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CMSSM scenario SPLIT-SUSY scenario

➢ Gravitino mass:

➢ Lightest modulus:

(sequestering)

(no CMP)

Q: which kind of cosmology can arise from them?

m3 /2 ≃ 1010 GeV

mv≃ 107 GeV

msoft ≪m3 /2

mv ≫ 50 TeV

L. Aparicio's talk
[Aparicio et al., 2015]
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Dark Radiation: what is it?

ρrel=ργ (1+ 78 ( 411 )
4 /3

N eff)
N eff = N eff ,SM +Δ N eff

Δ N eff > 0

experimental constraints coming from BBN and CMB observations:

larger ρrel larger H can modify CMB and BBN predictions

DARK 
RADIATION

Relativistic particles in the hidden sector

N eff ,SM = 3.046

energy density of relativistic 
d.o.f.  after         annihilatione+e-

effective number of neutrino species:
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[Planck collaboration 2015, arXiv:1502.01589]
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Planck 2015: there is no need for dark radiation.

BUT
➢ There is a positive correlation 
between        and             .
➢ The value of        used by 
Planck is in tension with direct 
measurements by the HST.
➢ Example reported by Planck:

H 0

H 0

ΔN eff = 0.39

In this talk I will consider                        as
a reference upper bound on             . 

ΔN eff ⩽ 0.5
ΔN eff

.

[Planck collaboration 2015, arXiv:1502.01589]
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DR in type IIB
In string compactifications with perturbative moduli stabilisation, 

the production of dark radiation is UNAVOIDABLE.

CN:

Decay width                     : Γ=
1
48π

mΦ
3

M p
2 ≡Γ0

➢ LVS stabilization 1)      perturbative:
2)       non-perturbative:

τb

ψb

Φ → ab ab

Lint ⊃−√ 2
3
δΦ∂μab∂

μab

K ⊃−3 log (T b+ T̄ b )
➢ 

Φ= √ 3
2

log τb ab= √ 3
2

ψb
〈 τb〉

mψb
≃M p e

−v2 /3
∼ 0

[Allahaverdi et al., 2014]

➢ Type IIB: T b= τb+ iψb (volume modulus) could act as DRψb
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≃M p/v
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Decay channels into the visible sector
➢ Decay into visible 

 gauge bosons
 

➢ Decay into fermions, 
gauginos and higgsinos

➢ Decay into scalar fields

➢ Higgs fields

 

Φ → A A

ΓΦ→AA= (
αSM
4π )

2

Γ0≪Γ0

Φ → ff

Φ → Cα C̄α

Φ → HuHd

ΓΦ→H H≃ f (Z ,mH , B μ̂)Γ0
B μ̂(       -term, GM-term Z)

Φ → Hu /d H̄ u /d (mass-terms)

(mass-terms)

always loop 
suppressed

ΓΦ→Cα C̄ α ≃ (mCα

mΦ
)
2

Γ0

always 
suppressed

depends
on the ratio ( m0

mΦ
)
2

independent of the soft 
spectrum

Γtot=(1+cvis)Γ0

ΓΦ→ ff = ( mfmΦ
)
2

Γ0≪Γ0

Total decay rate:
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ΓΦ→C C̄≃ (m0mΦ
)
2

Γ0≪Γ0

ΔN eff=
43
7
1
cvis [ g (T dec )

g (T reheat ) ]
1/3 g(T dec)≃ 10.75

g(T reheat)≃ 86.25

0.7 GeV≤ T reheat≤ 13 GeV

➢ DR produced:

1.63≤ΔN eff≤ 1.74
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Z= 1

[Cicoli, Conlon, Quevedo, 2012]
[Higaki, Takahashi, 2012]
[Angus, Conlon et al., 2013 ]
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Sequestered Split-SUSY

m0≃ B μ̂
1 /2

≃mΦ≃
M p

v 3 /2
≃ 107 GeV

Φ → CC̄
Φ → Hu /d H̄ u/d

Φ → HuHd

Decay channels:

mass 
terms GM &        -terms  B μ̂

Kinematical condition                      for the decay                    to be 
allowed requires string loop corrections.

