The Geometry of Generations

Brent D. Nelson

沙旨 Northeastern $\begin{array}{llllllllll}U & N & I & V & E & R & S & I & T & Y\end{array}$

String Phenomenology 2015, Madrid

[1402.3312] with Y. H. He, V. Jejjala, C. Matti

[1408.6841] with Y. H. He, V. Jejjala, C. Matti and M. Stillman
[1506.soon] with Y. H. He, V. Jejjala, C. Matti

Vacuum Moduli Spaces of Gauge Theories

Supersymmetric quantum field theories have scalars \rightarrow a complicated vacuum space of possible field vevs $\left\langle\phi_{i}\right\rangle$, characterized by certain flat directions

- Vacuum configuration is any set of field values $\left\{\phi_{i}^{0}\right\}$ such that $V\left(\phi_{i}^{0}, \bar{\phi}_{i}^{0}\right)=0$

$$
V\left(\phi_{i}, \bar{\phi}_{i}\right)=\sum_{i}\left|\frac{\partial W}{\partial \phi_{i}}\right|^{2}+\frac{1}{2} \sum_{A} g_{A}^{2}\left(\sum_{i} \phi_{i}^{\dagger} T^{A} \phi_{i}\right)^{2}
$$

where ϕ_{i} is the lowest (scalar) component of superfield Φ_{i} with charge q_{i}

- The vacuum moduli space \mathcal{M} is the space of all possible solutions ϕ^{0} to these F and D-flatness conditions

Vacuum Moduli Spaces of Gauge Theories

Supersymmetric quantum field theories have scalars \rightarrow a complicated vacuum space of possible field vevs $\left\langle\phi_{i}\right\rangle$, characterized by certain flat directions

- Vacuum configuration is any set of field values $\left\{\phi_{i}^{0}\right\}$ such that $V\left(\phi_{i}^{0}, \bar{\phi}_{i}^{0}\right)=0$

$$
V\left(\phi_{i}, \bar{\phi}_{i}\right)=\sum_{i}\left|\frac{\partial W}{\partial \phi_{i}}\right|^{2}+\frac{1}{2} \sum_{A} g_{A}^{2}\left(\sum_{i} \phi_{i}^{\dagger} T^{A} \phi_{i}\right)^{2}
$$

where ϕ_{i} is the lowest (scalar) component of superfield Φ_{i} with charge q_{i}

- The vacuum moduli space \mathcal{M} is the space of all possible solutions ϕ^{0} to these F and D -flatness conditions
\Rightarrow This manifold \mathcal{M} may have special structure that correlates with certain phenomenological properties
- These structures need NOT be directly related to gauge invariance or discrete symmetries - otherwise unexplained from traditional field theory perspective
- Identifying such structures may aid in top-down model building from string compactification

Approach via Algebraic Geometry

\Rightarrow To every solution of the F-flatness conditions there exists a solution to the D-flatness conditions in the orbit of the complexified gauge group \mathcal{G}^{C} :

$$
\mathcal{M}=\mathcal{F} / / \mathcal{G}^{C}
$$

where \mathcal{F} is the space of all F -flat field configurations

Approach via Algebraic Geometry

\Rightarrow To every solution of the F-flatness conditions there exists a solution to the D-flatness conditions in the orbit of the complexified gauge group \mathcal{G}^{C} :

$$
\mathcal{M}=\mathcal{F} / / \mathcal{G}^{C}
$$

where \mathcal{F} is the space of all F -flat field configurations
\Rightarrow Consider a theory defined by a certain gauge group and set of fields $\left\{\Phi_{i}\right\}$

- Consider a minimal generating set of Gauge Invariant Operators (GIOs) $D_{j}=\left\{r_{j}\left(\left\{\phi_{i}\right\}\right)\right\}$
- This defines a polynomial ring $S=\mathbb{C}\left[r_{1}, \ldots, r_{k}\right]$
- F-flatness corresponds to the Jacobian ideal $\left\langle\partial W / \partial \phi_{i}\right\rangle$ in the polynomial ring $R=\mathbb{C}\left[\phi_{1}, \ldots, \phi_{n}\right]$
- The polynomial map D is a map from the quotient ring $\mathcal{F} \simeq R /\left\langle\partial W / \partial \phi_{i}\right\rangle$ to the ring S
- The image of this map gives \mathcal{M}, defined as an affine variety in S :
$\mathcal{M} \simeq \operatorname{Im}\left(\mathcal{F}^{D=G I O} S\right)$

Computational Algorithm

Strategy: consider the set of gauge invariants, composed of monomials in the ϕ_{i}, and back substitute solutions to the F-flatness conditions
\Rightarrow This becomes an elimination problem, suitable for computational methods

INPUTS

- A theory defined by a superpotential $W=W\left(\left\{\phi_{i}\right\}\right)$ with $i=1, \ldots, n$
- Basis of GIOs $\left\{r_{j}\left(\left\{\phi_{i}\right\}\right)\right\}$, with $j=1, \ldots, k$

