q2r1s6|z1|2|z2|4 + (130)

q2r2s3|z2|6 + q2r3s7|z2|6 + non-matching terms (131)

18

Inserting this into the above integral and using I2,0 = 1, I3,0 = 1/2, I5,0 = 1/4, I3,1 = 1/2, I5,1 = 1/12,
I5,2 = 1/12, I5,3 = 1/4 this results in

�(Q,R, S) =
2⇡3

3
[3q0r0s0 + 3q0r1s4 + q0r2s1 + q0r3s5 + q1r0s1 + q1r1s5+

q1r2s2 + q1r3s6 + q2r0s2 + q2r1s6 + 3q2r2s3 + 3q2r3s7] (132)

For the algebraic calculation, we have from Eq. (113) with c = 1/48 that

�(Q,R, S) =
⇡3

3
µ(Q,R, S) . (133)

If we write the homogeneous coordinates for z1 as (x0, x1) and the homogeneous coordinates for z2 as (y0, y1)
then the homogeneous versions of the polynomials Q, R, S read

Q̃ = q0y
2
0 + q1y0y1 + q2y

2
1 (134)

R̃ = r0x0y0 + r1x1y0 + r2x0y1 + r3x1y1 (135)

S̃ = s0x0y
3
0 + s1x0y

2
0y1 + s2x0y0y

2
1 + s3x0y

3
1 + s4x1y

3
0 + s5x1y

2
0y1 + s6x1y0y

2
1 + s7x1y

3
1 (136)

Then, converting everything to holomorphic coordinates for simplicity of notation, we have

µ(Q,R, S) =
�
q0@

2
y0 + q1@y0@y1 + q2@

2
y1

�
(r0@x0@y0 + r1@x1@y0 + r2@x0@y1 + r3@x1@y1)�

s0x0y
3
0 + s1x0y

2
0y1 + s2x0y0y

2
1 + s3x0y

3
1 + s4x1y

3
0 + s5x1y

2
0y1 + s6x1y0y

2
1 + s7x1y

3
1

�
(137)

= 2 [3q0r0s0 + 3q0r1s4 + q0r2s1 + q0r3s5 + q1r0s1 + q1r1s5+

q1r2s2 + q1r3s6 + q2r0s2 + q2r1s6 + 3q2r2s3 + 3q2r3s7] . (138)

Inserted into the relation (133) this gives the same Yukawa couplings as the explicit calculation (132).

These results are quite complicated due to the large number of multiplets. To simplify matters, it is useful
to consider the actual standard model, obtained after dividing by a � = Z2⇥Z2 symmetry. The two generators
of this symmetry are

g1 =

✓
1 0
0 �1

◆
, g2 =

✓
0 1
1 0

◆
. (139)

and these matrices act simultaneously on all four pairs of homogeneous coordinates. I denote Z2 ⇥Z2 represen-
tations by a pair of charges, (q1, q2), where qi 2 {0, 1}. A Wilson line can be defined by two � representations
�2 and �3, satisfying �2

2⌦�3
3 = 1. For the present model they are chosen as �2 = (0, 1) and �3 = (0, 0) with the

trivial equivariant structure for all line bundles. The relevant GUT multiplets branch as 5H ! (T̄ , H̄) (where T̄
is the Higgs triplet, to be projected out) and 10 ! (Q, u, e). These standard model multiplets carry the Wilson
line charges

�H̄ = �2 = (0, 1) �T̄ = �3 = (0, 0) �Q = �2 ⌦ �3 = (0, 1)
�u = �3 ⌦ �3 = (0, 0) �L = �⇤

2 = (0, 1) �d = �⇤
3 = (0, 0)

(140)

To discuss the symmetry properties of our GUT multiplets it is first helpful to write down the various di↵erential
forms in terms of homogeneous coordinates:

⌫̂1 = ��2
3 Q̃(0,2,�2,0)µ̄3 (141)

⌫̂2 = ��2
4 R̃(1,1,0,�2)µ̄4 (142)

!̂ = ��3
1 ��5

2 S̃(�3,�5,0,0)µ̄1 ^ µ̄2 , (143)
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where µ(P,Q,R) is defined by Eq. (111). Then we write down the homogeneous versions of the polynomials

P̃ = p0x3,0 + p1x3,1 , Q̃ = q0x4,0 + q1x4,1 , R̃ = r0x̄3,0x̄4,0 + r1x̄4,0x̄3,1 + r2x̄3,0x̄4,1 + r3x̄3,1x̄4,1 . (120)

and work out

µ(P,Q,R) =
�
p0@̄3,0 + p1@̄3,1

� �
q0@̄4,0 + q1@̄4,1

�
(r0x̄3,0x̄4,0 + r1x̄4,0x̄3,1 + r2x̄3,0x̄4,1 + r3x̄3,1x̄4,1) (121)

= p0q0r0 + p0q1r2 + p1q0r1 + p1q1r3 (122)

which indeed coincides with the result from the integral calculation (118).

9.2 Example 2: The B � L standard model

This is an SU(5) model based on the five line bundles

L1 = OX(�1, 0, 0, 1) , L2 = OX(�1,�3, 2, 2) , L3 = OX(0, 1,�1, 0)

L4 = OX(1, 1,�1,�1) , L5 = OX(1, 1, 0,�2) (123)

which was analysed in Ref. [11]. Upon taking an appropriate quotient with a Z2 ⇥ Z2 symmetry of the tetra-
quadric, this model gives rise to a standard model. Its non-Abelian structure away from the line bundle locus
can also be studied to some extent.

I would like to consider Yukawa couplings for this model, for now computed in the SU(5) GUT theory. The
relevant line bundles, which give rise to multiplets which can form SU(5)⇥S(U(1)5) invariant Yukawa couplings
are

K1 = L⇤
2 ⌦ L⇤

5 3 5

H
2,5 ⌫̂1 = �2

3 Q(0,2,�2,0)dz̄3
K2 = L5 4 102 ⌫̂2 = �2

4 R(1,1,0,�2)dz̄4
K3 = L2 8 105 !̂ = �3

1 �5
2 S(�3,�5,0,0)dz̄1 ^ dz̄2 .

(124)

The three types of polynomials involved can be explicitly written as

Q = q0 + q1z2 + q2z
2
2 (125)

R = r0 + r1z1 + r2z2 + r3z1z2 (126)

S = s0 + s1z̄2 + s2z̄
2
2 + s3z̄

3
2 + s4z̄1 + s5z̄1z̄2 + s6z̄1z̄

2
2 + s7z̄1z̄

3
2 . (127)

Note that they carry 3, 4 and 8 degrees of freedom, respectively, as required to describe the correct number of
multiplets.

