The Geometry of Generations

Brent D. Nelson

String Phenomenology 2015, Madrid

[1402.3312] with Y. H. He, V. Jejjala, <u>C. Matti</u> [1408.6841] with Y. H. He, V. Jejjala, <u>C. Matti</u> and M. Stillman [1506.soon] with Y. H. He, V. Jejjala, <u>C. Matti</u>

Vacuum Moduli Spaces of Gauge Theories

Supersymmetric quantum field theories have scalars \rightarrow a complicated vacuum space of possible field vevs $\langle \phi_i \rangle$, characterized by certain flat directions

• Vacuum configuration is any set of field values $\{\phi_i^0\}$ such that $V(\phi_i^0, \bar{\phi}_i^0) = 0$

$$V(\phi_i, \bar{\phi}_i) = \sum_i \left| \frac{\partial W}{\partial \phi_i} \right|^2 + \frac{1}{2} \sum_A g_A^2 \left(\sum_i \phi_i^{\dagger} T^A \phi_i \right)^2$$

where ϕ_i is the lowest (scalar) component of superfield Φ_i with charge q_i

• The vacuum moduli space \mathcal{M} is the space of all possible solutions ϕ^0 to these F and D-flatness conditions

Vacuum Moduli Spaces of Gauge Theories

Supersymmetric quantum field theories have scalars \rightarrow a complicated vacuum space of possible field vevs $\langle \phi_i \rangle$, characterized by certain flat directions

• Vacuum configuration is any set of field values $\{\phi_i^0\}$ such that $V(\phi_i^0, \bar{\phi}_i^0) = 0$

$$V(\phi_i, \bar{\phi}_i) = \sum_i \left| \frac{\partial W}{\partial \phi_i} \right|^2 + \frac{1}{2} \sum_A g_A^2 \left(\sum_i \phi_i^{\dagger} T^A \phi_i \right)^2$$

where ϕ_i is the lowest (scalar) component of superfield Φ_i with charge q_i

- The vacuum moduli space \mathcal{M} is the space of all possible solutions ϕ^0 to these F and D-flatness conditions
- \Rightarrow This manifold ${\cal M}$ may have special structure that correlates with certain phenomenological properties
 - These structures need NOT be directly related to gauge invariance or discrete symmetries – otherwise unexplained from traditional field theory perspective
 - Identifying such structures may aid in top-down model building from string compactification

Approach via Algebraic Geometry

 \Rightarrow To every solution of the F-flatness conditions there exists a solution to the D-flatness conditions in the orbit of the complexified gauge group \mathcal{G}^C :

$$\mathcal{M}=\mathcal{F}//\mathcal{G}^{C}$$

where ${\mathcal F}$ is the space of all F-flat field configurations

Approach via Algebraic Geometry

⇒ To every solution of the F-flatness conditions there exists a solution to the D-flatness conditions in the orbit of the complexified gauge group \mathcal{G}^C :

$$\mathcal{M}=\mathcal{F}//\mathcal{G}^{C}$$

where ${\mathcal F}$ is the space of all F-flat field configurations

- \Rightarrow Consider a theory defined by a certain gauge group and set of fields $\{\Phi_i\}$
- Consider a minimal generating set of Gauge Invariant Operators (GIOs) $D_j = \{r_j(\{\phi_i\})\}$
- This defines a polynomial ring $S = \mathbb{C}[r_1, \ldots, r_k]$
- F-flatness corresponds to the Jacobian ideal $\langle \partial W / \partial \phi_i \rangle$ in the polynomial ring $R = \mathbb{C} [\phi_1, \dots, \phi_n]$
- The polynomial map D is a map from the quotient ring $\mathcal{F}\simeq R/\langle\partial W/\partial\phi_i\rangle$ to the ring S
- The image of this map gives \mathcal{M} , defined as an affine variety in S: $\mathcal{M} \simeq \operatorname{Im} \left(\mathcal{F} \stackrel{D=GIO}{\longrightarrow} S \right)$

Strategy: consider the set of gauge invariants, composed of monomials in the ϕ_i , and back substitute solutions to the F-flatness conditions

 \Rightarrow This becomes an elimination problem, suitable for computational methods

INPUTS

- A theory defined by a superpotential $W = W(\{\phi_i\})$ with i = 1, ..., n
- Basis of GIOs $\{r_j(\{\phi_i\})\}$, with $j = 1, \dots, k$

ALGORITHM

- Define the polynomial ring $R = \mathbb{C}[\phi_{i=1,...,n}, y_{j=1,...,k}]$
- Consider the ideal $I = \langle \frac{\partial W}{\partial \phi_i}; y_j r_j(\phi_i) \rangle$
- Eliminate all variables ϕ_i from $I \subset R$, giving the ideal ${\mathcal M}$ in terms of y_j

OUTPUT: \mathcal{M} as an affine variety in $\mathbb{C}[y_1, \ldots, y_k]$

⇒ Algorithm equivalent to asking for all relations among the GIOs which satisfy the F-flatness conditions (i.e. all possible syzygies among the coordinates)

