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Vacuum Moduli Spaces of Gauge Theories

Supersymmetric quantum field theories have scalars — a complicated vacuum
space of possible field vevs (¢;), characterized by certain flat directions

e Vacuum configuration is any set of field values {¢}} such that V(¢?, ¢?) =0
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where ¢; is the lowest (scalar) component of superfield ®; with charge ¢;

V(00.61) = Z|a¢z

e The vacuum moduli space M is the space of all possible solutions ¢° to these
F and D-flatness conditions
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where ¢; is the lowest (scalar) component of superfield ®; with charge ¢;

e The vacuum moduli space M is the space of all possible solutions ¢° to these
F and D-flatness conditions

V(00.61) = Z|a¢z

= This manifold M may have special structure that correlates with certain
phenomenological properties

e These structures need NOT be directly related to gauge invariance or discrete
symmetries — otherwise unexplained from traditional field theory perspective

e |dentifying such structures may aid in top-down model building from string
compactification



Approach via Algebraic Geometry

= To every solution of the F-flatness conditions there exists a solution to the
D-flatness conditions in the orbit of the complexified gauge group G°:

M =F//G¢

where F is the space of all F-flat field configurations



Approach via Algebraic Geometry

= To every solution of the F-flatness conditions there exists a solution to the
D-flatness conditions in the orbit of the complexified gauge group G°:

M =F//G¢

where F is the space of all F-flat field configurations

= Consider a theory defined by a certain gauge group and set of fields {®;,}

e Consider a minimal generating set of Gauge Invariant Operators (GlOs)
i =1{ri{ei})}

e This defines a polynomial ring S = C[rq, ..., 7]

e F-flatness corresponds to the Jacobian ideal (0W/0¢;) in the polynomial ring
R:C[¢177¢n]

e The polynomial map D is a map from the quotient ring F ~ R/(OW/0¢;) t0o
the ring S

e The image of this map gives M, defined as an affine variety in S:

M ~Im (]:D:—>GIO S)



Computational Algorithm

Strategy: consider the set of gauge invariants, composed of monomials in the ¢,,
and back substitute solutions to the F-flatness conditions

=- This becomes an elimination problem, suitable for computational methods

INPUTS

e A theory defined by a superpotential W = W ({¢;}) withi=1,....n
o Basis of GIOs {r;({¢;})}, with j = 1,... &
ALGORITHM
o Define the polynomial ring R = C[¢i—1.....n, Yj=1.... k]
o Consider the ideal I = (34" y; — 5(¢:))

o Eliminate all variables ¢; from I C R, giving the ideal M in terms of y;

OUTPUT: M as an affine variety in C [y1, ..., yi]

= Algorithm equivalent to asking for all relations among the GIOs which satisfy
the F-flatness conditions (i.e. all possible syzygies among the coordinates)



Restricting to MSSM Electroweak Sector

= Would ultimately like to study is the full, renormalizable MSSM superpotential

e Seven species of chiral superfields = 49 scalar fields (n = 49)
e 973 total GIOs (k = 973) T. Gherghetta, C. Kolda, S. Martin, Nucl. Phys., B468 (1996) 37
= Set vevs for u’, u%, dt, d% to zero by hand

= This leaves n = 13 scalar fields and £ = 22 GIOs
J. Gray, YH. He, V. Jejjala and BDN, Phys. Lett., B638 (2006) 253
J. Gray, YH. He, V. Jejjala and BDN, Nucl. Phys., B750 (2006) 1

Operator || Explicit Sum Index Number
LH, LS HPeqp i=1,2,3 3
H,H, H, H ge®P — 1
LLe L Lhebe® | i,7=1,2,3; k=1,...,5—1 9
LHge L H gePel ij=1,2,3 9

W =C°H,Hy+ C};LiHge; = C°Y H, Hpe™ + Y Clel " L Hpe™”
[ t,J a,[

= Flavor mixing matrices C;; generated randomly

e Dimensionality of some coefficients suppressed (irrelevant for topology)