For the explicit calculation, we have

�(Q,R, S) =
1

⇡

Z

C4

QRS

31
5
2

2
3

2
4

d4z d4z̄ . (128)

Multiplying the polynomials and discarding “non-matching” terms gives

QRS = q0r0s0 + q0r1s4|z1|2 + q0r2s1|z2|2 + q0r3s5|z1|2|z2|2 + q1r0s1|z2|2 + (129)

q1r1s5|z1|2|z2|2 + q1r2s2|z2|4 + q1r3s6|z1|2|z2|4 + q2r0s2|z2|2 + q2r1s6|z1|2|z2|4 + (130)

q2r2s3|z2|6 + q2r3s7|z2|6 + non-matching terms (131)

18

Inserting this into the above integral and using I2,0 = 1, I3,0 = 1/2, I5,0 = 1/4, I3,1 = 1/2, I5,1 = 1/12,
I5,2 = 1/12, I5,3 = 1/4 this results in

�(Q,R, S) =
2⇡3

3
[3q0r0s0 + 3q0r1s4 + q0r2s1 + q0r3s5 + q1r0s1 + q1r1s5+

q1r2s2 + q1r3s6 + q2r0s2 + q2r1s6 + 3q2r2s3 + 3q2r3s7] (132)

For the algebraic calculation, we have from Eq. (113) with c = 1/48 that

�(Q,R, S) =
⇡3

3
µ(Q,R, S) . (133)

If we write the homogeneous coordinates for z1 as (x0, x1) and the homogeneous coordinates for z2 as (y0, y1)
then the homogeneous versions of the polynomials Q, R, S read

Q̃ = q0y
2
0 + q1y0y1 + q2y

2
1 (134)

R̃ = r0x0y0 + r1x1y0 + r2x0y1 + r3x1y1 (135)

S̃ = s0x0y
3
0 + s1x0y

2
0y1 + s2x0y0y

2
1 + s3x0y

3
1 + s4x1y

3
0 + s5x1y

2
0y1 + s6x1y0y

2
1 + s7x1y

3
1 (136)

Then, converting everything to holomorphic coordinates for simplicity of notation, we have

µ(Q,R, S) =
�
q0@

2
y0 + q1@y0@y1 + q2@

2
y1

�
(r0@x0@y0 + r1@x1@y0 + r2@x0@y1 + r3@x1@y1)�

s0x0y
3
0 + s1x0y

2
0y1 + s2x0y0y

2
1 + s3x0y

3
1 + s4x1y

3
0 + s5x1y

2
0y1 + s6x1y0y

2
1 + s7x1y

3
1

�
(137)

= 2 [3q0r0s0 + 3q0r1s4 + q0r2s1 + q0r3s5 + q1r0s1 + q1r1s5+

q1r2s2 + q1r3s6 + q2r0s2 + q2r1s6 + 3q2r2s3 + 3q2r3s7] . (138)

Inserted into the relation (133) this gives the same Yukawa couplings as the explicit calculation (132).

These results are quite complicated due to the large number of multiplets. To simplify matters, it is useful
to consider the actual standard model, obtained after dividing by a � = Z2⇥Z2 symmetry. The two generators
of this symmetry are

g1 =

✓
1 0
0 �1

◆
, g2 =

✓
0 1
1 0

◆
. (139)

and these matrices act simultaneously on all four pairs of homogeneous coordinates. I denote Z2 ⇥Z2 represen-
tations by a pair of charges, (q1, q2), where qi 2 {0, 1}. A Wilson line can be defined by two � representations
�2 and �3, satisfying �2

2⌦�3
3 = 1. For the present model they are chosen as �2 = (0, 1) and �3 = (0, 0) with the

trivial equivariant structure for all line bundles. The relevant GUT multiplets branch as 5H ! (T̄ , H̄) (where T̄
is the Higgs triplet, to be projected out) and 10 ! (Q, u, e). These standard model multiplets carry the Wilson
line charges

�H̄ = �2 = (0, 1) �T̄ = �3 = (0, 0) �Q = �2 ⌦ �3 = (0, 1)
�u = �3 ⌦ �3 = (0, 0) �L = �⇤

2 = (0, 1) �d = �⇤
3 = (0, 0)

(140)

To discuss the symmetry properties of our GUT multiplets it is first helpful to write down the various di↵erential
forms in terms of homogeneous coordinates:

⌫̂1 = ��2
3 Q̃(0,2,�2,0)µ̄3 (141)

⌫̂2 = ��2
4 R̃(1,1,0,�2)µ̄4 (142)

!̂ = ��3
1 ��5

2 S̃(�3,�5,0,0)µ̄1 ^ µ̄2 , (143)
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Inserting this into the above integral and using I2,0 = 1, I3,0 = 1/2, I5,0 = 1/4, I3,1 = 1/2, I5,1 = 1/12,
I5,2 = 1/12, I5,3 = 1/4 this results in

�(Q,R, S) =
2⇡3

3
[3q0r0s0 + 3q0r1s4 + q0r2s1 + q0r3s5 + q1r0s1 + q1r1s5+

q1r2s2 + q1r3s6 + q2r0s2 + q2r1s6 + 3q2r2s3 + 3q2r3s7] (132)

For the algebraic calculation, we have from Eq. (113) with c = 1/48 that

�(Q,R, S) =
⇡3

3
µ(Q,R, S) . (133)

If we write the homogeneous coordinates for z1 as (x0, x1) and the homogeneous coordinates for z2 as (y0, y1)
then the homogeneous versions of the polynomials Q, R, S read

Q̃ = q0y
2
0 + q1y0y1 + q2y

2
1 (134)

R̃ = r0x0y0 + r1x1y0 + r2x0y1 + r3x1y1 (135)

S̃ = s0x0y
3
0 + s1x0y

2
0y1 + s2x0y0y

2
1 + s3x0y

3
1 + s4x1y

3
0 + s5x1y

2
0y1 + s6x1y0y

2
1 + s7x1y

3
1 (136)

Then, converting everything to holomorphic coordinates for simplicity of notation, we have

µ(Q,R, S) =
�
q0@

2
y0 + q1@y0@y1 + q2@

2
y1

�
(r0@x0@y0 + r1@x1@y0 + r2@x0@y1 + r3@x1@y1)�

s0x0y
3
0 + s1x0y

2
0y1 + s2x0y0y

2
1 + s3x0y

3
1 + s4x1y

3
0 + s5x1y

2
0y1 + s6x1y0y

2
1 + s7x1y

3
1

�
(137)

= 2 [3q0r0s0 + 3q0r1s4 + q0r2s1 + q0r3s5 + q1r0s1 + q1r1s5+

q1r2s2 + q1r3s6 + q2r0s2 + q2r1s6 + 3q2r2s3 + 3q2r3s7] . (138)

Inserted into the relation (133) this gives the same Yukawa couplings as the explicit calculation (132).

