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1
Vacuum Moduli Spaces of Gauge Theories

Supersymmetric quantum field theories have scalars→ a complicated vacuum
space of possible field vevs 〈φi〉, characterized by certain flat directions

• Vacuum configuration is any set of field values
{
φ0
i

}
such that V (φ0

i , φ̄
0
i ) = 0

V (φi, φ̄i) =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 +

1
2

∑
A

g2
A

(∑
i

φ†iT
Aφi

)2

where φi is the lowest (scalar) component of superfield Φi with charge qi
• The vacuum moduli spaceM is the space of all possible solutions φ0 to these

F and D-flatness conditions
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where φi is the lowest (scalar) component of superfield Φi with charge qi
• The vacuum moduli spaceM is the space of all possible solutions φ0 to these

F and D-flatness conditions

⇒ This manifoldM may have special structure that correlates with certain
phenomenological properties

• These structures need NOT be directly related to gauge invariance or discrete
symmetries – otherwise unexplained from traditional field theory perspective

• Identifying such structures may aid in top-down model building from string
compactification
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Approach via Algebraic Geometry

⇒ To every solution of the F-flatness conditions there exists a solution to the
D-flatness conditions in the orbit of the complexified gauge group GC:

M = F//GC

where F is the space of all F-flat field configurations
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Approach via Algebraic Geometry

⇒ To every solution of the F-flatness conditions there exists a solution to the
D-flatness conditions in the orbit of the complexified gauge group GC:

M = F//GC

where F is the space of all F-flat field configurations

⇒ Consider a theory defined by a certain gauge group and set of fields {Φi}

• Consider a minimal generating set of Gauge Invariant Operators (GIOs)
Dj = {rj({φi})}

• This defines a polynomial ring S = C [r1, . . . , rk]

• F-flatness corresponds to the Jacobian ideal 〈∂W/∂φi〉 in the polynomial ring
R = C [φ1, . . . , φn]

• The polynomial map D is a map from the quotient ring F ' R/〈∂W/∂φi〉 to
the ring S

• The image of this map givesM, defined as an affine variety in S:
M' Im

(
F D=GIO−→ S

)
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Computational Algorithm

Strategy: consider the set of gauge invariants, composed of monomials in the φi,
and back substitute solutions to the F-flatness conditions
⇒ This becomes an elimination problem, suitable for computational methods

INPUTS

• A theory defined by a superpotential W = W ({φi}) with i = 1, . . . , n

• Basis of GIOs {rj({φi})}, with j = 1, . . . , k

ALGORITHM

• Define the polynomial ring R = C[φi=1,...,n, yj=1,...,k]

• Consider the ideal I = 〈∂W∂φi ; yj − rj(φi)〉

• Eliminate all variables φi from I ⊂ R, giving the idealM in terms of yj

OUTPUT:M as an affine variety in C [y1, . . . , yk]

⇒ Algorithm equivalent to asking for all relations among the GIOs which satisfy
the F-flatness conditions (i.e. all possible syzygies among the coordinates)
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Restricting to MSSM Electroweak Sector

⇒Would ultimately like to study is the full, renormalizable MSSM superpotential

• Seven species of chiral superfields⇒ 49 scalar fields (n = 49)

• 973 total GIOs (k = 973)

⇒ Set vevs for uiL, uiR, diL, diR to zero by hand

⇒ This leaves n = 13 scalar fields and k = 22 GIOs

Operator Explicit Sum Index Number
LHu Lαi H

βεαβ i = 1, 2, 3 3
HuHd HαHβε

αβ – 1
LLe LiαL

j
βe
kεαβ i, j = 1, 2, 3; k = 1, . . . , j − 1 9

LHde LiαHβε
αβej i, j = 1, 2, 3 9

W = C0HuHd + C3
ijLiHdej = C0

∑
α,β

HαHβε
αβ +

∑
i,j

C3
ije

j
∑
α,β

LiαHβε
αβ

⇒ Flavor mixing matrices Cij generated randomly

• Dimensionality of some coefficients suppressed (irrelevant for topology)

