

Phenomenology of non-supersymmetric string models

In collaboration with Steven Abel and Keith R. Dienes

Eirini Mavroudi

11-06-2015

StringPheno '15 IFT Madrid, Spain

Introduction

Introduction

Starting Poin

- $\mathcal{N} = 0, 4D \text{ model}$
- Phenomenology
- Partiton Function Mass Spectrum
- Cosmological Constant

Conclusion

- String pheno has been marked by a notable progress in the construction of 'realistic' or 'semi-realistic' string models with $\mathcal{N} = 1$ SUSY.
- There has been some effort in the construction of non-SUSY models.

[Dixon Harvey; Gato-Rivera, Schellekens; Ferrara, Kounnas, Porrati, Zwirner; Kounnas, Rostand; Angelatonj, Antoniadis, Forger; Blumenhagen, Font; Keith Dienes; Groot-Nibbelink, Loukas, Ramos-Sanchez; Faraggi, Kounnas, Partouche ...]

Purpose of our work:

- Construct modular invariant, tachyon-free, non-SUSY models from *heterotic* strings via a CDC.
- Stable models with an almost vanishing 1-loop cosmological constant / dilation tadpole.
- A SM-like theory emerges at the low energy limit of the non-SUSY model.

$\mathcal{N} = 1, 6D \text{ model}$

Introduction

Starting Point

- $\mathcal{N} = 1, \, 6D \, \mathrm{model}$ $\mathcal{N} = 1, \, 4D \, \mathrm{model}$
- $\mathcal{N} = 0, 4D \text{ model}$

Phenomenology

- Partiton Function Mass Spectrum
- Cosmological Constan

Conclusion

Sector	$\psi^{34}\psi^{56}\chi^{34}y^{34}\omega^{34}\chi^{56}y^{56}\omega^{56}$	$\overline{y}^{34}\overline{\omega}^{34}\overline{y}^{56}\overline{\omega}^{56}$	$\overline{\psi}^1 \ \overline{\psi}^2 \ \overline{\psi}^3 \ \overline{\psi}^4 \ \overline{\psi}^5$	$\overline{\eta}^1 \ \overline{\eta}^2 \ \overline{\eta}^3 \ \overline{\phi}^1 \ \overline{\phi}^2 \ \overline{\phi}^3 \ \overline{\phi}^4 \ \overline{\phi}^5 \ \overline{\phi}^6 \ \overline{\phi}^7 \ \overline{\phi}^8$
V_0	1 1 1 1 1 1 1 1	1111	11111	1 1 1 1 1 1 1 1 1 1 1 1
V_1	1 1 1 0 0 1 0 0	0000	00000	0 0 0 0 0 0 0 0 0 0 0 0
V_2	1 1 0 1 0 0 1 0	1010	1 1 1 1 1	10000000000
V_5	00000011	0100	1 1 1 0 0	0 0 0 1 1 1 1 0 0 1 1
V_6	0 0 0 0 0 0 0 0	1 1 0 1	1 1 1 0 0	0 0 0 0 1 1 1 1 1 1 0
V_7	0 0 0 1 1 0 0 0	1010	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ 0 \ 1 \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ 1 \ 1 \ \frac{1}{2}$

Spin structure of this model with *complexified* w/s fermions. Each entry of the table \equiv B.C of the w/s fermions and is multiplied by a factor of -1/2.

 $0 \equiv$ antiperiodic B.C \rightarrow NS fermions, $-1/2 \equiv$ periodic B.C \rightarrow R fermions.

- This spin structure guarantees that
 - the w/s SUSY is preserved,
 - the model is modular invariant,
 - the w/s supercurrent is invariant under the B.C of the w/s fermions

$$T_F(z) = \psi^{\mu}(z)\partial_z X_{\mu}(z) + \sum_{I=3}^{I=D} \chi^I y^I \omega^I , \qquad (1)$$

 $\mu = 3, \ldots, D.$

there are no conformal anomalies.