These results are quite complicated due to the large number of multiplets. To simplify matters, it is useful
to consider the actual standard model, obtained after dividing by a � = Z2⇥Z2 symmetry. The two generators
of this symmetry are

g1 =

✓
1 0
0 �1

◆
, g2 =

✓
0 1
1 0

◆
. (139)

and these matrices act simultaneously on all four pairs of homogeneous coordinates. I denote Z2 ⇥Z2 represen-
tations by a pair of charges, (q1, q2), where qi 2 {0, 1}. A Wilson line can be defined by two � representations
�2 and �3, satisfying �2

2⌦�3
3 = 1. For the present model they are chosen as �2 = (0, 1) and �3 = (0, 0) with the

trivial equivariant structure for all line bundles. The relevant GUT multiplets branch as 5H ! (T̄ , H̄) (where T̄
is the Higgs triplet, to be projected out) and 10 ! (Q, u, e). These standard model multiplets carry the Wilson
line charges

�H̄ = �2 = (0, 1) �T̄ = �3 = (0, 0) �Q = �2 ⌦ �3 = (0, 1)
�u = �3 ⌦ �3 = (0, 0) �L = �⇤

2 = (0, 1) �d = �⇤
3 = (0, 0)

(140)

To discuss the symmetry properties of our GUT multiplets it is first helpful to write down the various di↵erential
forms in terms of homogeneous coordinates:

⌫̂1 = ��2
3 Q̃(0,2,�2,0)µ̄3 (141)

⌫̂2 = ��2
4 R̃(1,1,0,�2)µ̄4 (142)

!̂ = ��3
1 ��5

2 S̃(�3,�5,0,0)µ̄1 ^ µ̄2 , (143)
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where µ(P,Q,R) is defined by Eq. (111). Then we write down the homogeneous versions of the polynomials

P̃ = p0x3,0 + p1x3,1 , Q̃ = q0x4,0 + q1x4,1 , R̃ = r0x̄3,0x̄4,0 + r1x̄4,0x̄3,1 + r2x̄3,0x̄4,1 + r3x̄3,1x̄4,1 . (120)

and work out

µ(P,Q,R) =
�
p0@̄3,0 + p1@̄3,1

� �
q0@̄4,0 + q1@̄4,1

�
(r0x̄3,0x̄4,0 + r1x̄4,0x̄3,1 + r2x̄3,0x̄4,1 + r3x̄3,1x̄4,1) (121)

= p0q0r0 + p0q1r2 + p1q0r1 + p1q1r3 (122)

which indeed coincides with the result from the integral calculation (118).

9.2 Example 2: The B � L standard model

This is an SU(5) model based on the five line bundles

L1 = OX(�1, 0, 0, 1) , L2 = OX(�1,�3, 2, 2) , L3 = OX(0, 1,�1, 0)

L4 = OX(1, 1,�1,�1) , L5 = OX(1, 1, 0,�2) (123)

which was analysed in Ref. [11]. Upon taking an appropriate quotient with a Z2 ⇥ Z2 symmetry of the tetra-
quadric, this model gives rise to a standard model. Its non-Abelian structure away from the line bundle locus
can also be studied to some extent.

I would like to consider Yukawa couplings for this model, for now computed in the SU(5) GUT theory. The
relevant line bundles, which give rise to multiplets which can form SU(5)⇥S(U(1)5) invariant Yukawa couplings
are

K1 = L⇤
2 ⌦ L⇤

5 3 5

H
2,5 ⌫̂1 = �2

3 Q(0,2,�2,0)dz̄3
K2 = L5 4 102 ⌫̂2 = �2

4 R(1,1,0,�2)dz̄4
K3 = L2 8 105 !̂ = �3

1 �5
2 S(�3,�5,0,0)dz̄1 ^ dz̄2 .

(124)

The three types of polynomials involved can be explicitly written as

Q = q0 + q1z2 + q2z
2
2 (125)

R = r0 + r1z1 + r2z2 + r3z1z2 (126)

S = s0 + s1z̄2 + s2z̄
2
2 + s3z̄

3
2 + s4z̄1 + s5z̄1z̄2 + s6z̄1z̄

2
2 + s7z̄1z̄

3
2 . (127)

Note that they carry 3, 4 and 8 degrees of freedom, respectively, as required to describe the correct number of
multiplets.

For the explicit calculation, we have

�(Q,R, S) =
1

⇡

Z

C4

QRS

31
5
2

2
3

2
4

d4z d4z̄ . (128)

Multiplying the polynomials and discarding “non-matching” terms gives

QRS = q0r0s0 + q0r1s4|z1|2 + q0r2s1|z2|2 + q0r3s5|z1|2|z2|2 + q1r0s1|z2|2 + (129)

q1r1s5|z1|2|z2|2 + q1r2s2|z2|4 + q1r3s6|z1|2|z2|4 + q2r0s2|z2|2 + q2r1s6|z1|2|z2|4 + (130)

q2r2s3|z2|6 + q2r3s7|z2|6 + non-matching terms (131)

18

Inserting this into the above integral and using I2,0 = 1, I3,0 = 1/2, I5,0 = 1/4, I3,1 = 1/2, I5,1 = 1/12,
I5,2 = 1/12, I5,3 = 1/4 this results in

�(Q,R, S) =
2⇡3

3
[3q0r0s0 + 3q0r1s4 + q0r2s1 + q0r3s5 + q1r0s1 + q1r1s5+

q1r2s2 + q1r3s6 + q2r0s2 + q2r1s6 + 3q2r2s3 + 3q2r3s7] (132)

For the algebraic calculation, we have from Eq. (113) with c = 1/48 that

�(Q,R, S) =
⇡3

3
µ(Q,R, S) . (133)

If we write the homogeneous coordinates for z1 as (x0, x1) and the homogeneous coordinates for z2 as (y0, y1)
then the homogeneous versions of the polynomials Q, R, S read

Q̃ = q0y
2
0 + q1y0y1 + q2y

2
1 (134)

R̃ = r0x0y0 + r1x1y0 + r2x0y1 + r3x1y1 (135)

S̃ = s0x0y
3
0 + s1x0y

2
0y1 + s2x0y0y

2
1 + s3x0y

3
1 + s4x1y

3
0 + s5x1y

2
0y1 + s6x1y0y

2
1 + s7x1y

3
1 (136)

Then, converting everything to holomorphic coordinates for simplicity of notation, we have

µ(Q,R, S) =
�
q0@

2
y0 + q1@y0@y1 + q2@

2
y1

�
(r0@x0@y0 + r1@x1@y0 + r2@x0@y1 + r3@x1@y1)�

s0x0y
3
0 + s1x0y
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1 + s7x1y

3
1

�
(137)

= 2 [3q0r0s0 + 3q0r1s4 + q0r2s1 + q0r3s5 + q1r0s1 + q1r1s5+

q1r2s2 + q1r3s6 + q2r0s2 + q2r1s6 + 3q2r2s3 + 3q2r3s7] . (138)

Inserted into the relation (133) this gives the same Yukawa couplings as the explicit calculation (132).