J. Gray, YH. He, V. Jejjala and BDN, Phys. Lett., B638 (2006) 253
J. Gray, YH. He, V. Jejjala and BDN, Nucl. Phys., B750 (2006) 1

T. Gherghetta, C. Kolda, S. Martin, Nucl. Phys., B468 (1996) 37
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SU(2) Doublets and the Grassmannian Manifold

⇒ Consider a simple SU(2) theory with ND doublets ϕI (I = 1, . . . , ND)

• GIOs are monomials of the form

(ϕIϕJ) ≡ ϕαIϕ
β
Jεαβ

• Antisymmetric under species interchange I ↔ J

• Full set of relations among these GIOs are themselves redundant
−→ syzygies exist

• In particular, they are subject to the Plücker relations

(ϕIϕJ)(ϕKϕL) = (ϕIϕK)(ϕJϕL) + (ϕIϕL)(ϕKϕJ)

⇒ Therefore, moduli space not trivial (Cp), but instead the
Grassmannian manifold Gr(ND, 2), with dimension 2(ND − 2)

• D = {LL} −→ Gr(3, 2) ' P2

• D = {LL, LH} −→ Gr(4, 2)

• D = {LL, LH, LH, HH} −→ Gr(5, 2)
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Hypercharge and the Segrè Map

⇒ Some of the SU(2)-invariants ϕI have non-vanishing hypercharge

• Let χ+1
I and χ−1

J be SU(2)-invariants with hypercharge ±1

? EXAMPLE: χ+1
I = {LL, LH}

? EXAMPLE: χ−1
J = {e}

• SU(2)× U(1)Y -invariants built from (χ+1
I χ−1

J ) are subject to additional
constraint

(χ+1
I χ−1

J )(χ+1
K χ−1

L ) = (χ+1
I χ−1

L )(χ+1
K χ−1

J )

⇒ These equations define the Segrè embedding of P2 × P2 in P8

LL orLH e LLe orLHe
Gr(3, 2) = P2 × P2 −→ P8

[x0 : x1 : x2] [z0 : z1 : z2] → xizj

,

• An affine cone over a projective variety of dimension 4, realized as the
intersection of nine quadratic polynomials in P8

• Corresponding Hilbert series (of the first kind) is H(t) = 1+4t+t2

(1−t)5

• Palindromic numerator for H(t) indicates this manifold is Calabi-Yau
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Importance of the LLe Operator

⇒ The richness of the vacuum structure of the MSSM EW sector comes from
an unlikely place: the LLe operator

⇒ These operators are subject to the relations

(LiαL
j
βe
kεαβ)(Lmγ L

n
δ e
pεγδ) = (Lmα L

n
βe
kεαβ)(LiγL

j
δe
pεγδ)

• An operator with a common ei field is linearly proportional to another set of
operators with a common ej field (i 6= j).

• With the labelling yi+j−2+3(k−1) = LiαL
j
βe
kεαβ, the above relations become the

ideal

〈y1y5 − y2y4, y1y6 − y3y4, y2y6 − y3y5,

y1y8 − y2y7, y1y9 − y3y7, y2y9 − y3y8,

y4y8 − y5y7, y4y9 − y6y7, y5y9 − y6y8〉

• These are precisely the nine quadratics that define the Segrè variety
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Importance of the LLe Operator

⇒ The nature of these relations, and the resulting manifold, depends crucially
on the number of generations Nf

• Nf = 1, no LLe operator possible. Moduli space is empty

• Nf = 2, only two LLe operators and no relation possible: M = C2

• Nf = 3,M is the Segrè variety

⇒ For Nf ≥ 4, there are now new relations, such as

(LiαL
j
βε
αβ)(LkγL

`
δε
γδ) + (LiαL

k
βε
αβ)(L`γL

j
δε
γδ) + (LiαL

`
βε
αβ)(LjγL

k
δε
γδ) = 0

• These relations are themselves redundant – a rich set of syzygies

• Now the Grassmanian no longer degenerates to projective space, yielding the
Segrè variety