Restricting to MSSM Electroweak Sector

- \Rightarrow Would ultimately like to study is the full, renormalizable MSSM superpotential
- Seven species of chiral superfields \Rightarrow 49 scalar fields (n = 49)
- 973 total GIOs (k = 973) T. Gherghetta, C. Kolda, S. Martin, Nucl. Phys., B468 (1996) 37
- \Rightarrow Set vevs for $u_L^i,\,u_R^i,\,d_L^i,\,d_R^i$ to zero by hand
- ⇒ This leaves n = 13 scalar fields and k = 22 GIOs J. Gray, YH. He, V. Jejjala and BDN, Phys. Lett., B638 (2006) 253 J. Gray, YH. He, V. Jejjala and BDN, Nucl. Phys., B750 (2006) 1

Operator	Explicit Sum	Index	Number
LH_u	$L_i^{\alpha} H^{\beta} \epsilon_{\alpha\beta}$	i = 1, 2, 3	3
$H_u H_d$	$H_{\alpha}\overline{H}_{\beta}\epsilon^{\alpha\beta}$		1
LLe	$L^i_{lpha}L^j_{eta}e^k\epsilon^{lphaeta}$	$i, j = 1, 2, 3; k = 1, \dots, j - 1$	9
LH_de	$L^i_{\alpha}\overline{H}_{\beta}\epsilon^{\alpha\beta}e^j$	i, j = 1, 2, 3	9

$$W = C^0 H_u H_d + C^3_{ij} L_i H_d e_j = C^0 \sum_{\alpha,\beta} H_\alpha \overline{H}_\beta \epsilon^{\alpha\beta} + \sum_{i,j} C^3_{ij} e^j \sum_{\alpha,\beta} L^i_\alpha \overline{H}_\beta \epsilon^{\alpha\beta}$$

- \Rightarrow Flavor mixing matrices C_{ij} generated randomly
- Dimensionality of some coefficients suppressed (irrelevant for topology)

SU(2) Doublets and the Grassmannian Manifold

- \Rightarrow Consider a simple SU(2) theory with N_D doublets φ_I ($I = 1, \ldots, N_D$)
- GIOs are monomials of the form

$$(\varphi_I \varphi_J) \equiv \varphi_I^{\alpha} \varphi_J^{\beta} \epsilon_{\alpha\beta}$$

- Antisymmetric under species interchange $I \leftrightarrow J$
- Full set of relations among these GIOs are themselves redundant
 —> syzygies exist
- In particular, they are subject to the Plücker relations

$$(\varphi_I \varphi_J)(\varphi_K \varphi_L) = (\varphi_I \varphi_K)(\varphi_J \varphi_L) + (\varphi_I \varphi_L)(\varphi_K \varphi_J)$$

 \Rightarrow Therefore, moduli space not trivial (\mathbb{C}^p), but instead the Grassmannian manifold $Gr(N_D, 2)$, with dimension $2(N_D - 2)$

•
$$D = \{LL\} \longrightarrow \operatorname{Gr}(3,2) \simeq \mathbb{P}^2$$

- $D = \{LL, \, L\overline{H}\} \longrightarrow \operatorname{Gr}(4,2)$
- $D = \{LL, \, L\overline{H}, \, LH, \, H\overline{H}\} \longrightarrow \operatorname{Gr}(5,2)$

Hypercharge and the Segrè Map

 \Rightarrow Some of the SU(2)-invariants φ_I have non-vanishing hypercharge

• Let χ_I^{+1} and χ_J^{-1} be SU(2)-invariants with hypercharge ± 1

* EXAMPLE:
$$\chi_{I_1}^{+1} = \{LL, L\overline{H}\}$$

EXAMPLE:
$$\chi_J^{-1} = \{e\}$$

+

• $SU(2) \times U(1)_Y$ -invariants built from $(\chi_I^{+1}\chi_J^{-1})$ are subject to additional constraint

$$(\chi_I^{+1}\chi_J^{-1})(\chi_K^{+1}\chi_L^{-1}) = (\chi_I^{+1}\chi_L^{-1})(\chi_K^{+1}\chi_J^{-1})$$

 \Rightarrow These equations define the Segrè embedding of $\mathbb{P}^2\times\mathbb{P}^2$ in \mathbb{P}^8

$$\begin{array}{cccc} LL \, \mathrm{or} \, L\overline{H} & e & LLe \, \mathrm{or} \, L\overline{H}e \\ \mathrm{Gr}(3,2) = \mathbb{P}^2 & \times & \mathbb{P}^2 & \longrightarrow & \mathbb{P}^8 \\ [x_0:x_1:x_2] & [z_0:z_1:z_2] & \to & x_i z_j \end{array},$$

- An affine cone over a projective variety of dimension 4, realized as the intersection of nine quadratic polynomials in P⁸
- Corresponding Hilbert series (of the first kind) is $H(t) = \frac{1+4t+t^2}{(1-t)^5}$
- Palindromic numerator for H(t) indicates this manifold is Calabi-Yau

Importance of the *LLe* Operator

 \Rightarrow The richness of the vacuum structure of the MSSM EW sector comes from an unlikely place: the *LLe* operator

 \Rightarrow These operators are subject to the relations

 $(L^{i}_{\alpha}L^{j}_{\beta}e^{k}\epsilon^{\alpha\beta})(L^{m}_{\gamma}L^{n}_{\delta}e^{p}\epsilon^{\gamma\delta}) = (L^{m}_{\alpha}L^{n}_{\beta}e^{k}\epsilon^{\alpha\beta})(L^{i}_{\gamma}L^{j}_{\delta}e^{p}\epsilon^{\gamma\delta})$