These results are quite complicated due to the large number of multiplets. To simplify matters, it is useful
to consider the actual standard model, obtained after dividing by a � = Z2⇥Z2 symmetry. The two generators
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tations by a pair of charges, (q1, q2), where qi 2 {0, 1}. A Wilson line can be defined by two � representations
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3 = 1. For the present model they are chosen as �2 = (0, 1) and �3 = (0, 0) with the

trivial equivariant structure for all line bundles. The relevant GUT multiplets branch as 5H ! (T̄ , H̄) (where T̄
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After taking quotient by                and adding Wilson line:� = Z2 ⇥ Z2
If we group the quarks into triplets (Qi) = (Q1

5, Q
2
5, Q2) and (ui) = (u15, u

2
5, u2) with Yukawa term �(u)

ij H̄Qiuj

then the Yukawa couplings (relative to our chosen basis of polynomials in Eqs. (147)–(151)) are given by

�(u) =
⇡3

3

0

@
0 0 0
0 0 1
0 1 0

1

A . (155)

9.3 Example 3: Singlet Yukawa couplings in the B � L standard model

The SU(5) model discussed in the previous sub-section has another, singlet Yukawa coupling of the upstairs
form

12,4 5̄4,5 52,5 . (156)

The line bundles are given by

K1 = L2 ⌦ L⇤
4 = OX(�2,�4, 3, 3) ! 1212,4 2 ��1Ker

⇣
H2(OA(�4,�6, 1, 1)

p! H2(OA(�2,�4, 3, 3)
⌘

K2 = L4 ⌦ L5 = OX(2, 2,�1,�3) ! 8 5̄4,5 2 ��1H2(OA(0, 0,�3,�5) (157)

K3 = L⇤
2 ⌦ L⇤

5 = OX(0, 2,�2, 0) ! 352,5 2 H1(OA(0, 2,�2, 0))

with associated di↵erential forms

!̂1 = �4
1 �6

2 Q(�4,�6,1,1)dz̄1 ^ dz̄2 where p̃Q̃ = 0 (158)

!̂2 = �3
3 �5

4 R(0,0,�3,�5)dz̄3 ^ dz̄4 (159)

⌫̂3 = �2
3 S(0,2,�2,0)dz̄3 . (160)

There are two additional complications, compared to the previous examples, evident from this list of forms. First
of all, the singlet space is defined as a kernel between spaces with dimensions dimH2(OA(�4,�6, 1, 1)) = 60
and dimH2(OA(�2,�4, 3, 3)) = 48 which are quite large. Secondly, two of the three forms are defined in terms
of a co-boundary map.

In order to deal with the second of these complications, I would like to compute the one-form ⌫̂2 which
corresponds to !̂2. To this end, I write

R(0,0,�3,�5) = r0 + r1z̄3 , p = p0 + p1z3 + p2z
2
3 (161)

and, using the result from Eq. (81),

R = �1

2
(p1r0 + p2r1) + p0r0z̄3 +

1

2
p0r1z̄

2 � 1

2
p2r0z3 � p2r1|z3|2 + 1

2
(p0r0 + p1r1)z̄3|z3|2 (162)

I find
⌫̂2 = �2

3 �5
4 Rdz̄4 ! @̄⌫̂2 = p!̂2 . (163)

Using this result in the basic formula (106) for the Yukawa couplings I find

�(⌫1, ⌫2, ⌫3) = � 1

⇡

Z

C4

QRS

41
6
2

4
3

5
4

d4z d4z̄ . (164)
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To reduce the dimensions of the spaces involved I consider the quotient by the same � = Z2⇥Z2 symmetry (and
the same Wilson line and equivariant structure choices) as in the previous sub-section. After taking this quotient,
we remain with three singlets, Si, where i = 1, 2, 3 which arise as the kernel of V = H2(OA(�4,�6, 1, 1))(0,0) !
W = H2(OA(�2,�4, 3, 3))(0,0), the Z2 ⇥ Z2 invariant parts of these cohomologies, which have dimensions 15
and 12, respectively. Accordingly, we can write the polynomial Q in terms of 15 invariants, spanning the source
space V , as
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The target space W is spanned by the 12 invariants

W = Span
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(166)

We defer finding the three-dimensional kernel to later. From the 8 multiplets 5̄4,5 we retain two left-handed
lepton doublets Lj , where j = 1, 2 described by the polynomial

R = b1
�
z̄24 � z̄3z̄4

�
+ b0

�
1� z̄3z̄

3
4

�
. (167)

From Eqs. (161) and (162) this can be used to calculate the associated polynomial R, where here, and in the
following we will be using the five-parameter family of tetra-quadrics defined by Eq. (194) (the general case with
20 complex structure parameters becomes very complicated). Finally, the three multiplets 52,5 lead to a single
up-Higgs doublet H̄ represented by

S = z2 . (168)

Inserting all this into Eq. (164), the Yukawa couplings become

�(a,b) =
⇡3

3240
(2a14b1c1 + 9a12b0c2 + 9a13b0c2 � 8a4b1c2 � 8a5b1c2 + 3a12b1c2 + 3a13b1c2 � 36a7b0c3�
12a2b1c3 � 12a14b0c4 + 6a2b1c4 + 6a3b1c4 � 6a6b1c4 � 6a7b1c4 + 4a14b1c4 � 36a6b0c5 �
12a3b1c5 � 36a2b0c6 � 36a3b0c6 � 12a6b1c6 � 12a7b1c6) (169)

In this result, the vector a still has to be specialised to the three-dimensional kernel. For the 5-parameter family
(194) of defining polynomials this kernel can be described by the equation Ma = 0 with the matrix

M =0

BBBBBBB@

24c6 0 0 0 4c3 4c6 0 0 0 24c5 0 0 3c4 0 0
24c5 0 6c2 0 4c6 4c3 0 6c2 0 24c6 0 0 �3c4 0 0
24c4 24c6 0 6c2 4c6 � 4c4 4c3 + 4c4 6c2 0 24c5 �24c4 12c2 0 3c1 3c4 2c2
0 24c5 0 0 4c3 4c6 0 0 24c6 0 12c2 0 0 �3c4 2c2

24c3 0 0 0 4c6 4c5 0 0 0 24c6 0 12c2 �3c4 0 2c2
24c6 24c4 6c2 0 4c4 + 4c5 4c6 � 4c4 0 6c2 �24c4 24c3 0 12c2 3c4 3c1 2c2
0 24c3 0 6c2 4c5 4c6 6c2 0 24c6 0 0 0 0 �3c4 0
0 24c6 0 0 4c6 4c5 0 0 24c3 0 0 0 0 3c4 0
0 0 12c6 12c6 8c2 8c2 12c3 12c5 0 0 0 0 0 0 4c4
0 0 12c5 12c3 0 0 12c6 12c6 0 0 0 0 0 0 �4c4
0 0 12c6 12c6 0 0 12c5 12c3 0 0 0 0 6c2 6c2 4c4
0 0 12c3 + 12c4 12c4 + 12c5 8c2 8c2 12c6 � 12c4 12c6 � 12c4 0 0 0 0 6c2 6c2 4c1 � 4c4

1

CCCCCCCA
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To reduce the dimensions of the spaces involved I consider the quotient by the same � = Z2⇥Z2 symmetry (and
the same Wilson line and equivariant structure choices) as in the previous sub-section. After taking this quotient,
we remain with three singlets, Si, where i = 1, 2, 3 which arise as the kernel of V = H2(OA(�4,�6, 1, 1))(0,0) !
W = H2(OA(�2,�4, 3, 3))(0,0), the Z2 ⇥ Z2 invariant parts of these cohomologies, which have dimensions 15
and 12, respectively. Accordingly, we can write the polynomial Q in terms of 15 invariants, spanning the source
space V , as
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� 2 V . (165)