• Varieties are Calabi-Yau spaces that are not explicit toric varieties

⇒ In general, the LLe moduli space is (the affine cone over) the Grassmanian
Gr(Nf , 2)× PNf−1 with dimension 3Nf − 4
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MSSM Electroweak Sector: No Superpotential

⇒ If we start with W = 0, we are studying the moduli space determined solely by
the relations among various GIOs

• Bilinears only {LH, HH}: no relations,M = C4

• LLe OR LHe: M is the Segrè variety

• LLe AND LHe: M is a seven-dimensional variety, defined by

{LL, LH} e {LLeLHe}
Gr(4, 2) × P2 −→ P17

[x0 : x1 : x2 : x3 : x4 : x5] [z0 : z1 : z2] → xizj

subject to a single Plücker relation, with H(t) = (1 + 11t+ 15t2 + 3t3)/(1− t)7

• All GIOs {LH, HH LLe, LHe}: M a nine-dimension Calabi-Yau, defined by

{LL, LH, LH, HH} e {LLeLHe,LH,HH}
Gr(5, 2) × P2 −→ C22

[x0 − x5 : x6 : x7 : x8 : x9] [z0 : z1 : z2] → (xizj, x6, x7, x8, x9)

subject to five Plücker relations, with H(t) = (1 + 13t+ 28t2 + 13t3 + t4)/(1− t)9
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MSSM with Charged Leptons

W = C0
∑
α,β

HαHβε
αβ +

∑
i,j

C3
ij

∑
α,β

LiαHβe
jεαβ

⇒ F-term equations force the following combinations to vanish

• FH: 0 = C0Hβε
αβ

• FH: 0 = C0Hαε
αβ +

∑
i,j

C3
ijL

i
αe
jεαβ

• FLj: 0 = C3
ije

iHβε
αβ

• Fei: 0 =
∑
i,j

C3
ijL

j
αHβε

αβ

⇒ Summary of these constraints:

• H vanishes, LHe, HH not involved in vacuum manifold

• FH equation relates LH and LLe operators in the vacuum

⇒ Therefore,M determined solely by the LLe relations⇒ the Segrè embedding

⇒ This only happens for Nf = 3 and Nh = 1!
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MSSM with Seesaw Neutrinos

⇒ Add in three right-handed neutrinos: now 16 total scalar fields, 25 GIOs

W = C
0

X
α,β

HαHβεαβ +
X
i,j

C
3
ij

X
α,β

L
i
αHβe

j
ε
αβ

+
X
i,j

C
4
ijν

i
ν
j

+
X
i,j

C
5
ij

X
α,β

L
j
αHβν

i
ε
αβ

⇒ F-term equations force the following combinations to vanish

• FH: 0 =
∑
i,j

C5
ijν

iLjαε
αβ − C0Hαε

αβ

• FH: 0 = C0Hαε
αβ +

∑
i,j

C3
ijL

i
αe
jεαβ

• FLj: 0 =
∑
i,j

C5
ijν

iHβε
αβ + C3

ije
iHβε

αβ

• Fνi: 0 =
∑
j C

4
ijν

i +
∑
i,j

C5
ijL

j
αHβε

αβ

• Fei: 0 =
∑
i,j

C3
ijL

j
αHβε

αβ
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MSSM with Seesaw Neutrinos

⇒ Summary of these equations

• GIOs ν, LH, HH and LHe all vanish in the vacuum

• Vacuum manifold again determined by LLe operators, but we do NOT obtain
the Segrè variety

⇒ New constraint emerges from FH equation:
∑
ij C

3
ije

iLjαL
k
βε
αβ = 0

• These are three (free k index) new linear relations on the LLe operators

• The defining ideal is modified to

〈y1y5 − y2y4, y1y6 − y3y4, y2y6 − y3y5, y1y8 − y2y7

y1y9 − y3y7, y2y9 − y3y8, y4y8 − y5y7, y4y9 − y6y7

y5y9 − y6y8, y1 − y9, y2 − y6, y4 − y8〉

⇒ Defines a variety of dimension three; choose d.o.f. to be [y3 : y5 : y7]

y1→ x0x2; y2 → x0x1; y3 → x2
0;

y4 → x1x2; y5 → x2
1; y1 → x1x0

y7 → x2
2; y8 → x2x1; y9 → x2x0

⇒ This is the Veronese embedding of P2 into P5
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MSSM with Seesaw Neutrinos

⇒ How did this happen?