- An operator with a common e^i field is linearly proportional to another set of operators with a common e^j field $(i \neq j)$.
- With the labelling $y_{i+j-2+3(k-1)} = L^i_{\alpha} L^j_{\beta} e^k \epsilon^{\alpha\beta}$, the above relations become the ideal

 $\langle y_1y_5 - y_2y_4, y_1y_6 - y_3y_4, y_2y_6 - y_3y_5, \ y_1y_8 - y_2y_7, y_1y_9 - y_3y_7, y_2y_9 - y_3y_8, \ y_4y_8 - y_5y_7, y_4y_9 - y_6y_7, y_5y_9 - y_6y_8 \rangle$

These are precisely the nine quadratics that define the Segrè variety

- \Rightarrow The nature of these relations, and the resulting manifold, depends crucially on the number of generations N_f
- $N_f = 1$, no *LLe* operator possible. Moduli space is empty
- $N_f = 2$, only two LLe operators and no relation possible: $\mathcal{M} = \mathbb{C}^2$
- $N_f = 3$, \mathcal{M} is the Segrè variety

 \Rightarrow For $N_f \ge 4$, there are now new relations, such as

 $(L^{i}_{\alpha}L^{j}_{\beta}\epsilon^{\alpha\beta})(L^{k}_{\gamma}L^{\ell}_{\delta}\epsilon^{\gamma\delta}) + (L^{i}_{\alpha}L^{k}_{\beta}\epsilon^{\alpha\beta})(L^{\ell}_{\gamma}L^{j}_{\delta}\epsilon^{\gamma\delta}) + (L^{i}_{\alpha}L^{\ell}_{\beta}\epsilon^{\alpha\beta})(L^{j}_{\gamma}L^{k}_{\delta}\epsilon^{\gamma\delta}) = 0$

- These relations are themselves redundant a rich set of syzygies
- Now the Grassmanian no longer degenerates to projective space, yielding the Segrè variety
- Varieties are Calabi-Yau spaces that are not explicit toric varieties
- ⇒ In general, the *LLe* moduli space is (the affine cone over) the Grassmanian $\operatorname{Gr}(N_f, 2) \times \mathbb{P}^{N_f 1}$ with dimension $3N_f 4$

MSSM Electroweak Sector: No Superpotential

- \Rightarrow If we start with W = 0, we are studying the moduli space determined solely by the relations among various GIOs
- Bilinears only $\{LH, H\overline{H}\}$: no relations, $\mathcal{M} = \mathbb{C}^4$
- $LLe \text{ OR } L\overline{H}e$: \mathcal{M} is the Segrè variety
- LLe AND $L\overline{H}e$: \mathcal{M} is a seven-dimensional variety, defined by

$$\{LL, L\overline{H}\} \qquad e \qquad \{LLe \ L\overline{H}e\} \\ \operatorname{Gr}(4,2) \qquad \times \qquad \mathbb{P}^2 \qquad \longrightarrow \qquad \mathbb{P}^{17} \\ [x_0:x_1:x_2:x_3:x_4:x_5] \qquad [z_0:z_1:z_2] \qquad \to \qquad x_iz_j$$

subject to a single Plücker relation, with $H(t) = (1 + 11t + 15t^2 + 3t^3)/(1 - t)^7$ • All GIOs {LH, $H\overline{H}LLe$, $L\overline{H}e$ }: \mathcal{M} a nine-dimension Calabi-Yau, defined by

$$\{LL, L\overline{H}, LH, H\overline{H}\} \qquad e \qquad \{LLe \, L\overline{H}e, LH, H\overline{H}\}$$

$$Gr(5,2) \qquad \times \qquad \mathbb{P}^2 \qquad \longrightarrow \qquad \mathbb{C}^{22}$$

$$[x_0 - x_5 : x_6 : x_7 : x_8 : x_9] \qquad [z_0 : z_1 : z_2] \qquad \rightarrow \qquad (x_i z_j, x_6, x_7, x_8, x_9)$$

subject to five Plücker relations, with $H(t) = (1+13t+28t^2+13t^3+t^4)/(1-t)^9$

MSSM with Charged Leptons

10

$$W = C^0 \sum_{\alpha,\beta} H_\alpha \overline{H}_\beta \epsilon^{\alpha\beta} + \sum_{i,j} C^3_{ij} \sum_{\alpha,\beta} L^i_\alpha \overline{H}_\beta e^j \epsilon^{\alpha\beta}$$

 \Rightarrow F-term equations force the following combinations to vanish

• F_H : $0 = C^0 \overline{H}_\beta \epsilon^{\alpha\beta}$ • $F_{\overline{H}}$: $0 = C^0 H_\alpha \epsilon^{\alpha\beta} + \sum_{i,j} C^3_{ij} L^i_\alpha e^j \epsilon^{\alpha\beta}$ • F_{L^j} : $0 = C^3_{ij} e^i \overline{H}_\beta \epsilon^{\alpha\beta}$ • F_{e^i} : $0 = \sum_{i,j} C^3_{ij} L^j_\alpha \overline{H}_\beta \epsilon^{\alpha\beta}$

- \Rightarrow Summary of these constraints:
- \overline{H} vanishes, $L\overline{H}e, H\overline{H}$ not involved in vacuum manifold
- $F_{\overline{H}}$ equation relates LH and LLe operators in the vacuum

 \Rightarrow Therefore, \mathcal{M} determined solely by the LLe relations \Rightarrow the Segrè embedding