The target space W is spanned by the 12 invariants

W = Span
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We defer finding the three-dimensional kernel to later. From the 8 multiplets 5̄4,5 we retain two left-handed
lepton doublets Lj , where j = 1, 2 described by the polynomial

R = b1
�
z̄24 � z̄3z̄4

�
+ b0

�
1� z̄3z̄

3
4

�
. (167)

From Eqs. (161) and (162) this can be used to calculate the associated polynomial R, where here, and in the
following we will be using the five-parameter family of tetra-quadrics defined by Eq. (194) (the general case with
20 complex structure parameters becomes very complicated). Finally, the three multiplets 52,5 lead to a single
up-Higgs doublet H̄ represented by

S = z2 . (168)

Inserting all this into Eq. (164), the Yukawa couplings become

�(a,b) =
⇡3

3240
(2a14b1c1 + 9a12b0c2 + 9a13b0c2 � 8a4b1c2 � 8a5b1c2 + 3a12b1c2 + 3a13b1c2 � 36a7b0c3�
12a2b1c3 � 12a14b0c4 + 6a2b1c4 + 6a3b1c4 � 6a6b1c4 � 6a7b1c4 + 4a14b1c4 � 36a6b0c5 �
12a3b1c5 � 36a2b0c6 � 36a3b0c6 � 12a6b1c6 � 12a7b1c6) (169)

In this result, the vector a still has to be specialised to the three-dimensional kernel. For the 5-parameter family
(194) of defining polynomials this kernel can be described by the equation Ma = 0 with the matrix

M =0

BBBBBBB@

24c6 0 0 0 4c3 4c6 0 0 0 24c5 0 0 3c4 0 0
24c5 0 6c2 0 4c6 4c3 0 6c2 0 24c6 0 0 �3c4 0 0
24c4 24c6 0 6c2 4c6 � 4c4 4c3 + 4c4 6c2 0 24c5 �24c4 12c2 0 3c1 3c4 2c2
0 24c5 0 0 4c3 4c6 0 0 24c6 0 12c2 0 0 �3c4 2c2

24c3 0 0 0 4c6 4c5 0 0 0 24c6 0 12c2 �3c4 0 2c2
24c6 24c4 6c2 0 4c4 + 4c5 4c6 � 4c4 0 6c2 �24c4 24c3 0 12c2 3c4 3c1 2c2
0 24c3 0 6c2 4c5 4c6 6c2 0 24c6 0 0 0 0 �3c4 0
0 24c6 0 0 4c6 4c5 0 0 24c3 0 0 0 0 3c4 0
0 0 12c6 12c6 8c2 8c2 12c3 12c5 0 0 0 0 0 0 4c4
0 0 12c5 12c3 0 0 12c6 12c6 0 0 0 0 0 0 �4c4
0 0 12c6 12c6 0 0 12c5 12c3 0 0 0 0 6c2 6c2 4c4
0 0 12c3 + 12c4 12c4 + 12c5 8c2 8c2 12c6 � 12c4 12c6 � 12c4 0 0 0 0 6c2 6c2 4c1 � 4c4

1
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Yukawa couplings for a 5-parameter family of tetra-quadrics: 

If we group the quarks into triplets (Qi) = (Q1
5, Q

2
5, Q2) and (ui) = (u15, u

2
5, u2) with Yukawa term �(u)

ij H̄Qiuj

then the Yukawa couplings (relative to our chosen basis of polynomials in Eqs. (147)–(151)) are given by

�(u) =
⇡3

3

0

@
0 0 0
0 0 1
0 1 0

1

A . (155)

9.3 Example 3: Singlet Yukawa couplings in the B � L standard model

The SU(5) model discussed in the previous sub-section has another, singlet Yukawa coupling of the upstairs
form

12,4 5̄4,5 52,5 . (156)

The line bundles are given by

K1 = L2 ⌦ L⇤
4 = OX(�2,�4, 3, 3) ! 1212,4 2 ��1Ker

⇣
H2(OA(�4,�6, 1, 1)

p! H2(OA(�2,�4, 3, 3)
⌘

K2 = L4 ⌦ L5 = OX(2, 2,�1,�3) ! 8 5̄4,5 2 ��1H2(OA(0, 0,�3,�5) (157)

K3 = L⇤
2 ⌦ L⇤

5 = OX(0, 2,�2, 0) ! 352,5 2 H1(OA(0, 2,�2, 0))

with associated di↵erential forms

!̂1 = �4
1 �6

2 Q(�4,�6,1,1)dz̄1 ^ dz̄2 where p̃Q̃ = 0 (158)

!̂2 = �3
3 �5

4 R(0,0,�3,�5)dz̄3 ^ dz̄4 (159)

⌫̂3 = �2
3 S(0,2,�2,0)dz̄3 . (160)

There are two additional complications, compared to the previous examples, evident from this list of forms. First
of all, the singlet space is defined as a kernel between spaces with dimensions dimH2(OA(�4,�6, 1, 1)) = 60
and dimH2(OA(�2,�4, 3, 3)) = 48 which are quite large. Secondly, two of the three forms are defined in terms
of a co-boundary map.

In order to deal with the second of these complications, I would like to compute the one-form ⌫̂2 which
corresponds to !̂2. To this end, I write

R(0,0,�3,�5) = r0 + r1z̄3 , p = p0 + p1z3 + p2z
2
3 (161)

and, using the result from Eq. (81),

R = �1

2
(p1r0 + p2r1) + p0r0z̄3 +

1

2
p0r1z̄

2 � 1

2
p2r0z3 � p2r1|z3|2 + 1

2
(p0r0 + p1r1)z̄3|z3|2 (162)

I find
⌫̂2 = �2

3 �5
4 Rdz̄4 ! @̄⌫̂2 = p!̂2 . (163)

Using this result in the basic formula (106) for the Yukawa couplings I find

�(⌫1, ⌫2, ⌫3) = � 1
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4
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d4z d4z̄ . (164)
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To reduce the dimensions of the spaces involved I consider the quotient by the same � = Z2⇥Z2 symmetry (and
the same Wilson line and equivariant structure choices) as in the previous sub-section. After taking this quotient,
we remain with three singlets, Si, where i = 1, 2, 3 which arise as the kernel of V = H2(OA(�4,�6, 1, 1))(0,0) !
W = H2(OA(�2,�4, 3, 3))(0,0), the Z2 ⇥ Z2 invariant parts of these cohomologies, which have dimensions 15
and 12, respectively. Accordingly, we can write the polynomial Q in terms of 15 invariants, spanning the source
space V , as

Q = a14
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The target space W is spanned by the 12 invariants

W = Span
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We defer finding the three-dimensional kernel to later. From the 8 multiplets 5̄4,5 we retain two left-handed
lepton doublets Lj , where j = 1, 2 described by the polynomial

R = b1
�
z̄24 � z̄3z̄4

�
+ b0

�
1� z̄3z̄

3
4

�
. (167)

From Eqs. (161) and (162) this can be used to calculate the associated polynomial R, where here, and in the
following we will be using the five-parameter family of tetra-quadrics defined by Eq. (194) (the general case with
20 complex structure parameters becomes very complicated). Finally, the three multiplets 52,5 lead to a single
up-Higgs doublet H̄ represented by