SU(2) Doublets and the Grassmannian Manifold

= Consider a simple SU(2) theory with N doublets ¢; (I =1,..., Np)

e GIOs are monomials of the form
(p107) = P59 eas

e Antisymmetric under species interchange I < J

e Full set of relations among these GIOs are themselves redundant
— syzyqgies exist

e In particular, they are subject to the Plucker relations

(preg)(exer) = (prer)(pser) + (eren)(exes)

= Therefore, moduli space not trivial (CP), but instead the
Grassmannian manifold Gr(Np, 2), with dimension 2(Np — 2)

e D={LL} — Gr(3,2) ~ P?
e D={LL, LH} — Gr(4,2)
e D={LL, LH, LH, HH) — Gr(5,2)



Hypercharge and the Segre Map

= Some of the SU(2)-invariants ¢; have non-vanishing hypercharge

o Let x7'and x;' be SU(2)-invariants with hypercharge +1
EXAMPLE: x/' = {LL, LH}
EXAMPLE: y;' = {e}

o SU(2) x U(1)y-invariants built from (x;'x;') are subject to additional
constraint

OGO = O e Hodexg )
= These equations define the Segré embedding of P? x P2 in P8

LLorLH e LLeor LHe
Gr(3,2) =P? «x P2 — ps ,
[ZEO N o T CEQ] [Z() 21 . 22] — Liz;j

e An affine cone over a projective variety of dimension 4, realized as the
intersection of nine quadratic polynomials in P3

» Corresponding Hilbert series (of the first kind) is H (1) = 1ALt

e Palindromic numerator for H (t) indicates this manifold is Calabi-Yau




Importance of the LLe Operator

= The richness of the vacuum structure of the MSSM EW sector comes from
an unlikely place: the LLe operator

=- These operators are subject to the relations
(LgLéekeaﬁ)(LgnL?epew) = (L?Lgekeo‘ﬁ)(l}iljgepew)

o An operator with a common ¢ field is linearly proportional to another set of
operators with a common ¢’ field (i # j).

o With the labelling y;;_o430—1) = Li,L}e"e*?, the above relations become the
ideal

(Y195 — Y24, Y1Y6 — Y3Y4, Y26 — Y3Ys,
Y1Ys — Y2Yyr, Yy1Yyg — Ysyr, Y2Yyg — Y3ys,
Yays — YsY7, Yalo — YY1, YsYo — YeYs)

e These are precisely the nine quadratics that define the Segre variety



Importance of the LLe Operator

= The nature of these relations, and the resulting manifold, depends crucially
on the number of generations N;

e Ny =1, no LLe operator possible. Moduli space is empty
e Ny =2, onlytwo LLe operators and no relation possible: M = C?

e N; =3, M isthe Segre variety
= For Ny > 4, there are now new relations, such as
(LLLLe“P)(LELSE) + (L Lge*?)(LE Lie™) + (LE Le*?) (L] Lse™®) = 0

e These relations are themselves redundant — a rich set of syzygies

e Now the Grassmanian no longer degenerates to projective space, yielding the
Segre variety

e Varieties are Calabi-Yau spaces that are not explicit toric varieties

= In general, the LLe moduli space is (the affine cone over) the Grassmanian
Gr(Ny,2) x PNs~1 with dimension 3N, — 4



MSSM Electroweak Sector: No Superpotential

= If we start with W = 0, we are studying the moduli space determined solely by
the relations among various GIOs

e Bilinears only {LH, HH}: no relations, M = C*
o LLe OR LHe: M is the Segré variety
e LLe AND LHe: M is a seven-dimensional variety, defined by

{LL, LH} e {LLe LHe}
Gr(4,2) X P? — P17
[LEO X1 -T2 X3 T4 - 1’5] [Z() N ZQ] — Ljzq

subject to a single Plicker relation, with H(t) = (1 4+ 11t + 15t + 3t3) /(1 — t)”
e AlGIOs {LH, HH LLe, LHe}: M a nine-dimension Calabi-Yau, defined by