Φ →C C̄mΦ≥ 2m0

M a≃
M p

v 2
≃ 103 GeV



  

Sketch of the computation:
➢ Lagrangian depends on       : L(Φ)=Lkin(Φ)−V (Φ)

➢ Idea: expand around the volume minimum:
to find cubic interactions between scalar fields and 

Φ

Φ=〈Φ〉+δΦ

δΦ



  

Sketch of the computation:

➢ Start from the Kähler potential which determines the kinetic terms:

K =−2 logv+ 2
T b+T̄ b

∑
α
Cα C̄ α

+ ( 2Z
T b+T̄ b

H uH d+h.c.)

➢ Lagrangian depends on       : L(Φ)=Lkin(Φ)−V (Φ)

Lkin (Φ)

➢ Idea: expand around the volume minimum:
to find cubic interactions between scalar fields and 

Φ

Φ=〈Φ〉+δΦ

δΦ



  

Sketch of the computation:

➢ Start from the Kähler potential which determines the kinetic terms:

K =−2 logv+ 2
T b+T̄ b

∑
α
Cα C̄ α

+ ( 2Z
T b+T̄ b

H uH d+h.c.)
➢ Consider canonically normalized fields:

h1 =
ℜH u

+

√〈 τb〉
h2 =ℜ

H u
0

√〈 τb〉
…

➢ Lagrangian depends on       : L(Φ)=Lkin(Φ)−V (Φ)

Lkin (Φ)

σα=
ℜCα

〈 τb〉
χα=

ℑC α

√〈 τb〉

➢ Idea: expand around the volume minimum:
to find cubic interactions between scalar fields and 

Φ

Φ=〈Φ〉+δΦ

δΦ



  

Sketch of the computation:
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K =−2 logv+ 2
T b+T̄ b

∑
α
Cα C̄ α

+ ( 2Z
T b+T̄ b

H uH d+h.c.)
➢ Consider canonically normalized fields:

h1 =
ℜH u

+

√〈 τb〉
h2 =ℜ

H u
0

√〈 τb〉
…

➢ The scalar potential takes the form:

V =V LVS+
m0

2

2
∑
α

(σα 2
+χ

α 2)+1
2
(μ̂ 2

+m0
2 )∑
i=1

8

hi
2
+B μ̂(h1h4−h2h3+h6h7−h5h8)

➢ Lagrangian depends on       : L(Φ)=Lkin(Φ)−V (Φ)

Lkin (Φ)

σα=
ℜCα

〈 τb〉
χα=

ℑC α

√〈 τb〉

➢ Idea: expand around the volume minimum:
to find cubic interactions between scalar fields and 

Φ

Φ=〈Φ〉+δΦ

δΦ
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σ
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2
χ

α
=−m0

2
χ

α
∂2h1 =−(μ̂ 2 +m0

2 )h1−B μ̂h4 …

➢ Interaction lagrangian:
(neglecting the     -term)

Lint =
7

2√6 [m0
2
δΦ∑

i=1

8

hi
2
+m0

2
δΦ∑

α
C αC α ]+

+ ( 7

√6
B μ̂ + Z mΦ

2 ) δΦ (h1h4−h2h3+h6h7−h5h8)
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∂
2
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=−m0

2
σ

α ∂
2
χ

α
=−m0

2
χ

α
∂2h1 =−(μ̂ 2 +m0

2 )h1−B μ̂h4 …

➢ Interaction lagrangian:
(neglecting the     -term)

Lint =
7

2√6 [m0
2
δΦ∑

i=1

8

hi
2
+m0

2
δΦ∑

α
C αC α ]+

+ ( 7

√6
B μ̂ + Z mΦ

2 ) δΦ (h1h4−h2h3+h6h7−h5h8)

μ̂

➢The total decay  rate into 
the visible sector is given by:

B μ̂ = Z m0
2 c=

m0

mΦ

cvis = [2Z 2 (7 c2−1 )
2
+49c4 (1+2N

4 ) ] √1−4 c2

2N = 90 squarks and sleptons d.o.f. in the MSSM

➢ Expand the soft-terms which depend on the volume,

               for example: m0
2
(Φ)=m0

2(1− 9
2 √ 2

3
δΦ )



  

Results

ΔN eff ⩽ 0.5ΔN eff ⩽ 0.5

➢ A large region of the
parameter space admits
values of                        .