S = z2 . (168)

Inserting all this into Eq. (164), the Yukawa couplings become

�(a,b) =
⇡3

3240
(2a14b1c1 + 9a12b0c2 + 9a13b0c2 � 8a4b1c2 � 8a5b1c2 + 3a12b1c2 + 3a13b1c2 � 36a7b0c3�
12a2b1c3 � 12a14b0c4 + 6a2b1c4 + 6a3b1c4 � 6a6b1c4 � 6a7b1c4 + 4a14b1c4 � 36a6b0c5 �
12a3b1c5 � 36a2b0c6 � 36a3b0c6 � 12a6b1c6 � 12a7b1c6) (169)

In this result, the vector a still has to be specialised to the three-dimensional kernel. For the 5-parameter family
(194) of defining polynomials this kernel can be described by the equation Ma = 0 with the matrix

M =0

BBBBBBB@

24c6 0 0 0 4c3 4c6 0 0 0 24c5 0 0 3c4 0 0
24c5 0 6c2 0 4c6 4c3 0 6c2 0 24c6 0 0 �3c4 0 0
24c4 24c6 0 6c2 4c6 � 4c4 4c3 + 4c4 6c2 0 24c5 �24c4 12c2 0 3c1 3c4 2c2
0 24c5 0 0 4c3 4c6 0 0 24c6 0 12c2 0 0 �3c4 2c2

24c3 0 0 0 4c6 4c5 0 0 0 24c6 0 12c2 �3c4 0 2c2
24c6 24c4 6c2 0 4c4 + 4c5 4c6 � 4c4 0 6c2 �24c4 24c3 0 12c2 3c4 3c1 2c2
0 24c3 0 6c2 4c5 4c6 6c2 0 24c6 0 0 0 0 �3c4 0
0 24c6 0 0 4c6 4c5 0 0 24c3 0 0 0 0 3c4 0
0 0 12c6 12c6 8c2 8c2 12c3 12c5 0 0 0 0 0 0 4c4
0 0 12c5 12c3 0 0 12c6 12c6 0 0 0 0 0 0 �4c4
0 0 12c6 12c6 0 0 12c5 12c3 0 0 0 0 6c2 6c2 4c4
0 0 12c3 + 12c4 12c4 + 12c5 8c2 8c2 12c6 � 12c4 12c6 � 12c4 0 0 0 0 6c2 6c2 4c1 � 4c4
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To reduce the dimensions of the spaces involved I consider the quotient by the same � = Z2⇥Z2 symmetry (and
the same Wilson line and equivariant structure choices) as in the previous sub-section. After taking this quotient,
we remain with three singlets, Si, where i = 1, 2, 3 which arise as the kernel of V = H2(OA(�4,�6, 1, 1))(0,0) !
W = H2(OA(�2,�4, 3, 3))(0,0), the Z2 ⇥ Z2 invariant parts of these cohomologies, which have dimensions 15
and 12, respectively. Accordingly, we can write the polynomial Q in terms of 15 invariants, spanning the source
space V , as

Q = a14
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The target space W is spanned by the 12 invariants

W = Span
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We defer finding the three-dimensional kernel to later. From the 8 multiplets 5̄4,5 we retain two left-handed
lepton doublets Lj , where j = 1, 2 described by the polynomial

R = b1
�
z̄24 � z̄3z̄4

�
+ b0

�
1� z̄3z̄

3
4

�
. (167)

From Eqs. (161) and (162) this can be used to calculate the associated polynomial R, where here, and in the
following we will be using the five-parameter family of tetra-quadrics defined by Eq. (194) (the general case with
20 complex structure parameters becomes very complicated). Finally, the three multiplets 52,5 lead to a single
up-Higgs doublet H̄ represented by

S = z2 . (168)

Inserting all this into Eq. (164), the Yukawa couplings become

�(a,b) =
⇡3

3240
(2a14b1c1 + 9a12b0c2 + 9a13b0c2 � 8a4b1c2 � 8a5b1c2 + 3a12b1c2 + 3a13b1c2 � 36a7b0c3�
12a2b1c3 � 12a14b0c4 + 6a2b1c4 + 6a3b1c4 � 6a6b1c4 � 6a7b1c4 + 4a14b1c4 � 36a6b0c5 �
12a3b1c5 � 36a2b0c6 � 36a3b0c6 � 12a6b1c6 � 12a7b1c6) (169)

In this result, the vector a still has to be specialised to the three-dimensional kernel. For the 5-parameter family
(194) of defining polynomials this kernel can be described by the equation Ma = 0 with the matrix

M =0

BBBBBBB@

24c6 0 0 0 4c3 4c6 0 0 0 24c5 0 0 3c4 0 0
24c5 0 6c2 0 4c6 4c3 0 6c2 0 24c6 0 0 �3c4 0 0
24c4 24c6 0 6c2 4c6 � 4c4 4c3 + 4c4 6c2 0 24c5 �24c4 12c2 0 3c1 3c4 2c2
0 24c5 0 0 4c3 4c6 0 0 24c6 0 12c2 0 0 �3c4 2c2

24c3 0 0 0 4c6 4c5 0 0 0 24c6 0 12c2 �3c4 0 2c2
24c6 24c4 6c2 0 4c4 + 4c5 4c6 � 4c4 0 6c2 �24c4 24c3 0 12c2 3c4 3c1 2c2
0 24c3 0 6c2 4c5 4c6 6c2 0 24c6 0 0 0 0 �3c4 0
0 24c6 0 0 4c6 4c5 0 0 24c3 0 0 0 0 3c4 0
0 0 12c6 12c6 8c2 8c2 12c3 12c5 0 0 0 0 0 0 4c4
0 0 12c5 12c3 0 0 12c6 12c6 0 0 0 0 0 0 �4c4
0 0 12c6 12c6 0 0 12c5 12c3 0 0 0 0 6c2 6c2 4c4
0 0 12c3 + 12c4 12c4 + 12c5 8c2 8c2 12c6 � 12c4 12c6 � 12c4 0 0 0 0 6c2 6c2 4c1 � 4c4

1
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Still need to find kernel           where Ma = 0



Yukawa couplings for a 5-parameter family of tetra-quadrics: 

If we group the quarks into triplets (Qi) = (Q1
5, Q

2
5, Q2) and (ui) = (u15, u

2
5, u2) with Yukawa term �(u)

ij H̄Qiuj

then the Yukawa couplings (relative to our chosen basis of polynomials in Eqs. (147)–(151)) are given by

�(u) =
⇡3

3
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@
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0 0 1
0 1 0

1

A . (155)

9.3 Example 3: Singlet Yukawa couplings in the B � L standard model

The SU(5) model discussed in the previous sub-section has another, singlet Yukawa coupling of the upstairs
form

12,4 5̄4,5 52,5 . (156)