• New relation
∑
ij C

3
ije

iLjαL
k
βε
αβ = 0 effectively identifies LL coordinates to e

coordinates

• Thus, the two P2 factors in the Segrè embedding are now identified

LL e LLe
P2 × P2 −→ P8

[x0 : x1 : x2] [z0 : z1 : z2] → xizj

,

becomes simply

P2 → P5

[x0 : x1 : x2] → [x2
0 : x0x1 : x2

1 : x0x2 : x1x2 : x2
2] ,

⇒ A similar identification between the variables of Gr(4, 2) and P3 occurs for the
case of Nf = 4 with seesaw neutrinos

• But here the identification is not complete, and a Severi variety does not
emerge
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MSSM with Dirac Neutrinos

⇒ Something different occurs in cases where the Majorana mass term is absent

W = C0
∑
α,β

HαHβεαβ +
∑
i,j

C3
ij

∑
α,β

LiαHβe
jεαβ +

∑
i,j

C5
ij

∑
α,β

LjαHβν
iεαβ

• FH = 0 still gives
∑
ij C

3
ije

iLjαL
k
βε
αβ = 0

? Effectively identifies LL coordinates to e coordinates
? Would seem to imply a Veronese variety

• Fνi = 0 now implies
∑
ij C

5
ijν

iLjαL
k
βe
`εα,β = 0

? Would-be νi d.o.f. now related back to the remaining LLe d.o.f.
? So this is a Veronese-like embedding into a higher-dimensional space

⇒We refer to it as the “deformed Veronese” variety, which is defined by

LL ' e ν {ν, LLe}
P2 × C −→ C9

[x0 : x1 : x2] [λ] → [x2
0 : x0x1 : x2

1 : x0x2 : x1x2 : x2
2 : λx0 : λx1 : λx2]

,

which is a non-compact, 4D toric CY with H(t) = (1 + 5t+ t2)/(1− t)4
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Example of Outcomes with Bilinear Deformations

⇒ Inclusion of both gauge-invariant trilinears gives a trivial background

⇒ Computation of vacuum manifoldM for various bilinear deformations

Deformation LHe LLe LHe+ LHν LLe+ LHν

none Segrè ×C4 def. Ver. ×C def. Ver. ×C (10|6, 14|3623)
+HH Segrè point def. Ver. C3

+LH C conifold def. Ver. ×C (10|6, 14|3623)
+LH +HH C point def. Ver. C3

+ ν2 Segrè ×C4 def. Ver. ×C Veronese ×C Veronese ×C
+ ν2 +HH Segrè point Veronese ∅
+ ν2 + LH C conifold conifold ×C2 conifold ×C2

+ ν2 + LH +HH C point conifold ×C2 ∅

⇒ A systematic treatment of the nature of R-parity from the point of view of
geometry is now underway

• “Interesting” geometry (non-trivial structure and small dimensionality) seems
to prefer the “natural” R-parity assignment

• Seesaw mechanism plus µ-term seems to demand the “natural” R-parity
assignment
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Future Prospects and Potential

⇒ Ultimately we expect string theory to motivate/identify the connection between
compactification geometry and geometry of the gauge theory vacuum space

• For example, the MSSM likes the Veronese embedding

• The Veronese variety is a Severi variety with underlying SU(3) isometry in
which two P2 factors are identified

• This is getting closer to the sorts of data that can be sought after in large
classes of string compactifications
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• For example, the MSSM likes the Veronese embedding

• The Veronese variety is a Severi variety with underlying SU(3) isometry in
which two P2 factors are identified

• This is getting closer to the sorts of data that can be sought after in large
classes of string compactifications

⇒ Vacuum geometry cares about both the superpotential and the GIO set which
defines the polynomial ring

• Two theories with the same W but different GIO sets give different moduli
spaces!