 \Rightarrow This only happens for $N_f = 3$ and $N_h = 1!$

 \Rightarrow Add in three right-handed neutrinos: now 16 total scalar fields, 25 GIOs

$$W = C^{0} \sum_{\alpha,\beta} H_{\alpha} \overline{H}_{\beta} \epsilon \alpha \beta + \sum_{i,j} C^{3}_{ij} \sum_{\alpha,\beta} L^{i}_{\alpha} \overline{H}_{\beta} e^{j} \epsilon^{\alpha\beta} + \sum_{i,j} C^{4}_{ij} \nu^{i} \nu^{j} + \sum_{i,j} C^{5}_{ij} \sum_{\alpha,\beta} L^{j}_{\alpha} H_{\beta} \nu^{i} \epsilon^{\alpha\beta}$$

 \Rightarrow F-term equations force the following combinations to vanish

•
$$F_H$$
: $0 = \sum_{i,j} C_{ij}^5 \nu^i L_{\alpha}^j \epsilon^{\alpha\beta} - C^0 \overline{H}_{\alpha} \epsilon^{\alpha\beta}$
• $F_{\overline{H}}$: $0 = C^0 H_{\alpha} \epsilon^{\alpha\beta} + \sum_{i,j} C_{ij}^3 L_{\alpha}^i e^j \epsilon^{\alpha\beta}$
• F_{Lj} : $0 = \sum_{i,j} C_{ij}^5 \nu^i H_{\beta} \epsilon^{\alpha\beta} + C_{ij}^3 e^i \overline{H}_{\beta} \epsilon^{\alpha\beta}$
• $F_{\nu i}$: $0 = \sum_j C_{ij}^4 \nu^i + \sum_{i,j} C_{ij}^5 L_{\alpha}^j H_{\beta} \epsilon^{\alpha\beta}$
• F_{e^i} : $0 = \sum_{i,j} C_{ij}^3 L_{\alpha}^j \overline{H}_{\beta} \epsilon^{\alpha\beta}$

- \Rightarrow Summary of these equations
- GIOs ν , LH, $H\overline{H}$ and $L\overline{H}e$ all vanish in the vacuum
- Vacuum manifold again determined by LLe operators, but we do NOT obtain the Segrè variety
- \Rightarrow New constraint emerges from $F_{\overline{H}}$ equation: $\sum_{ij} C_{ij}^3 e^i L_{\alpha}^j L_{\beta}^k \epsilon^{\alpha\beta} = 0$
- These are three (free k index) new linear relations on the LLe operators
- The defining ideal is modified to

$$\langle y_1y_5 - y_2y_4, y_1y_6 - y_3y_4, y_2y_6 - y_3y_5, y_1y_8 - y_2y_7 \\ y_1y_9 - y_3y_7, y_2y_9 - y_3y_8, y_4y_8 - y_5y_7, y_4y_9 - y_6y_7 \\ y_5y_9 - y_6y_8, y_1 - y_9, y_2 - y_6, y_4 - y_8 \rangle$$

 \Rightarrow Defines a variety of dimension three; choose d.o.f. to be $[y_3: y_5: y_7]$

$y1 \rightarrow x_0 x_2;$	$y_2 \rightarrow x_0 x_1;$	$y_3 \rightarrow x_0^2;$
$y_4 \rightarrow x_1 x_2;$	$y_5 \rightarrow x_1^2;$	$y_1 \to x_1 x_0$
$y_7 \rightarrow x_2^2;$	$y_8 \rightarrow x_2 x_1;$	$y_9 \to x_2 x_0$

\Rightarrow This is the Veronese embedding of \mathbb{P}^2 into \mathbb{P}^5

- \Rightarrow How did this happen?
- New relation $\sum_{ij} C^3_{ij} e^i L^j_{\alpha} L^k_{\beta} \epsilon^{\alpha\beta} = 0$ effectively identifies LL coordinates to e coordinates
- Thus, the two \mathbb{P}^2 factors in the Segrè embedding are now identified

$$\begin{array}{cccccccc} LL & e & LLe \\ \mathbb{P}^2 & \times & \mathbb{P}^2 & \longrightarrow & \mathbb{P}^8 \\ [x_0:x_1:x_2] & [z_0:z_1:z_2] & \to & x_iz_j \end{array},$$

becomes simply

$$\mathbb{P}^{2} \longrightarrow \mathbb{P}^{5}
[x_{0}:x_{1}:x_{2}] \longrightarrow [x_{0}^{2}:x_{0}x_{1}:x_{1}^{2}:x_{0}x_{2}:x_{1}x_{2}:x_{2}^{2}] ,$$

- \Rightarrow A similar identification between the variables of Gr(4,2) and \mathbb{P}^3 occurs for the case of $N_f = 4$ with seesaw neutrinos
- But here the identification is not complete, and a Severi variety does not emerge

⇒ Something different occurs in cases where the Majorana mass term is absent

$$W = C^0 \sum_{\alpha,\beta} H_\alpha \overline{H}_\beta \epsilon \alpha \beta + \sum_{i,j} C^3_{ij} \sum_{\alpha,\beta} L^i_\alpha \overline{H}_\beta e^j \epsilon^{\alpha\beta} + \sum_{i,j} C^5_{ij} \sum_{\alpha,\beta} L^j_\alpha H_\beta \nu^i \epsilon^{\alpha\beta}$$

•
$$F_{\overline{H}} = 0$$
 still gives $\sum_{ij} C_{ij}^3 e^i L_{\alpha}^j L_{\beta}^k \epsilon^{\alpha\beta} = 0$