The line bundles are given by

K1 = L2 ⌦ L⇤
4 = OX(�2,�4, 3, 3) ! 1212,4 2 ��1Ker

⇣
H2(OA(�4,�6, 1, 1)

p! H2(OA(�2,�4, 3, 3)
⌘

K2 = L4 ⌦ L5 = OX(2, 2,�1,�3) ! 8 5̄4,5 2 ��1H2(OA(0, 0,�3,�5) (157)

K3 = L⇤
2 ⌦ L⇤

5 = OX(0, 2,�2, 0) ! 352,5 2 H1(OA(0, 2,�2, 0))

with associated di↵erential forms

!̂1 = �4
1 �6

2 Q(�4,�6,1,1)dz̄1 ^ dz̄2 where p̃Q̃ = 0 (158)

!̂2 = �3
3 �5

4 R(0,0,�3,�5)dz̄3 ^ dz̄4 (159)
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To reduce the dimensions of the spaces involved I consider the quotient by the same � = Z2⇥Z2 symmetry (and
the same Wilson line and equivariant structure choices) as in the previous sub-section. After taking this quotient,
we remain with three singlets, Si, where i = 1, 2, 3 which arise as the kernel of V = H2(OA(�4,�6, 1, 1))(0,0) !
W = H2(OA(�2,�4, 3, 3))(0,0), the Z2 ⇥ Z2 invariant parts of these cohomologies, which have dimensions 15
and 12, respectively. Accordingly, we can write the polynomial Q in terms of 15 invariants, spanning the source
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The target space W is spanned by the 12 invariants
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We defer finding the three-dimensional kernel to later. From the 8 multiplets 5̄4,5 we retain two left-handed
lepton doublets Lj , where j = 1, 2 described by the polynomial

R = b1
�
z̄24 � z̄3z̄4

�
+ b0

�
1� z̄3z̄

3
4

�
. (167)

From Eqs. (161) and (162) this can be used to calculate the associated polynomial R, where here, and in the
following we will be using the five-parameter family of tetra-quadrics defined by Eq. (194) (the general case with
20 complex structure parameters becomes very complicated). Finally, the three multiplets 52,5 lead to a single
up-Higgs doublet H̄ represented by

S = z2 . (168)

Inserting all this into Eq. (164), the Yukawa couplings become

�(a,b) =
⇡3

3240
(2a14b1c1 + 9a12b0c2 + 9a13b0c2 � 8a4b1c2 � 8a5b1c2 + 3a12b1c2 + 3a13b1c2 � 36a7b0c3�
12a2b1c3 � 12a14b0c4 + 6a2b1c4 + 6a3b1c4 � 6a6b1c4 � 6a7b1c4 + 4a14b1c4 � 36a6b0c5 �
12a3b1c5 � 36a2b0c6 � 36a3b0c6 � 12a6b1c6 � 12a7b1c6) (169)

In this result, the vector a still has to be specialised to the three-dimensional kernel. For the 5-parameter family
(194) of defining polynomials this kernel can be described by the equation Ma = 0 with the matrix

M =0

BBBBBBB@

24c6 0 0 0 4c3 4c6 0 0 0 24c5 0 0 3c4 0 0
24c5 0 6c2 0 4c6 4c3 0 6c2 0 24c6 0 0 �3c4 0 0
24c4 24c6 0 6c2 4c6 � 4c4 4c3 + 4c4 6c2 0 24c5 �24c4 12c2 0 3c1 3c4 2c2
0 24c5 0 0 4c3 4c6 0 0 24c6 0 12c2 0 0 �3c4 2c2

24c3 0 0 0 4c6 4c5 0 0 0 24c6 0 12c2 �3c4 0 2c2
24c6 24c4 6c2 0 4c4 + 4c5 4c6 � 4c4 0 6c2 �24c4 24c3 0 12c2 3c4 3c1 2c2
0 24c3 0 6c2 4c5 4c6 6c2 0 24c6 0 0 0 0 �3c4 0
0 24c6 0 0 4c6 4c5 0 0 24c3 0 0 0 0 3c4 0
0 0 12c6 12c6 8c2 8c2 12c3 12c5 0 0 0 0 0 0 4c4
0 0 12c5 12c3 0 0 12c6 12c6 0 0 0 0 0 0 �4c4
0 0 12c6 12c6 0 0 12c5 12c3 0 0 0 0 6c2 6c2 4c4
0 0 12c3 + 12c4 12c4 + 12c5 8c2 8c2 12c6 � 12c4 12c6 � 12c4 0 0 0 0 6c2 6c2 4c1 � 4c4
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and 12, respectively. Accordingly, we can write the polynomial Q in terms of 15 invariants, spanning the source
space V , as

Q = a14
�
z3z̄1z̄

2
2 + z4z̄1z̄

2
2

�
+ a5

�
z̄21 z̄

2
2 + z3z4z̄

2
2

�
+ a4

�
z3z4z̄

2
1 z̄

2
2 + z̄22

�
+ a7

�
z3z̄

3
2 + z4z̄

2
1 z̄2

�
+

a6
�
z4z̄

3
2 + z3z̄

2
1 z̄2

�
+ a13

�
z̄1z̄

3
2 + z3z4z̄1z̄2

�
+ a12

�
z3z4z̄1z̄

3
2 + z̄1z̄2

�
+ a2

�
z3z̄

2
1 z̄

3
2 + z4z̄2

�
+

a3
�
z4z̄

2
1 z̄

3
2 + z3z̄2

�
+ a8

�
z̄42 + z3z4z̄

2
1

�
+ a9

�
z3z4z̄

4
2 + z̄21

�
+ a10

�
z3z̄1z̄

4
2 + z4z̄1

�
+

a11
�
z4z̄1z̄

4
2 + z3z̄1

�
+ a1

�
z̄21 z̄

4
2 + z3z4

�
+ a0

�
z3z4z̄

2
1 z̄

4
2 + 1

� 2 V . (165)

The target space W is spanned by the 12 invariants
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We defer finding the three-dimensional kernel to later. From the 8 multiplets 5̄4,5 we retain two left-handed
lepton doublets Lj , where j = 1, 2 described by the polynomial
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From Eqs. (161) and (162) this can be used to calculate the associated polynomial R, where here, and in the
following we will be using the five-parameter family of tetra-quadrics defined by Eq. (194) (the general case with
20 complex structure parameters becomes very complicated). Finally, the three multiplets 52,5 lead to a single
up-Higgs doublet H̄ represented by

S = z2 . (168)

Inserting all this into Eq. (164), the Yukawa couplings become

�(a,b) =
⇡3

3240
(2a14b1c1 + 9a12b0c2 + 9a13b0c2 � 8a4b1c2 � 8a5b1c2 + 3a12b1c2 + 3a13b1c2 � 36a7b0c3�
12a2b1c3 � 12a14b0c4 + 6a2b1c4 + 6a3b1c4 � 6a6b1c4 � 6a7b1c4 + 4a14b1c4 � 36a6b0c5 �
12a3b1c5 � 36a2b0c6 � 36a3b0c6 � 12a6b1c6 � 12a7b1c6) (169)

In this result, the vector a still has to be specialised to the three-dimensional kernel. For the 5-parameter family
(194) of defining polynomials this kernel can be described by the equation Ma = 0 with the matrix