• Example: imposing R = (−1)−L and U(1)L symmetries do not give the same
answers for the MSSM superpotential

• There may be a geometrical origin for R-parity conservation that is not
obviously due to field theory symmetries
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Future Prospects and Potential

⇒ Ultimately we expect string theory to motivate/identify the connection between
compactification geometry and geometry of the gauge theory vacuum space

• For example, the MSSM likes the Veronese embedding

• The Veronese variety is a Severi variety with underlying SU(3) isometry in
which two P2 factors are identified

• This is getting closer to the sorts of data that can be sought after in large
classes of string compactifications

⇒ Vacuum geometry cares about both the superpotential and the GIO set which
defines the polynomial ring

• Two theories with the same W but different GIO sets give different moduli
spaces!

• Example: imposing R = (−1)−L and U(1)L symmetries do not give the same
answers for the MSSM superpotential

• There may be a geometrical origin for R-parity conservation that is not
obviously due to field theory symmetries

⇒ Finally, non-trivial geometries require Nf ≥ 3. Small dim(M) requires Nf < 4.
Three generations are special.
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Interlude on Complexified Gauge Groups

⇒ N = 1 SUSY action on previous page has very large symmetry group

Φi → g · Φi ; eV → (g†)−1eV g−1

where g = eiΛ and Λ is a chiral superfield

⇒ Normally we don’t see all of this invariance because we work in
Wess-Zumino gauge

Va = −θσµθ̄vµa + iθ2θ̄λa − iθ̄2θλa +
1
2
θ2θ̄2Da

• Residual gauge symmetry is just the usual one with real parameters

• In this gauge the D-flatness condition is Da =
∑
i qiφ

†
itaφi = 0

• NOTE: This constraint is not holomorphic in the fields φi
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⇒ N = 1 SUSY action on previous page has very large symmetry group

Φi → g · Φi ; eV → (g†)−1eV g−1

where g = eiΛ and Λ is a chiral superfield

⇒ Normally we don’t see all of this invariance because we work in
Wess-Zumino gauge

Va = −θσµθ̄vµa + iθ2θ̄λa − iθ̄2θλa +
1
2
θ2θ̄2Da

• Residual gauge symmetry is just the usual one with real parameters

• In this gauge the D-flatness condition is Da =
∑
i qiφ

†
itaφi = 0

• NOTE: This constraint is not holomorphic in the fields φi

⇒ Now imagine choosing a less restrictive gauge such that

Va = Ca − θσµθ̄vµa + iθ2θ̄λa − iθ̄2θλa +
1
2
θ2θ̄2Da

Buccella, Derendinger, Ferrara and Savoy, Phys. Lett., B115 (1982)
C. Procesi and G. Schwarz, Phys. Lett., B161 (1985)

M. Luty and W. Taylor, Phys. Rev., D53 (1996)
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Interlude on Complexified Gauge Groups

• Residual gauge symmetry is now the complexification GC of group G
• The D-flatness condition in this gauge becomes

∂

∂Ca

∑
i

φ†ie
Cφi = 0

⇒ Now imagine some φ0
i which satisfies the above and ∂W/∂φi|φi=φ0

i
.

• Use the extra gauge invariance to define φ̂0
i ≡ eC/2φ0

i

∂

∂Ĉa

∑
i

(φ̂0
i )
†eĈφ̂0

i =
∂

∂Ĉa

∑
i

X(eĈ/2φ̂0
i ) = 0; X(φ) ≡ φ†φ

• F-flatness conditions holomorphic and invariant under GC

• Can always perform such a transformation to take Ca → 0, giving an F- and
D-flat solution in WZ gauge

• The D-flatness conditions are now trivial: just a gauge-fixing condition!