$\mathcal{N} = 1, 4D \mod$ Chiral $SU(3) \otimes SU(2) \otimes U(1)_Y$

Introduction

- Starting Point
- $\mathcal{N} = 1, 6D$ model $\mathcal{N} = 1, 4D$ model
- $\mathcal{N} = 0, 4D \text{ model}$
- Phenomenology
- Partiton Function Mass Spectrum
- Cosmological Constant

Conclusion

Sector	$\psi^{34}\psi^{56}\chi^{34}y^{34}\omega^{34}\chi^{56}y^{56}\omega^{56}$	$\overline{y}^{34}\overline{\omega}^{34}\overline{y}^{56}\overline{\omega}^{56}$	$\overline{\psi}^1 \ \overline{\psi}^2 \ \overline{\psi}^3 \ \overline{\psi}^4 \ \overline{\psi}^5$	$\overline{\eta}^1 \ \overline{\eta}^2 \ \overline{\eta}^3 \ \overline{\phi}^1 \ \overline{\phi}^2 \ \overline{\phi}^3 \ \overline{\phi}^4 \ \overline{\phi}^5 \ \overline{\phi}^6 \ \overline{\phi}^7 \ \overline{\phi}^8$
V_0	1 1 1 1 1 1 1 1	1111	11111	1 1 1 1 1 1 1 1 1 1 1 1
V_1	1 1 1 0 0 1 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
V_2	1 1 0 1 0 0 1 0	1010	11111	10000000000
b_3	$1 0 \overline{1} 0 \overline{0} \overline{0} 0 \overline{1}$	0001	11111	0 1 0 0 0 0 0 0 0 0 0
b_4	1 0 0 0 1 1 0 0	0100	11111	0 0 1 0 0 0 0 0 0 0 0
V_5	$0 \ 0 \ 0 \ \overline{0} \ \overline{0} \ 0 \ \overline{1} \ \overline{1}$	0100	11100	0 0 0 1 1 1 1 0 0 1 1
V_6	0 0 0 0 0 0 0 0	1 1 0 1	11100	0 0 0 0 1 1 1 1 1 1 0
V_7	$0 \ 0 \ 0 \ \overline{1} \ \overline{1} \ 0 \ \overline{0} \ \overline{0}$	1010	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 0 1 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 1 1 $\frac{1}{2}$

- Spin structure of this model with *real* w/s fermions and 2 bosonic coordinates compactified on a \mathbb{Z}_2 orbifold. The table entries are explicitly $1 = (11)_r$, $0 = (00)_r$, $\overline{1} = (10)_r$, $\overline{0} = (01)_r$. b_3 and b_4 are \mathbb{Z}_2 twists.
- The \mathbb{Z}_2 projection on the R free-fermions ϕ is

$$\widehat{\mathbf{g}}\phi = \begin{cases} \phi \widehat{\mathbf{g}} & \phi \notin b_3 \text{ or } b_4 \\ -\phi \widehat{\mathbf{g}} & \phi \in b_3 \text{ or } b_4, \end{cases}$$
(2)

 \widehat{g} is the \mathbb{Z}_2 generator, $\widehat{g}^2 = 1$.

The \mathbb{Z}_2 action is consistent with the global invariance of $T_F(z)$, $\widehat{\mathbf{g}}T_F(z) = -T_F(z)\widehat{\mathbf{g}}.$ (3)

Eirini Mavroudi

Coordinate Dependent Compactification

Introduction

Starting Poin

- $\begin{aligned} \mathcal{N} \, = \, 1 \, , \, 6D \; \mathrm{model} \\ \mathcal{N} \, = \, 1 \, , \, 4D \; \mathrm{model} \end{aligned}$
- $\mathcal{N} = 0, 4D \text{ model}$ CDC

Phenomenology

- Partiton Function Mass Spectrum
- Cosmological Constant

Conclusion

■ $\mathcal{N} = 1, 6D \xrightarrow{CDC \text{ on } \mathbb{Z}_2} 4D$ with $\mathcal{N} = 1$ spontaneously broken.