★ Effectively identifies *LL* coordinates to *e* coordinates
 ★ Would seem to imply a Veronese variety

•
$$F_{\nu i} = 0$$
 now implies $\sum_{ij} C^5_{ij} \nu^i L^j_{\alpha} L^k_{\beta} e^\ell \epsilon_{\alpha,\beta} = 0$

- * Would-be ν^i d.o.f. now related back to the remaining *LLe* d.o.f.
- ★ So this is a Veronese-like embedding into a higher-dimensional space

 \Rightarrow We refer to it as the "deformed Veronese" variety, which is defined by

$$\begin{array}{ccccccc} LL \simeq e & \nu & \{\nu, LLe\} \\ \mathbb{P}^2 & \times & \mathbb{C} & \longrightarrow & \mathbb{C}^9 \\ [x_0:x_1:x_2] & [\lambda] & \to & [x_0^2:x_0x_1:x_1^2:x_0x_2:x_1x_2:x_2^2:\lambda x_0:\lambda x_1:\lambda x_2] \end{array}$$

which is a non-compact, 4D toric CY with $H(t) = (1 + 5t + t^2)/(1 - t)^4$

Example of Outcomes with Bilinear Deformations

 \Rightarrow Inclusion of both gauge-invariant trilinears gives a trivial background

 \Rightarrow Computation of vacuum manifold $\mathcal M$ for various bilinear deformations

Deformation	$L\overline{H}e$	LLe	$L\overline{H}e + LH\nu$	$LLe + LH\nu$
none	Segrè $ imes \mathbb{C}^4$	def. Ver. $\times \mathbb{C}$	def. Ver. $\times \mathbb{C}$	$(10 6, 14 3^62^3)$
$+H\overline{H}$	Segrè	point	def. Ver.	\mathbb{C}^3
+LH	\mathbb{C}	conifold	def. Ver. $ imes \mathbb{C}$	$(10 6, 14 3^62^3)$
$+LH + H\overline{H}$	\mathbb{C}	point	def. Ver.	\mathbb{C}^3
$+\nu^{2}$	Segrè $ imes \mathbb{C}^4$	def. Ver. $\times \mathbb{C}$	Veronese $\times \mathbb{C}$	Veronese $ imes \mathbb{C}$
$+\nu^2 + H\overline{H}$	Segrè	point	Veronese	Ø
$+\nu^2 + LH$	\mathbb{C}	conifold	conifold $ imes \mathbb{C}^2$	conifold $ imes \mathbb{C}^2$
$+\nu^2 + LH + H\overline{H}$	\mathbb{C}	point	conifold $ imes \mathbb{C}^2$	Ø

- ⇒ A systematic treatment of the nature of R-parity from the point of view of geometry is now underway
- "Interesting" geometry (non-trivial structure and small dimensionality) seems to prefer the "natural" R-parity assignment
- Seesaw mechanism plus μ -term seems to demand the "natural" R-parity assignment

Future Prospects and Potential

- ⇒ Ultimately we expect string theory to motivate/identify the connection between compactification geometry and geometry of the gauge theory vacuum space
- For example, the MSSM likes the Veronese embedding
- The Veronese variety is a Severi variety with underlying SU(3) isometry in which two \mathbb{P}^2 factors are identified
- This is getting closer to the sorts of data that can be sought after in large classes of string compactifications

Future Prospects and Potential

- ⇒ Ultimately we expect string theory to motivate/identify the connection between compactification geometry and geometry of the gauge theory vacuum space
- For example, the MSSM likes the Veronese embedding
- The Veronese variety is a Severi variety with underlying SU(3) isometry in which two \mathbb{P}^2 factors are identified
- This is getting closer to the sorts of data that can be sought after in large classes of string compactifications
- ⇒ Vacuum geometry cares about *both* the superpotential *and* the GIO set which defines the polynomial ring
- Two theories with the same W but different GIO sets give different moduli spaces!
- Example: imposing $R = (-1)^{-L}$ and $U(1)_L$ symmetries do not give the same answers for the MSSM superpotential
- There may be a geometrical origin for R-parity conservation that is not obviously due to field theory symmetries

Future Prospects and Potential

- ⇒ Ultimately we expect string theory to motivate/identify the connection between compactification geometry and geometry of the gauge theory vacuum space
- For example, the MSSM likes the Veronese embedding
- The Veronese variety is a Severi variety with underlying SU(3) isometry in which two \mathbb{P}^2 factors are identified
- This is getting closer to the sorts of data that can be sought after in large classes of string compactifications
- ⇒ Vacuum geometry cares about *both* the superpotential *and* the GIO set which defines the polynomial ring
- Two theories with the same W but different GIO sets give different moduli spaces!
- Example: imposing $R = (-1)^{-L}$ and $U(1)_L$ symmetries do not give the same answers for the MSSM superpotential
- There may be a geometrical origin for R-parity conservation that is not obviously due to field theory symmetries
- ⇒ Finally, non-trivial geometries require $N_f \ge 3$. Small dim(\mathcal{M}) requires $N_f < 4$. Three generations are special.