⇒ Gauge invariant holomorphic operators form a basis for these D-orbits



3
Attacking the MSSM

⇒ Seven species of chiral superfields⇒ 49 scalar fields (n = 49)
⇒ All 973 possible GIOs tabulated below (k = 973)

Operator Explicit Sum Index Number

LHu Lαi H
βεαβ i = 1, 2, 3 3

HuHd Hα(Hd)βε
αβ NA 1

LLe LiαL
j
β
ekεαβ i, j = 1, 2, 3; k = 1, . . . , j − 1 9

LHde Liα(Hd)βe
jεαβ i, j = 1, 2, 3 9

udd uiad
j
b
dkcε

abc i, j = 1, 2, 3; k = 1, . . . , j − 1 9
QdL Qia,αd

j
aL

k
βε
αβ i, j, k = 1, 2, 3 27

QuHu Qia,αu
j
a(Hu)βε

αβ i, j = 1, 2, 3 9
QdHd Qia,αd

j
a(Hd)βε

αβ i, j = 1, 2, 3 9

QQQL Qia,βQ
j
b,γ
Qkc,αL

l
δε
abcεβγεαδ

i, j, k, l = 1, 2, 3; i 6= k, j 6= k,
j < i, (i, j, k) 6= (3, 2, 1)

24

QuQd Qia,αu
j
aQ

k
b,βd

l
bε
αβ i, j, k, l = 1, 2, 3 81

QuLe Qia,αu
j
aL

k
βe
lεαβ i, j, k, l = 1, 2, 3 81

uude uiau
j
b
dkce

lεabc i, j, k, l = 1, 2, 3; j < i 27

QQQHd Qia,βQ
j
b,γ
Qkc,α(Hd)δε

abcεβγεαδ
i, j, k, l = 1, 2, 3; i 6= k, j 6= k,
j < i, (i, j, k) 6= (3, 2, 1)

8

QuHde Qia,αu
j
a(Hd)βe

kεαβ i, j, k = 1, 2, 3 27

dddLL diad
j
b
dkcL

m
α L

n
βε
abcεijkε

αβ m,n = 1, 2, 3; n < m 3

i, j, k = 1, 2, 3↔ flavor indices, a, b, c = 1, 2, 3↔ color indices, α, β, γ = 1, 2↔ SU(2)L indices

T. Gherghetta, C. Kolda, S. Martin, Nucl. Phys., B468 (1996)



4
Attacking the MSSM

Operator Explicit Sum Index Number

uuuee uiau
j
b
ukce

menεabcεijk m,n = 1, 2, 3; n ≤ m 6

QuQue Qia,αu
j
aQ

k
b,βu

m
b e

nεαβ
i, j, k,m, n = 1, 2, 3;
as{(i, j), (k,m)} 108

QQQQu Qia,βQ
j
b,γ
Qkc,αQ

m
f,δu

n
f ε
abcεβγεαδ

i, j, k,m = 1, 2, 3; i 6= m,
j 6= m, j < i,
(i, j, k) 6= (3, 2, 1)

72

dddLHd diad
j
b
dkcL

m
α (Hd)βε

abcεijkεαβ m = 1, 2, 3 3

uudQdHu uiau
j
b
dkcQ

m
f,αd

n
f (Hu)βε

abcεαβ i, j, k,m = 1, 2, 3; j < i 81

(QQQ)4LLHu (QQQ)
αβγ
4 Lmα L

n
β(Hu)γ m,n = 1, 2, 3; n ≤ m 6

(QQQ)4LHuHd (QQQ)
αβγ
4 Lmα (Hu)β(Hd)γ m = 1, 2, 3 3

(QQQ)4HuHdHd (QQQ)
αβγ
4 (Hu)α(Hd)β(Hd)γ NA 1

(QQQ)4LLLe (QQQ)
αβγ
4 Lmα L

n
βL

p
γe
q m,n, p, q = 1, 2, 3;

n ≤ m; p ≤ n 27

uudQdQd uiau
j
b
dkcQ

m
f,αd

n
fQ

p
g,β
dqgε

abcεαβ
i, j, k,m, n, p, q = 1, 2, 3;
j < i, as{(m,n), (p, q)} 324

(QQQ)4LLHde (QQQ)
αβγ
4 Lmα L

n
β(Hd)γe

p m,n, p = 1, 2, 3; n ≤ m 9

(QQQ)4LHdHde (QQQ)
αβγ
4 Lmα (Hd)β(Hd)γe

n m,n = 1, 2, 3 9

(QQQ)4HdHdHde (QQQ)
αβγ
4 (Hd)α(Hd)β(Hd)γe

m m = 1, 2, 3 3

In the above we defined [(QQQ)4]αβγ = Qia,αQ
j
b,β
Qkc,γε

abcεijk

⇒ The reason the problem is unsolved after two decades...
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Hilbert Series