- The symmetries of the $T_F(z)$ that induce the SSB are *discrete* rotations $\subset U(1) \subset SO(4)$. [Kounnas, Rostand]
- The w/s Lagrangian, L_w, is deformed via a local generator Q of the J₁ discrete symmetry which partly involves the R-symmetry. [Ferrara, Kounnas, Porrati, Zwirner]
 - The s/t gravitinos must transform non-trivially under its action and

$$[T_F(z), \mathbf{Q}(z)] \neq 0.$$
(4)

- $J_1: f_c \to e^{2\pi i \mathbf{e}_c} f_c$. The operator, $\widehat{\alpha}_1 = e^{2\pi i \mathbf{e} \cdot \mathbf{Q}}$,
 - must be globally defined on the w/s,
 - obey the \mathbb{Z}_2 consistency condition: $\{\mathbf{e} \cdot \mathbf{Q}, \widehat{\mathbf{g}}\} = 0$ e is the J_1 charge of the w/s fermions. For $\mathbf{e} = 1/2 \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0^{20} \end{bmatrix}$,

$$\mathbf{e} \cdot \mathbf{Q} = \frac{1}{2} \frac{1}{2\pi i} \int dz \left(\overline{\chi}^{34} \chi^{34} + \overline{\chi}^{56} \chi^{56} + \overline{\omega}^{34} \omega^{34} + \overline{\omega}^{56} \omega^{56} \right)$$

$$= \frac{1}{2} \left(Q_{\chi^{34}} + Q_{\chi^{56}} + Q_{\omega^{34}} + Q_{\omega^{56}} \right) .$$
(5)

Eirini Mavroudi

CDC Partition Function

Introduction

Starting Poin

 $\begin{aligned} \mathcal{N} \, = \, 1 \, , \, 6D \; \mathrm{model} \\ \mathcal{N} \, = \, 1 \, , \, 4D \; \mathrm{model} \end{aligned}$

 $\mathcal{N} = 0, 4D \text{ model}$

Phenomenology

Partiton Function

Mass Spectrum

Conclusion

SSB occurs only in the untwisted sectors of the theory. The CDC one-loop p.f is given by

$$\mathcal{Z}(\tau) = \sum_{m_{1,2}, n_{1,2}} Tr \ \mathsf{g}q^{[\mathbf{L}'_0]} \overline{q}^{[\overline{\mathbf{L}'}_0]} = \underbrace{(D-2)q^{-1}}_{\text{proto gravitons}} + \dots$$
(6)

 ${\rm g}$ is the GSO projection - independent of the CDC vector ${\rm e}.$

$$\mathbf{L}'_{0} = \frac{\frac{1}{2} \left[\mathbf{Q}_{L} - \mathbf{e}_{L}(n_{1} + n_{2}) \right]^{2}}{\frac{1}{4}} + \left[\frac{1}{4} \left[\frac{m_{1} + \mathbf{e} \cdot \mathbf{Q} - \frac{1}{2}(n_{1} + n_{2})\mathbf{e}^{2}}{r_{1}} + n_{1}r_{1} \right]^{2} + \frac{1}{4} \left[\frac{m_{2} + \mathbf{e} \cdot \mathbf{Q} - \frac{1}{2}(n_{1} + n_{2})\mathbf{e}^{2}}{r_{2}} + n_{2}r_{2} \right]^{2} - 1 + \text{ other osc. cont's}$$

$$\overline{\mathbf{L}'}_{0} = \frac{1}{2} \left[\mathbf{Q}_{R} - \mathbf{e}_{R}(n_{1} + n_{2}) \right]^{2} + \frac{1}{4} \left[\frac{m_{1} + \mathbf{e} \cdot \mathbf{Q} - \frac{1}{2}(n_{1} + n_{2})\mathbf{e}^{2}}{r_{1}} - n_{1}r_{1} \right]^{2} + \frac{1}{4} \left[\frac{m_{2} + \mathbf{e} \cdot \mathbf{Q} - \frac{1}{2}(n_{1} + n_{2})\mathbf{e}^{2}}{r_{2}} - n_{2}r_{2} \right]^{2} - \frac{1}{2} + \text{ other osc. cont's}$$

$$\ln \text{ SSB the lightest states get a mass} \qquad (7)$$

$$\alpha' \mathbf{m}^{2} = |\mathbf{e} \cdot \mathbf{Q}|^{2} \left(\frac{1}{r_{1}^{2}} + \frac{1}{r_{2}^{2}} \right) \qquad (8)$$

$N=0, 4D \mathop{\mathrm{model}}_{\mathrm{Chiral}\ SU(3) \,\otimes\, SU(2) \,\otimes\, U(1)_Y}$ - Interpolating model