Backup Slides

Interlude on Complexified Gauge Groups

 $\Rightarrow N = 1$ SUSY action on previous page has very large symmetry group

$$\Phi_i \to g \cdot \Phi_i ; \qquad e^V \to (g^{\dagger})^{-1} e^V g^{-1}$$

where $g = e^{i\Lambda}$ and Λ is a chiral superfield

⇒ Normally we don't see all of this invariance because we work in Wess-Zumino gauge

$$V_a = -\theta \sigma_\mu \bar{\theta} v_a^\mu + i\theta^2 \bar{\theta} \bar{\lambda}_a - i\bar{\theta}^2 \theta \lambda_a + \frac{1}{2} \theta^2 \bar{\theta}^2 D_a$$

- Residual gauge symmetry is just the usual one with real parameters
- In this gauge the D-flatness condition is $D_a = \sum_i q_i \phi_i^{\dagger} t_a \phi_i = 0$
- NOTE: This constraint is not holomorphic in the fields ϕ_i

Interlude on Complexified Gauge Groups

 $\Rightarrow N = 1$ SUSY action on previous page has very large symmetry group

$$\Phi_i \to g \cdot \Phi_i ; \qquad e^V \to (g^{\dagger})^{-1} e^V g^{-1}$$

where $g = e^{i\Lambda}$ and Λ is a chiral superfield

⇒ Normally we don't see all of this invariance because we work in Wess-Zumino gauge

$$V_a = -\theta \sigma_\mu \bar{\theta} v_a^\mu + i\theta^2 \bar{\theta} \bar{\lambda}_a - i\bar{\theta}^2 \theta \lambda_a + \frac{1}{2} \theta^2 \bar{\theta}^2 D_a$$

- Residual gauge symmetry is just the usual one with real parameters
- In this gauge the D-flatness condition is $D_a = \sum_i q_i \phi_i^{\dagger} t_a \phi_i = 0$
- NOTE: This constraint is not holomorphic in the fields ϕ_i
- \Rightarrow Now imagine choosing a less restrictive gauge such that

$$V_a = C_a - \theta \sigma_\mu \bar{\theta} v_a^\mu + i \theta^2 \bar{\theta} \bar{\lambda}_a - i \bar{\theta}^2 \theta \lambda_a + \frac{1}{2} \theta^2 \bar{\theta}^2 D_a$$

Buccella, Derendinger, Ferrara and Savoy, *Phys. Lett.*, B115 (1982) C. Procesi and G. Schwarz, *Phys. Lett.*, B161 (1985) M. Luty and W. Taylor, *Phys. Rev.*, D53 (1996)

Interlude on Complexified Gauge Groups

- Residual gauge symmetry is now the complexification \mathcal{G}^C of group \mathcal{G}
- The D-flatness condition in this gauge becomes

$$\frac{\partial}{\partial C_a} \sum_i \phi_i^{\dagger} e^C \phi_i = 0$$

 \Rightarrow Now imagine some ϕ_i^0 which satisfies the above and $\partial W/\partial \phi_i|_{\phi_i=\phi_i^0}$.

- Use the extra gauge invariance to define $\hat{\phi}^0_i \equiv e^{C/2} \phi^0_i$

$$\frac{\partial}{\partial \hat{C}_a} \sum_i (\hat{\phi}_i^0)^{\dagger} e^{\hat{C}} \hat{\phi}_i^0 = \frac{\partial}{\partial \hat{C}_a} \sum_i X(e^{\hat{C}/2} \hat{\phi}_i^0) = 0; \quad X(\phi) \equiv \phi^{\dagger} \phi$$

- F-flatness conditions holomorphic and invariant under \mathcal{G}^C
- Can always perform such a transformation to take $C_a \rightarrow 0$, giving an F- and D-flat solution in WZ gauge
- The D-flatness conditions are now trivial: just a gauge-fixing condition!

⇒ Gauge invariant holomorphic operators form a basis for these *D*-orbits

Attacking the MSSM

 \Rightarrow Seven species of chiral superfields \Rightarrow 49 scalar fields (n = 49)

 \Rightarrow All 973 possible GIOs tabulated below (k = 973)