(LL, LH, LH, HH} e (LLe LHe, LH, HH)
Gr(5,2) X P2 — C*2
[xog — x5 : Tg : T7 : T : To| (200 21:29] — (xi25, X6, X7, T8, T9)

subject to five Pllicker relations, with H (t) = (1 + 13t + 282+ 13t3 +t4) /(1 —t)*



MSSM with Charged Leptons

W=cC%y H, Hﬁeaﬁ+z ZLZH el P
o0

= F-term equations force the following combinations to vanish

o Fy: O:C’Oﬁgeo‘ﬁ
o F 0= CH,e*’ + Z C3LieleP
.FLJ O_CS ZHﬁE
o I 0=73 C}LIHge
,J

= Summary of these constraints:

e H vanishes, LHe, HH not involved in vacuum manifold

o Iz equation relates LH and LLe operators in the vacuum

— Therefore, M determined solely by the L Le relations = the Segre embedding

= This only happens for Ny = 3 and N, = 1!

10



MSSM with Seesaw Neutrinos

= Add in three right-handed neutrinos: now 16 total scalar fields, 25 GIOs

W = COZH ngaﬁ—FZCmZL Hge'e® +Zc VZVJ—FZCUZLJHQVE

= F-term equations force the following combinations to vanish

o ['y: 0= Z C?juiLgéeaﬁ — CYH P
o [ 0=CHue®’ + 3 CF Ll el e
,J
o Fy;: =Y CPviHge*P + CPe'H e
t,]
o I 0=>,Civ' + Z CP. LI, Hge*”

o I;: ZC’SLJng

]



MSSM with Seesaw Neutrinos
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= Summary of these equations

e GIOs v, LH, HH and LHe all vanish in the vacuum

e Vacuum manifold again determined by L Le operators, but we do NOT obtain
the Segre variety

= New constraint emerges from Fy; equation: 3_.. CPe’ L], Le*” = 0
e These are three (free k index) new linear relations on the L Le operators
e The defining ideal is modified to

(Y15 — YoYa, Y1Y6 — Y3Ya, Y2Us — Y3Ys, Y1Ys — Y2y7

Y1Y9 — Ys3yr, Y2Yg — Y3Ysg, Yays — YsY7, Y4Yo — YelY7
YsYo — Y6Ys, Y1 — Y9, Y2 — Ye, Ya — Ys)

= Defines a variety of dimension three; choose d.o.f. to be [ys3 : y5 : y7]

: . 2,
yl — zox2; Y2 — xoT1; Y3 — T{;

: 2,
Yqg — T1X25 Y5 — X7, Y1 — I1x0

2, i
Yr — To; Ys — 21, Y9 — T2Xy

= This is the Veronese embedding of P? into P°



MSSM with Seesaw Neutrinos -

= How did this happen?

e New relation ). Ce’ L], Lie™” = 0 effectively identifies L coordinates to e
coordinates

e Thus, the two P? factors in the Segrée embedding are now identified

LL e LLe
P? X P2 —  P®
[T @ x1 @ X2 20121129 — 3%
becomes simply
P2 — P°

[xg X1 x2] — [:1:(2) L LT :c% L oL L L1L9 :1:%] ’

= A similar identification between the variables of Gr(4, 2) and P occurs for the
case of Ny = 4 with seesaw neutrinos

e But here the identification is not complete, and a Severi variety does not
emerge



MSSM with Dirac Neutrinos

= Something different occurs in cases where the Majorana mass term is absent

W =C" Z H.H zeaf + Z C’S’j Z LY H el e*P + Z C’fj Z L) Hgv'e*P
a,B 2] o, ] o,

o Fp=0stillgives }  Cle' L] L™’ =

Effectively identifies L L coordinates to e coordinates
Would seem to imply a Veronese variety

o 0 now implies 3, . CP;v L, Lie eq,3 = 0

Would-be »* d.o.f. now related back to the remaining LLe d.o.f.
So this is a Veronese-like embedding into a higher-dimensional space

= We refer to it as the “deformed Veronese” variety, which is defined by

LL ~ e % {v, LLe}
P? x C — C® :
[xg @ x1 @ o) (Al —  [xd w1 xf i womo i T1To W5 Axg ATy Axg)]

which is a non-compact, 4D toric CY with H(¢) = (1 + 5t +t%)/(1 —t)?