Introduction

Starting Point

- $\begin{array}{l} \mathcal{N} \,=\, 1\,,\, 6D \; \mathrm{model} \\ \mathcal{N} \,=\, 1\,,\, 4D \; \mathrm{model} \end{array}$
- $\mathcal{N} = 0, 4D \text{ model}$

Phenomenology

Partiton Function

Mass Spectrum

Cosmological Constant

Conclusion

Sector	$\psi^{34}\psi^{56}\chi^{34}y^{34}\omega^{34}\chi^{56}y^{56}\omega^{56}$	$\overline{y}^{34}\overline{\omega}^{34}\overline{y}^{56}\overline{\omega}^{56}$	$\overline{\psi}^1 \ \overline{\psi}^2 \ \overline{\psi}^3 \ \overline{\psi}^4 \ \overline{\psi}^5$	$\overline{\eta}^1 \ \overline{\eta}^2 \ \overline{\eta}^3 \ \overline{\phi}^1 \ \overline{\phi}^2 \ \overline{\phi}^3 \ \overline{\phi}^4 \ \overline{\phi}^5 \ \overline{\phi}^6 \ \overline{\phi}^7 \ \overline{\phi}^8$
V_0	1 1 1 1 1 1 1 1	1111	11111	1 1 1 1 1 1 1 1 1 1 1
V_1	1 1 1 0 0 1 0 0	0000	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
V_2	1 1 0 1 0 0 1 0	1010	1 1 1 1 1	10000000000
b_3	$1 0 \overline{1} 0 \overline{0} \overline{0} 0 \overline{1}$	0001	1 1 1 1 1	01000111001
V_4	00101101	0101	0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0
V_5	$0 \ 0 \ 0 \ \overline{0} \ \overline{0} \ 0 \ \overline{1} \ \overline{1}$	0101	1 1 1 0 0	01000100111
V_7	$0 \ 0 \ 0 \ \overline{1} \ \overline{1} \ 0 \ \overline{0} \ \overline{0}$	0101	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 0 0 1 1 0 0 0 0
e	00101101	0001	00000	0 0 0 1 1 1 0 1 1 1 1

Spin structure of the *tachyon-free*, non-SUSY model. The self-consistent GSO projections from the V_1 sector project out the "physical" tachyons.

The multiplets with the

- Gravity & SM particle content correspond to *unbroken* generators of the symmetry: $\rightarrow e \cdot \mathbf{Q} = 0 \Rightarrow$ Massless particles.
- Susy partners correspond to *broken* generators of the symmetry:

 $ightarrow e \cdot \mathbf{Q} = -1/2 \Rightarrow$ Massive particles, $m = \frac{1}{2} \sqrt{r_1^{-2} + r_2^{-2}}$.

 Interpolating model <u>Low energy limit</u>
 SM-like theory > 3 chiral generations.

Introduction

Starting Point

 $\mathcal{N} = 1, 6D$ model $\mathcal{N} = 1, 4D$ model

 $\begin{array}{l} \mathcal{N}=0, 4D \text{ model} \\ \text{CDC} \end{array}$

Phenomenology

Partiton Function

Mass Spectrum

Cosmological Constant

Conclusion

1-loop Cosmological Constant / Dilaton Tadpole

1-loop cosmological constant

Introduction

Starting Point

- $\begin{array}{l} \mathcal{N} \,=\, 1 \,, \, 6D \,\, \mathrm{model} \\ \mathcal{N} \,=\, 1 \,, \, 4D \,\, \mathrm{model} \end{array}$
- $\mathcal{N} = 0, 4D \text{ model}$ CDC

Phenomenology

Mass Spectrum

Cosmological Constant

Conclusion

$$\begin{split} \mathcal{M} &= \frac{1}{\sqrt{\alpha'}}, \ D = \text{uncompactified dim} \\ \mathcal{F} &\equiv \{\tau: |\text{Re}\,\tau| \leq \frac{1}{2}, \text{Im}\,\tau > 0, |\tau| \geq 1 \} \end{split}$$

The Λ of a tachyon-free N = 0, 4D model gets contributions from the
 Unphysical states - proto gravitons in (τ₂ < 1):

$$\Lambda^{(0,-1)} \sim \frac{\sqrt{2}}{\pi} e^{-2\pi(\ell+n)} (r_1 r_2)^2 e^{-\pi(r_1 r_2)^2}$$
(10)