M =0

BBBBBBB@

24c6 0 0 0 4c3 4c6 0 0 0 24c5 0 0 3c4 0 0
24c5 0 6c2 0 4c6 4c3 0 6c2 0 24c6 0 0 �3c4 0 0
24c4 24c6 0 6c2 4c6 � 4c4 4c3 + 4c4 6c2 0 24c5 �24c4 12c2 0 3c1 3c4 2c2
0 24c5 0 0 4c3 4c6 0 0 24c6 0 12c2 0 0 �3c4 2c2

24c3 0 0 0 4c6 4c5 0 0 0 24c6 0 12c2 �3c4 0 2c2
24c6 24c4 6c2 0 4c4 + 4c5 4c6 � 4c4 0 6c2 �24c4 24c3 0 12c2 3c4 3c1 2c2
0 24c3 0 6c2 4c5 4c6 6c2 0 24c6 0 0 0 0 �3c4 0
0 24c6 0 0 4c6 4c5 0 0 24c3 0 0 0 0 3c4 0
0 0 12c6 12c6 8c2 8c2 12c3 12c5 0 0 0 0 0 0 4c4
0 0 12c5 12c3 0 0 12c6 12c6 0 0 0 0 0 0 �4c4
0 0 12c6 12c6 0 0 12c5 12c3 0 0 0 0 6c2 6c2 4c4
0 0 12c3 + 12c4 12c4 + 12c5 8c2 8c2 12c6 � 12c4 12c6 � 12c4 0 0 0 0 6c2 6c2 4c1 � 4c4

1

CCCCCCCA

22

Still need to find kernel           where Ma = 0
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We defer finding the three-dimensional kernel to later. From the 8 multiplets 5̄4,5 we retain two left-handed
lepton doublets Lj , where j = 1, 2 described by the polynomial
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From Eqs. (161) and (162) this can be used to calculate the associated polynomial R, where here, and in the
following we will be using the five-parameter family of tetra-quadrics defined by Eq. (194) (the general case with
20 complex structure parameters becomes very complicated). Finally, the three multiplets 52,5 lead to a single
up-Higgs doublet H̄ represented by
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We defer finding the three-dimensional kernel to later. From the 8 multiplets 5̄4,5 we retain two left-handed
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From Eqs. (161) and (162) this can be used to calculate the associated polynomial R, where here, and in the
following we will be using the five-parameter family of tetra-quadrics defined by Eq. (194) (the general case with
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The Yukawa coupling

This matrix has generic rank 12 and, hence, a three-dimensional kernel, spanned by vector vi, where i = 1, 2, 3
and we can write

a =
3X

i=1

↵ivi , (170)

with the three coe�cients ↵i describing the three singlets Si. Unfortunately, even for our 5-parameter family
the vi consist of very complicated functions of the complex structure moduli. Matters simplify somewhat if I
restrict to the 4-parameter sub-family where c2 = 0 which I will do from hereon. In this case, I find for the basis
of the kernel

v1 =
�
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�
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�� c4
��c23 + (3c4 � 2c6) c3 + c5 (c5 + 2c6) + c4 (c5 + 4c6)

�
,

c4c
2
3 +

�
c24 + 2c6c4 + c1c5

�
c3 � c4c5 (c5 + 2c6) + c24 (3c5 + 4c6) + c1

�
c25 � 2c26

�
, 0, 0,

� (c3 � c5)
�
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�
,� (c3 � c5)

�
c24 + c3c4 + (c5 + 2c6) c4 � c1c6

�
,

0, 0, 0, 0, 0, 0, 3 (c3 � c5) (c3 + c4 + c5 � 2c6) (c3 + c5 + 2c6)) (171)

v2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 (c3 � c5) (c3 + c4 + c5 � 2c6) (c3 + c5 + 2c6) , 0, 0, 0) (172)

v3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 (c3 � c5) (c3 + c4 + c5 � 2c6) (c3 + c5 + 2c6) , 0, 0, 0, 0) (173)

Inserting these vectors into Eq. (170) and then into the general form (169) of the Yukawa couplings leads to

�(↵,b) =
⇡3

180
↵1b1 (c3 � c5)

�
4c24 + c1 (c3 + c5 � 2c6)

�
(c3 + c5 + 2c6) (174)

For the Yukawa matrix in �ijSiLjH̄ this means

� =
⇡3

180

0

@
0 (c3 � c5)

�
4c24 + c1 (c3 + c5 � 2c6)

�
(c3 + c5 + 2c6)

0 0
0 0

1

A (175)

Evidently, this matrix has generic rank one, so one less than maximal, but we have to remember that we are
already on a fairly special four-dimensional sub-locus of moduli space. It is likely (although I have not shown
this) that the rank goes up to two away from the special locus. When the first singlet field, S1, acquires a VEV,
a non-zero L2H̄ term develops, the pair of Higgs multiplets becomes massive and is e↵ectively removed from the
low-energy spectrum. This is precisely what we should expect from the results of our earlier calculations when
we computed cohomology in the non-Abelian part of the moduli space. However, we do gain one more piece of
insight here. At special loci in the complex structure moduli space, for example on the three-dimensional locus
for which c3 = c5, the singlet Yukawa couplings vanish entirely and a µ-term does not develop even for non-zero
VEVs of the singlets Si.

9.4 Example 4: a toy model with complex structure dependence

A choice of line bundles for this case is

K1 = OX(0,�2, 1, 1) 4 5̄ ! H ⌫̂1 = �2
2 Q(0,�2,1,1)dz̄2 H1(A,K1)

K2 = OX(�4, 0, 1, 1) 12 5̄ ! d ⌫̂2 = �4
1 R(�4,0,1,1)dz̄1 H1(A,K2)

K3 = OX(4, 2,�2,�2) 12 10 ! Q ⌫̂3 = �2
3 �2

4 R(4,2,�2,�2)dz̄3 ^ dz̄4
Ker(H2(A,N ⇤ ⌦K3) ! H2(A,K3))

(176)
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This is generically rank 1, but will be generally rank 2 away 
from the 5-parameter family. For          the Higgs remains


massless even if           . 

c3 = c5
hSii 6= 0



Conclusion

• Calculating Yukawa couplings in string theory is crucial in  
 order to make contact with physics.

• Much remains to be done for Yukawa couplings in heterotic  
 Calabi-Yau models with arbitrary vector bundles.

• We can now compute the holomorphic (perturbative) Yukawa  
 couplings for heterotic line bundle models, both algebraically  
 and in terms of differential geometry. 

• First explicit calculation of complex structure dependence:  
 rank of hol. Yukawa couplings can change in complex structure  
 moduli space



Much remains to be done:

• Compute hol. Yukawa couplings for other manifolds.

• Compute hol. Yukawa couplings for non-Abelian bundles.

• Find a way to work out the normalisation.

• Find standard models with realistic Yukawa couplings.



Much remains to be done:

• Compute hol. Yukawa couplings for other manifolds.

• Compute hol. Yukawa couplings for non-Abelian bundles.

• Find a way to work out the normalisation.

• Find standard models with realistic Yukawa couplings.

Thanks