14



Example of Outcomes with Bilinear Deformations
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= Inclusion of both gauge-invariant trilinears gives a trivial background

= Computation of vacuum manifold M for various bilinear deformations

Deformation LHe LLe LHe+ LHv LLe+ LHv
none Segre x C* | def. Ver. x C | def. Ver. x C | (10]6, 14]3°27)
+HH Segre point def. Ver. C3
+LH C conifold def. Ver. x C | (1016, 14|3523)

+LH+ HH C point def. Ver. C3

+ v? Segre x C* | def. Ver. x C | Veronese x C | Veronese x C
+v?+ HH Segre point Veronese 0

+v?+ LH C conifold conifold x C? | conifold x C?
+v?+LH+HH C point conifold x C? 0

= A systematic treatment of the nature of R-parity from the point of view of
geometry is now underway

e “Interesting” geometry (non-trivial structure and small dimensionality) seems
to prefer the “natural” R-parity assignment

e Seesaw mechanism plus u-term seems to demand the “natural” R-parity

assignment




Future Prospects and Potential
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= Ultimately we expect string theory to motivate/identify the connection between
compactification geometry and geometry of the gauge theory vacuum space

e For example, the MSSM likes the Veronese embedding

e The Veronese variety is a Severi variety with underlying SU (3) isometry in
which two P? factors are identified

e This is getting closer to the sorts of data that can be sought after in large
classes of string compactifications



Future Prospects and Potential

= Ultimately we expect string theory to motivate/identify the connection between
compactification geometry and geometry of the gauge theory vacuum space

e For example, the MSSM likes the Veronese embedding

e The Veronese variety is a Severi variety with underlying SU (3) isometry in
which two P? factors are identified
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= Vacuum geometry cares about both the superpotential and the GIO set which
defines the polynomial ring

e Two theories with the same W but different GIO sets give different moduli
spaces!

e Example: imposing R = (—1)~% and U(1);, symmetries do not give the same
answers for the MSSM superpotential

e There may be a geometrical origin for R-parity conservation that is not
obviously due to field theory symmetries
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Future Prospects and Potential

= Ultimately we expect string theory to motivate/identify the connection between
compactification geometry and geometry of the gauge theory vacuum space

e For example, the MSSM likes the Veronese embedding

e The Veronese variety is a Severi variety with underlying SU (3) isometry in
which two P? factors are identified

e This is getting closer to the sorts of data that can be sought after in large
classes of string compactifications

= Vacuum geometry cares about both the superpotential and the GIO set which
defines the polynomial ring

e Two theories with the same W but different GIO sets give different moduli
spaces!

e Example: imposing R = (—1)~% and U(1);, symmetries do not give the same
answers for the MSSM superpotential

e There may be a geometrical origin for R-parity conservation that is not
obviously due to field theory symmetries

= Finally, non-trivial geometries require Ny > 3. Small dim(M) requires N < 4.
Three generations are special.
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Backup Slides



Interlude on Complexified Gauge Groups

= N = 1 SUSY action on previous page has very large symmetry group
;=g -®; e —(g) e g
where g = ¢** and A is a chiral superfield

= Normally we don’t see all of this invariance because we work in
Wess-Zumino gauge

_ _ _ 1 .-
Vo = —00,00" +i0°0), — i0°0)\, + 592921)0,
e Residual gauge symmetry is just the usual one with real parameters

e In this gauge the D-flatness condition is D, = 3, ¢;¢!tap; = 0

e NOTE: This constraint is not holomorphic in the fields ¢,



Interlude on Complexified Gauge Groups

= N = 1 SUSY action on previous page has very large symmetry group
O, —g-0; e —(gh) Vg !
where g = ¢** and A is a chiral superfield

= Normally we don’t see all of this invariance because we work in
Wess-Zumino gauge