T. Gherghetta, C. Kolda, S. Martin, Nucl. Phys., B468 (1996)

Operator	Explicit Sum	Index	Number
LH_u	$L^{lpha}_{i}H^{eta}\epsilon_{lphaeta}$	i = 1, 2, 3	3
$H_u H_d$	$H_{lpha}(H_d)_eta\epsilon^{lphaeta}$	NA	1
LLe	$L^i_lpha L^j_eta e^k \epsilon^{lphaeta}$	$i, j = 1, 2, 3; \ k = 1, \dots, j - 1$	9
LH_de	$L^i_{lpha}(H_d)_eta e^j \epsilon^{lphaeta}$	i, j = 1, 2, 3	9
udd	$u^i_a d^j_b d^k_c \epsilon^{abc}$	$i, j = 1, 2, 3; \ k = 1, \dots, j - 1$	9
QdL	$Q^i_{a,lpha} d^j_a L^k_eta \epsilon^{lphaeta}$	i,j,k=1,2,3	27
QuH_u	$Q^i_{a,lpha} u^j_a (H_u)_eta \epsilon^{lphaeta}$	i,j=1,2,3	9
QdH_d	$Q^i_{a,lpha} d^j_a (H_d)_eta \epsilon^{lphaeta}$	i,j=1,2,3	9
QQQL	$Q^{i}_{a,eta}Q^{j}_{b,\gamma}Q^{k}_{c,lpha}L^{l}_{\delta}\epsilon^{abc}\epsilon^{eta\gamma}\epsilon^{lpha\delta}$	$\begin{array}{l} i,j,k,l = 1,2,3; \; i \neq k, j \neq k, \\ j < i, (i,j,k) \neq (3,2,1) \end{array}$	24
QuQd	$Q^i_{a,lpha} u^j_a Q^k_{b,eta} d^l_b \epsilon^{lphaeta}$	i,j,k,l=1,2,3	81
QuLe	$Q^i_{a,lpha} u^j_a L^k_eta e^l \epsilon^{lphaeta}$	i,j,k,l=1,2,3	81
uude	$u^i_a u^j_b d^k_c e^l \epsilon^{abc}$	$i, j, k, l = 1, 2, 3; \ j < i$	27
$QQQH_d$	$Q^{i}_{a,\beta}Q^{j}_{b,\gamma}Q^{k}_{c,\alpha}(H_{d})_{\delta}\epsilon^{abc}\epsilon^{\beta\gamma}\epsilon^{\alpha\delta}$	$i, j, k, l = 1, 2, 3; i \neq k, j \neq k, j < i, (i, j, k) \neq (3, 2, 1)$	8
QuH_de	$Q^i_{a,lpha} u^j_a (H_d)_eta e^k \epsilon^{lphaeta}$	i, j, k = 1, 2, 3	27
dddLL	$d^i_a d^j_b d^k_c L^m_lpha L^n_eta \epsilon^{abc} \epsilon_{ijk} \epsilon^{lphaeta}$	m, n = 1, 2, 3; n < m	3

 $i, j, k = 1, 2, 3 \leftrightarrow \text{flavor indices}, \quad a, b, c = 1, 2, 3 \leftrightarrow \text{color indices}, \quad \alpha, \beta, \gamma = 1, 2 \leftrightarrow SU(2)_L \text{ indices}$

Attacking the MSSM

Operator	Explicit Sum Index		Number
uuuee	$u^i_a u^j_b u^k_c e^m e^n \epsilon^{abc} \epsilon_{ijk}$	$m,n=1,2,3;\ n\leq m$	6
QuQue	$Q^i_{a,lpha} u^j_a Q^k_{b,eta} u^m_b e^n \epsilon_{lphaeta}$	$i,j,k,m,n=1,2,3; \ {\sf as}\{(i,j),(k,m)\}$	108
QQQQu	$Q_{a,\beta}^{i}Q_{b,\gamma}^{j}Q_{c,\alpha}^{k}Q_{f,\delta}^{m}u_{f}^{n}\epsilon^{abc}\epsilon^{\beta\gamma}\epsilon^{\alpha\delta}$	$\begin{array}{l} i, j, k, m = 1, 2, 3; \ i \neq m, \\ j \neq m, j < i, \\ (i, j, k) \neq (3, 2, 1) \end{array}$	72
$dddLH_d$	$d^{i}_{a}d^{j}_{b}d^{k}_{c}L^{m}_{\alpha}(H_{d})_{\beta}\epsilon^{abc}\epsilon_{ijk}\epsilon_{\alpha\beta}$	m = 1, 2, 3	3
$uudQdH_u$	$u^i_a u^j_b d^k_c Q^m_{f,lpha} d^n_f (H_u)_eta \epsilon^{abc} \epsilon_{lphaeta}$	$i, j, k, m = 1, 2, 3; \ j < i$	81
$(QQQ)_4LLH_u$	$(QQQ)_4^{\alpha\beta\gamma}L^m_{\alpha}L^n_{\beta}(H_u)_{\gamma}$	$m,n=1,2,3;\ n\leq m$	6
$(QQQ)_4LH_uH_d$	$(QQQ)_4^{\alpha\beta\gamma}L^m_\alpha(H_u)_\beta(H_d)_\gamma$	m = 1, 2, 3	3
$\left[(QQQ)_4 H_u H_d H_d \right]$	$(QQQ)_4^{\alpha\beta\gamma}(H_u)_\alpha(H_d)_\beta(H_d)_\gamma$	NA	1
$(QQQ)_4LLLe$	$(QQQ)_4^{lphaeta\gamma}L^m_lpha L^n_eta L^p_\gamma e^q$	$egin{array}{l} m,n,p,q=1,2,3;\ n\leq m;\ p\leq n \end{array}$	27
uudQdQd	$u^i_a u^j_b d^k_c Q^m_{f,lpha} d^n_f Q^p_{g,eta} d^q_g \epsilon^{abc} \epsilon_{lphaeta}$	$i, j, k, m, n, p, q = 1, 2, 3; \ j < i, as\{(m, n), (p, q)\}$	324
$(QQQ)_4LLH_de$	$(QQQ)_4^{lphaeta\gamma}L^m_{lpha}L^n_{eta}(H_d)_{\gamma}e^p$	$m,n,p=1,2,3;\ n\leq m$	9
$QQQ)_4 L H_d H_d e$	$(QQQ)_4^{\alpha\beta\gamma}L^m_\alpha(H_d)_\beta(H_d)_\gamma e^n$	m, n = 1, 2, 3	9
$(QQQ)_4 H_d H_d H_d e$	$(QQQ)_4^{\alpha\beta\gamma}(H_d)_{\alpha}(H_d)_{\beta}(H_d)_{\gamma}e^m$	m = 1, 2, 3	3

In the above we defined $[(QQQ)_4]_{\alpha\beta\gamma} = Q^i_{a,\alpha}Q^j_{b,\beta}Q^k_{c,\gamma}\epsilon^{abc}\epsilon^{ijk}$

 \Rightarrow The reason the problem is unsolved after two decades...