⇒ Hilbert series provides technology for enumerating GIOs in a supersymmetric
quantum field theory

⇒ For a varietyM⊂ C [y1, . . . , yk], the Hilbert series is the formal series

H(t) =
∞∑

n=−∞
dimMn t

n =
P (t)

(1− t)d

• Hilbert series encodes information about the chiral ring and geometric
features of the variety

• dim(Mn) is the number of independent polynomials of degree n onM

⇒ A palindromic Hilbert Series obeys H(t) =
∑N
k=0 akt

k with ak = aN−k

• By a theorem of Stanley, the corresponding algebraic variety is Calabi-Yau
(in the sense of a trivial canonical sheaf)
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Segrè Embedding Explicitly

To see the Segrè embedding explicitly let xi be the coordinates of one P2

(representing the three independent LL operators), and let zi be coordinates of
the second P2 (representing the three independent ei operators)

⇒ The Segrè embedding is given by

P2 × P2 −→ P8

[x0 : x1 : x2] [z0 : z1 : z2] xizj
,

⇒ The LLe syzygies are then recovered when we identify the coordinates
yi of P8 via

y1 → z0x2, y2 → z0x1, y3 → z0x0,

y4 → z1x2, y5 → z1x1, y6 → z1x0,

y7 → z2x2, y8 → z2x1, y9 → z2x0,
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Severi Varieties

⇒ Any smooth non-degenerate algebraic variety X of (complex) dimension n
embedded into Pm with m < 3

2n+ 2 has the property that its secant variety
Sec(X) is equal to Pm [Hartshorne-Zak]

• Limiting case where m = 3
2n+ 2 and Sec(X) 6= Pn is a Severi variety

⇒ All Severi varieties have been classified [Zak]; there are only four:

1. n = 2: The Veronese surface P2 ↪→ P5

2. n = 4: The Segrè variety P2 × P2 ↪→ P8;

3. n = 8: The Grassmannian Gr(6, 2) of two-planes in C6, embedded into P14

4. n = 16: The Cartan variety of the orbit of the highest weight vector of a certain
non-trivial representation of E6

⇒ Only the first two cases involve products of projective spaces
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Severi Varieties

⇒ There exist precisely four division algebras: the real numbers R, the complex
numbers C, the quaternions H, and the octonions O

⇒ If we imagine the projective planes formed from each of these division
algebras, the complexification of these spaces are precisely homeomorphic
to the four Severi varieties

Projective Plane Severi Variety Homogenous Space
RP2 CP2 SU(3)/S(U(1)× U(2))
CP2 CP2 × CP2 SU(3)2/S(U(1)× U(2))2

HP2 Gr(6, 2) SU(6)/S(U(2)× U(4))
OP2 S E6/Spin(10)× U(1)
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One Generation MSSM

⇒ Drop all flavor indices (i = j = k = 1) so now n = 9

⇒ There are now only 9 GIOs (one of each variety)

LHu, HuHd, QdL, QuHu, QdHd, LHde, QuQd, QuLe, QuHde

⇒ Simplified superpotential

W0 = λ0
∑
α,β

Hα
uH

β
d εαβ + λ1

∑
α,β,a

Qa,α(Hu)βuaεαβ

+λ2
∑
α,β,a

Qa,α(Hd)βdaεαβ + λ3
∑
α,β

Lα(Hd)βeεαβ

⇒ Computation of vacuum manifoldM for various deformations

W0+? dim(M) M
0 1 C

LHu 0 point
QdL 0 point

W0+? dim(M) M
QuQd 1 C
QuLe 1 C
QuHde 1 C