_ _ _ 1 ._
Vo = —00,0v +i0°0N, — i0°0), + 592921)@

e Residual gauge symmetry is just the usual one with real parameters
e In this gauge the D-flatness condition is D, = 3, ¢;¢!tap; = 0
e NOTE: This constraint is not holomorphic in the fields ¢,
= Now imagine choosing a less restrictive gauge such that
Vo= Cy — 00,00" +i0%0\, — i0°0), + %92521)@

Buccella, Derendinger, Ferrara and Savoy, Phys. Lett., B115 (1982)
C. Procesi and G. Schwarz, Phys. Lett.,, B161 (1985)
M. Luty and W. Taylor, Phys. Rev., D53 (1996)



Interlude on Complexified Gauge Groups

o Residual gauge symmetry is now the complexification G¢ of group G
e The D-flatness condition in this gauge becomes

0
%Z@GC@ =0

= Now imagine some ¢; which satisfies the above and OW/d¢;|, _ 0.

o Use the extra gauge invariance to define ¢? = ¢©/2¢?

0 20Vt .C 50
~ g o;)' e o, =

g Do X(AR) =0, X(0) =o'

- 0
o F-flatness conditions holomorphic and invariant under G¢

e Can always perform such a transformation to take C', — 0, giving an F- and
D-flat solution in WZ gauge

e The D-flatness conditions are now trivial: just a gauge-fixing condition!

= Gauge invariant holomorphic operators form a basis for these D-orbits



Attacking the MSSM

= Seven species of chiral superfields = 49 scalar fields (n = 49)
= All 973 possible GIOs tabulated below (k£ = 973)

T. Gherghetta, C. Kolda, S. Martin, Nucl. Phys., B468 (1996)

Operator Explicit Sum Index Number
LH, L¥HPe 5 i=1,2,3 3
H,H, Ho(Hg)ge™” NA 1
LLe Ly, Lee®” i,j=1,2,3 k=1,...,5—1 9
LH_ge L' /(Hy)gel e’ i,5=1,2,3 9

udd ul,d) de e’ i,j=1,2,3 k=1,...,5—1 9
QdL Q! od) Le™” i,j,k=1,2,3 27
QuH, Q' ul (Hy)ge®” i,j5=1,2,3 9
QdH, Qb o dh (Hg) g™ i,j=1,23

QQQL Q! 5 Q5 QE o L5e "0 e ;J< l: g;lk)zj(;?’;f 7k, 24
QuQd Q! ol Qp gdpe®” i, 5.k, 1=1,23 81
Qule Qz,auéLgeleo‘B 1,7, k, 0l =1,2,3 81
uude uéuidlgeleabc 1,5, k,1 =1,2,3; 7 <1 27

QQQH, | QL @}, @k a(Ha)seteceor | D10 = L a7 B 7 E :

QuH 4e Qz,aué(Hd)Bekeaﬁ i,75,k=1,2,3 27
dddLL diydl dd L L7ye® %€ 1, e*” m,n=1,2,3 n<m 3

1,7,k = 1,2,3 < flavor indices,

a,b,c =1,2,3 < color indices,

a, B3,y =1,2 « SU(2)r, indices




Attacking the MSSM

Operator Explicit Sum Index Number
uuuee U ubukeme"eabcezjk m,n=1,2,3; n<m 6
i7j7k7m7n:17273;
QuQue Qu.atay, 55" o as{(i,4), (k,m)} o
. ) iaj7k7m:1a2>3;i#ma
QQRQQu Qs Q) Qb QT sufe® e e | j#m,j < i, 72
(i,5,k) #(3,2,1)
dddLH, dgd{)d’ng(Hd)ﬁeabceijkeaﬁ m=1,2,3 3
wudQdH, ulu {)d’ng dn(Hu)ﬁeabceaﬁ i i k,m=1,2,3; j <i 81
(QRQ)4LLH, <QQQ>°“5”LmL”<Hu) m,n =1,2,3; n <m 6
(QRQ)4LH.Hy <Q@Q>2‘fﬁ’yL’Zs(Hu)g(Hd)7 m=1,2,3 3
(QQQ)aHuHaHy || (QQQ)S™ (Hu)a(Ha)g(Ha)y NA 1
aﬁ’y mrnrp_q m7n7paq:1a273;
(RRQ)4LLLe (RQRQ)," "Ly LgLie n<msp<m 27
7 j k ~ym n P qabc i7jak7manap7q:17273;
uudQdQd Uq Uy dCQ de d € €qp i <ias{(m,n), (p,q)} 324
(QQQ)4LLH e (@QQ)“ﬁ”LmLWHd)vep m,n,p=1,2,3 n<m 9
(QQQ)4LH;H e (QQRQ), mLm(JL—’d)ﬁ(Hd)v@ m,n =1,2,3 9
(QRQ)4H H H je (QQQ)Zﬁ’Y(Hd)a(Hd)B(Hd)’Ye m=1,2,3 3