➢ Most of the suppression                
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Results

ΔN eff ⩽ 0.5

Δ N eff = 0.14c= 0.45m0 = 107 GeVZ = 1

➢ A large region of the
parameter space admits
values of                        .

➢ Most of the suppression                
is due to the decay into              
scalars.  
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For              all these values of c: 
               correspond to                        . 

0.28 < c< 0.49Z = 1

ΔN eff ⩽ 0.5

Q: is the result modified by taking into account the RG flow?

It is not a fine-tuned result!



  

The result is essentially independent of the RG running.

m t̃ L

m t̃ R

➢ Scalars don't run, 
except for       and       . 
➢ We take the     
running of        and           
     into account.
➢ We didn't study the 
EWSB so far.

m t̃ L m t̃ R

B μ̂

Z

For                                      we getmΦ= 2.2×107 GeV Δ N eff ≃ 0.16

m [GeV ]

107

8× 106

6 × 106

log (Q /GeV)

7 9 11 13 15 16

other scalars

tanβ= 1.4 tanβ= 1.6

9 ×106

7 ×106 SusyHD + SARAH
[Vega, Villadoro, 2015]
[Staub,2012]
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Conclusions and next steps

 We have shown that the the amount of DR produced in Split-SUSY, 
LVS sequestered string models with all moduli stabilized and dS 

vacua is generically within the current experimental bounds, if the 
decay into scalar fields is kinematically allowed.

➢ EWSB has to be analyzed carefully.
➢ Correlation with DM production.



  

Thank you!



  

Locality of Yukawa couplings requires: K̃ = eK /3

We parameterize the Kähler matter metric K̃ =
f α

v 2 /3 (1−c s ξ s
3 /2

v )
Scalar masses: m0

2
=

15
2 (c s−1

3 ) m3 /2
2

τs
3 /2

v
cs≠

1
3

Volume modulus mass: mΦ
2
= #

m3 /2
2

τs
1 /2

v

In LVS: τs≃log ( vW 0
)≫ 1

m0
2

mΦ
2 >

1
4Tipically:

Ŷ αβγ= e
K /2 Y αβγ

√ K̃ α K̃ β K̃ γ

Yukawas:



  

Introduce SL corrections into the Kähler potential: δ K loop =
g s

v 2/3

m0
2
= ( 15

2 (cs−1
3 ) τs

3 /2

v
−(c loop−

1
3 ) 2 g s

v 2 /3 ) m3 /2
2

Matter metric gets modified: K̃=
1

v 2/3 (1−c s ξ s
3 /2

v
−
cloop g s

v 2 /3 )
Scalar masses take the form:

Enlarge the region 
of the parameter 
space where the 
decay is possible: 
i.e. for                 
and                 

cs= 1/3

cloop = 0

τs= ( ξ2 )
2 /3 1
g s



  

h1 =
ℜH u

+

√〈 τb〉

h5 = ℑ
H u

+

√〈 τb〉
h6 = ℑ

H u
0

√〈 τb〉

h2 =ℜ
H u

0

√〈 τb〉
h3 = ℜ

H d
0

√〈 τb 〉

h7 = ℑ
H d

0

√〈 τb〉
h8 =ℑ

H d
-

√〈 τb 〉

h4 =ℜ
H d

-

√〈 τb〉

σα=
ℜCα

〈 τb〉
χα=

ℑC α

√〈 τb〉

Canonically normalized fields:
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