Hilbert Series

- ⇒ Hilbert series provides technology for enumerating GIOs in a supersymmetric quantum field theory
- \Rightarrow For a variety $\mathcal{M} \subset \mathbb{C}[y_1, \ldots, y_k]$, the Hilbert series is the formal series

$$H(t) = \sum_{n=-\infty}^{\infty} \dim \mathcal{M}_n t^n = \frac{P(t)}{(1-t)^d}$$

- Hilbert series encodes information about the chiral ring and geometric features of the variety
- dim (\mathcal{M}_n) is the number of independent polynomials of degree n on \mathcal{M}
- \Rightarrow A palindromic Hilbert Series obeys $H(t) = \sum_{k=0}^{N} a_k t^k$ with $a_k = a_{N-k}$
 - By a theorem of Stanley, the corresponding algebraic variety is Calabi-Yau (in the sense of a trivial canonical sheaf)

Segrè Embedding Explicitly

To see the Segrè embedding explicitly let x_i be the coordinates of one \mathbb{P}^2 (representing the three independent LL operators), and let z_i be coordinates of the second \mathbb{P}^2 (representing the three independent e_i operators)

 \Rightarrow The Segrè embedding is given by

 \Rightarrow The *LLe* syzygies are then recovered when we identify the coordinates y_i of \mathbb{P}^8 via

$$y_1 \rightarrow z_0 x_2, \quad y_2 \rightarrow z_0 x_1, \quad y_3 \rightarrow z_0 x_0,$$

$$y_4 \rightarrow z_1 x_2, \quad y_5 \rightarrow z_1 x_1, \quad y_6 \rightarrow z_1 x_0,$$

$$y_7 \rightarrow z_2 x_2, \quad y_8 \rightarrow z_2 x_1, \quad y_9 \rightarrow z_2 x_0,$$

- ⇒ Any smooth non-degenerate algebraic variety X of (complex) dimension n embedded into \mathbb{P}^m with $m < \frac{3}{2}n + 2$ has the property that its secant variety Sec(X) is equal to \mathbb{P}^m [Hartshorne-Zak]
- Limiting case where $m = \frac{3}{2}n + 2$ and $Sec(X) \neq \mathbb{P}^n$ is a Severi variety
- \Rightarrow All Severi varieties have been classified [Zak]; there are only four:
- 1. n = 2: The Veronese surface $\mathbb{P}^2 \hookrightarrow \mathbb{P}^5$
- 2. n = 4: The Segrè variety $\mathbb{P}^2 \times \mathbb{P}^2 \hookrightarrow \mathbb{P}^8$;
- 3. n = 8: The Grassmannian Gr(6, 2) of two-planes in \mathbb{C}^6 , embedded into \mathbb{P}^{14}
- 4. n = 16: The Cartan variety of the orbit of the highest weight vector of a certain non-trivial representation of E_6
- \Rightarrow Only the first two cases involve products of projective spaces

Severi Varieties

- \Rightarrow There exist precisely four division algebras: the real numbers \mathbb{R} , the complex numbers \mathbb{C} , the quaternions \mathbb{H} , and the octonions \mathbb{O}
- ⇒ If we imagine the projective planes formed from each of these division algebras, the complexification of these spaces are precisely homeomorphic to the four Severi varieties

Projective Plane	Severi Variety	Homogenous Space
\mathbb{RP}^2	\mathbb{CP}^2	$SU(3)/S(U(1) \times U(2))$
\mathbb{CP}^2	$\mathbb{CP}^2 imes \mathbb{CP}^2$	$SU(3)^2/S(U(1) \times U(2))^2$
\mathbb{HP}^2	$\operatorname{Gr}(6,2)$	$SU(6)/S(U(2) \times U(4))$
\mathbb{OP}^2	S	$E_6/\mathrm{Spin}(10) \times U(1)$

One Generation MSSM

 \Rightarrow Drop all flavor indices (i = j = k = 1) so now n = 9

 \Rightarrow There are now only 9 GIOs (one of each variety)

 LH_u , H_uH_d , QdL, QuH_u , QdH_d , LH_de , QuQd, QuLe, QuH_de

 \Rightarrow Simplified superpotential

$$W_{0} = \lambda^{0} \sum_{\alpha,\beta} H^{\alpha}_{u} H^{\beta}_{d} \epsilon_{\alpha\beta} + \lambda^{1} \sum_{\alpha,\beta,a} Q_{a,\alpha} (H_{u})_{\beta} u_{a} \epsilon^{\alpha\beta} + \lambda^{2} \sum_{\alpha,\beta,a} Q_{a,\alpha} (H_{d})_{\beta} d_{a} \epsilon^{\alpha\beta} + \lambda^{3} \sum_{\alpha,\beta} L_{\alpha} (H_{d})_{\beta} e \epsilon^{\alpha\beta}$$

 \Rightarrow Computation of vacuum manifold $\mathcal M$ for various deformations

$W_0+?$	$\dim(\mathcal{M})$	\mathcal{M}	$W_0+?$	$\dim(\mathcal{M})$	$ \mathcal{M} $
0	1	\mathbb{C}	QuQd	1	\mathbb{C}
LH_u	0	point	QuLe	1	\mathbb{C}
QdL	0	point	QuH_de	1	\mathbb{C}