Physical states in $(\tau_2 \ge 1, -1/2 \le \tau_1 \le 1/2)$. The dominant factor comes from the sectors with odd ℓ_i and $n_i = 0$:

$$\Lambda = r_1 r_2 \mathcal{M}^4 \int_{\frac{1}{\mu^2} \approx 1}^{\infty} \frac{d\tau_2}{\tau_2^4} \sum_{\substack{\ell = odd \\ level \ i}} (N_f^i - N_b^i) e^{-\frac{\pi}{\tau_2} |\underline{\ell}|^2} e^{-\pi \tau_2 \alpha' m_i^2}$$
(11)

 $[\underline{\ell} = (r_1\ell_1, r_2\ell_2), \underline{n} = (r_1n_1, r_2n_2)] = \text{resumed KK and winding modes. In the large } r_1, r_2 \text{ limit the } n_i \neq 0 \text{ give extremely suppressed contributions.}$ Eini Mavoudi

Exponential suppression

Introduction

Starting Point

 $\mathcal{N} = 0, 4D \text{ model}$ CDC

- Phenomenology
- Partiton Functio
- Cosmological Constant

Conclusion

Assuming that $r_1 < r_2$, the <u>massless</u> physical states give

$$\Lambda_{0} = \frac{2r_{1}r_{2}\mathcal{M}^{4}}{\pi^{3}} (N_{f}^{0} - N_{b}^{0}) \sum_{\ell = odd} |\underline{\ell}|^{-6} \left(1 - \mathcal{O}(e^{-\pi |\underline{\ell}|^{2} \mu^{2}})\right)$$
$$= \frac{4r_{1}r_{2}\mathcal{M}^{4}}{\pi^{3}} (N_{f}^{0} - N_{b}^{0})(2r_{1})^{-6} \zeta\left(6, \frac{1}{2}\right) + \dots$$
$$= r_{1}r_{2}\mathcal{M}^{4} (N_{f}^{0} - N_{b}^{0}) \frac{\pi^{3}}{240r_{1}^{6}}.$$
(12)

2 The contributions of the massive physical states, found by the saddle point approximation - saddle at $\tau_2 = \frac{|\ell|}{\sqrt{\alpha'}m_i}$ (valid for $\sqrt{\alpha'}m_i \ll 1$), is

$$\Lambda_{i\neq0} = r_1 r_2 \mathcal{M}^4 (N_f^i - N_b^i) \sum_{\ell = odd} |\underline{\ell}|^{-7/2} (\sqrt{\alpha'} m_i)^{5/2} e^{-2\pi \sqrt{\alpha'} m_i |\underline{\ell}|} \times \left(1 - \mathcal{O}\left(\frac{1}{2\pi |\underline{\ell}| \sqrt{\alpha'} m_i}\right) \right) .$$
(13)

• The $(N_f^0 - N_b^0) = 0$ in the $\mathcal{N} = 0, 4D \mod A = \mathcal{O}[e^{-|\underline{\ell}|}] \sim \phi$ Hence the model is *stable* & *finite*.

Eirini Mavroudi

Conclusion

Introduction

Starting Point

- $\begin{aligned} \mathcal{N} \, = \, 1 \, , \, 6D \; \mathrm{model} \\ \mathcal{N} \, = \, 1 \, , \, 4D \; \mathrm{model} \end{aligned}$
- $\mathcal{N} = 0, 4D \text{ model}$

Phenomenology

Partiton Function Mass Spectrum

Conclusion

- We constructed modular invariant heterotic string models in 4D with no s/t SUSY: SO(10), Flipped SU(5), $SO(6) \otimes SO(4)$, $SU(3) \otimes SU(2) \otimes U(1)_Y$.
- Their mass spectra involve particles (superpartners) with masses $\sim \frac{1}{R}$, for *R* a general radius of compactification.
- These theories have an almost vanishing cosmological constant which overcomes the stability and finiteness issues.
- Future work:
 - Study whether the exponential suppression extends beyond the 1-loop.
 - Study the precise nature of the interpolating model at the $r_1, r_2 \rightarrow 0$ limit.
 - Get a 3 generation SM.

Thank you

Eirini Mavroudi