In the above we defined [(QQQ)4]apgy = Qa aQ BQC . cabe ijk

=- The reason the problem is unsolved after two decades...




Hilbert Series

= Hilbert series provides technology for enumerating GIlOs in a supersymmetric
guantum field theory

= For a variety M C Cly1, ..., yx], the Hiloert series is the formal series

H(t)= ) dimM,t" =

nN——~oo

e Hilbert series encodes information about the chiral ring and geometric
features of the variety

e dim(M,,) is the number of independent polynomials of degree n on M

— A palindromic Hilbert Series obeys H(t) = S0 axt® with az, = an_

e By a theorem of Stanley, the corresponding algebraic variety is Calabi-Yau
(in the sense of a trivial canonical sheaf)



Segre Embedding Explicitly

To see the Segré embedding explicitly let z; be the coordinates of one P?
(representing the three independent L L operators), and let z; be coordinates of
the second P? (representing the three independent e; operators)

= The Segre embedding is given by

PZ X P2 — IEDS

[iC() N 1 332] [ZO 21 . ZQ] Xjzg 7

= The LLe syzygies are then recovered when we identify the coordinates
y; of P® via

Yyir — 202, Y2 — 20x1, Y3 — 200,
Yqg — 212, Y5 — 21L1, Y6 — <21X0,

Yr — 22x2, Yg — 22X1, Y9 — 22X0,



Severi Varieties

= Any smooth non-degenerate algebraic variety X of (complex) dimension n
embedded into P with m < %n + 2 has the property that its secant variety
Sec(X) is equal to P™ [Hartshorne-Zak]

e Limiting case where m = %n + 2 and Sec(X) #£ P" is a Severi variety

= All Severi varieties have been classified [Zak]; there are only four:

1. n = 2: The Veronese surface P? — P°
2. n = 4: The Segre variety P? x P? «— P?;
3. n = 8: The Grassmannian Gr(6,2) of two-planes in C% embedded into P**

4. n = 16: The Cartan variety of the orbit of the highest weight vector of a certain
non-trivial representation of Eg

= Only the first two cases involve products of projective spaces



Severi Varieties

=- There exist precisely four division algebras: the real numbers R, the complex
numbers C, the quaternions H, and the octonions O

= If we imagine the projective planes formed from each of these division
algebras, the complexification of these spaces are precisely homeomorphic
to the four Severi varieties

Projective Plane | Severi Variety Homogenous Space

RP- CP~° SU(3)/S(U(1) x U(2))
CP~ CP* x CP* | SU(3)2/S(U(1) x U(2))?
HP~ Gr(6, 2) SU(6)/S(U(2) x U(4))

QP* S Eg/Spin(10) x U(1)




One Generation MSSM

=- Drop all flavorindices (1 =7 =k =1)sonown =9
= There are now only 9 GIOs (one of each variety)
LH,, H H;, QdL, QuH,, QdH,, LH e, QuQd, QulLe, QuH_ie

= Simplified superpotential

Wo = /\OZHO‘HBGQB—F)\lZQaa guaeo‘ﬁ
o,B,a

= Computation of vacuum manifold M for various deformations

Wo+? | dim(M) | M | Wp+? | dim(M)
0 1 C QuQ)d 1
LH, 0 point | QulLe 1
QdL 0 point | QuH e 1

alalals