ALGORITHM

- Define the polynomial ring $R=\mathbb{C}\left[\phi_{i=1, \ldots, n}, y_{j=1, \ldots, k}\right]$
- Consider the ideal $I=\left\langle\frac{\partial W}{\partial \phi_{i}} ; y_{j}-r_{j}\left(\phi_{i}\right)\right\rangle$
- Eliminate all variables ϕ_{i} from $I \subset R$, giving the ideal \mathcal{M} in terms of y_{j}

OUTPUT: \mathcal{M} as an affine variety in $\mathbb{C}\left[y_{1}, \ldots, y_{k}\right]$
\Rightarrow Algorithm equivalent to asking for all relations among the GIOs which satisfy the F-flatness conditions (i.e. all possible syzygies among the coordinates)

Restricting to MSSM Electroweak Sector

\Rightarrow Would ultimately like to study is the full, renormalizable MSSM superpotential

- Seven species of chiral superfields $\Rightarrow 49$ scalar fields ($n=49$)
- 973 total GIOs ($k=973$)
T. Gherghetta, C. Kolda, S. Martin, Nucl. Phys., B468 (1996) 37
\Rightarrow Set vevs for $u_{L}^{i}, u_{R}^{i}, d_{L}^{i}, d_{R}^{i}$ to zero by hand
\Rightarrow This leaves $n=13$ scalar fields and $k=22$ GIOs
J. Gray, YH. He, V. Jejjala and BDN, Phys. Lett., B638 (2006) 253 J. Gray, YH. He, V. Jejjala and BDN, Nucl. Phys., B750 (2006) 1

Operator	Explicit Sum	Index	Number
$L H_{u}$	$L_{i}^{\alpha} H^{\beta} \epsilon_{\alpha \beta}$	$i=1,2,3$	3
$H_{u} H_{d}$	$H_{\alpha} \overline{H_{\beta} \epsilon^{\alpha \beta}}$	-	1
$L L e$	$L_{\alpha}^{i} L_{\beta}^{j} e^{k} \epsilon^{\alpha \beta}$	$i, j=1,2,3 ; k=1, \ldots, j-1$	9
$L H_{d} e$	$L_{\alpha}^{i} \overline{H_{\beta}} \epsilon^{\alpha \beta} e^{j}$	$i, j=1,2,3$	9

$$
W=C^{0} H_{u} H_{d}+C_{i j}^{3} L_{i} H_{d} e_{j}=C^{0} \sum_{\alpha, \beta} H_{\alpha} \bar{H}_{\beta} \epsilon^{\alpha \beta}+\sum_{i, j} C_{i j}^{3} e^{j} \sum_{\alpha, \beta} L_{\alpha}^{i} \bar{H}_{\beta} \epsilon^{\alpha \beta}
$$

\Rightarrow Flavor mixing matrices $C_{i j}$ generated randomly

- Dimensionality of some coefficients suppressed (irrelevant for topology)

SU(2) Doublets and the Grassmannian Manifold

\Rightarrow Consider a simple $S U(2)$ theory with N_{D} doublets $\varphi_{I}\left(I=1, \ldots, N_{D}\right)$

- GIOs are monomials of the form

$$
\left(\varphi_{I} \varphi_{J}\right) \equiv \varphi_{I}^{\alpha} \varphi_{J}^{\beta} \epsilon_{\alpha \beta}
$$

- Antisymmetric under species interchange $I \leftrightarrow J$
- Full set of relations among these GIOs are themselves redundant \longrightarrow syzygies exist
- In particular, they are subject to the Plücker relations

$$
\left(\varphi_{I} \varphi_{J}\right)\left(\varphi_{K} \varphi_{L}\right)=\left(\varphi_{I} \varphi_{K}\right)\left(\varphi_{J} \varphi_{L}\right)+\left(\varphi_{I} \varphi_{L}\right)\left(\varphi_{K} \varphi_{J}\right)
$$

\Rightarrow Therefore, moduli space not trivial $\left(\mathbb{C}^{p}\right)$, but instead the Grassmannian manifold $\operatorname{Gr}\left(N_{D}, 2\right)$, with dimension $2\left(N_{D}-2\right)$

- $D=\{L L\} \longrightarrow \operatorname{Gr}(3,2) \simeq \mathbb{P}^{2}$
- $D=\{L L, L \bar{H}\} \longrightarrow \operatorname{Gr}(4,2)$
- $D=\{L L, L \bar{H}, L H, H \bar{H}\} \longrightarrow \operatorname{Gr}(5,2)$

Hypercharge and the Segrè Map

\Rightarrow Some of the $S U(2)$-invariants φ_{I} have non-vanishing hypercharge

- Let χ_{I}^{+1} and χ_{J}^{-1} be $S U(2)$-invariants with hypercharge ± 1

EXAMPLE: $\chi_{I}^{+1}=\{L L, L \bar{H}\}$
EXAMPLE: $\chi_{J}^{-1}=\{e\}$

- $S U(2) \times U(1)_{Y}$-invariants built from $\left(\chi_{I}^{+1} \chi_{J}^{-1}\right)$ are subject to additional constraint

$$
\left(\chi_{I}^{+1} \chi_{J}^{-1}\right)\left(\chi_{K}^{+1} \chi_{L}^{-1}\right)=\left(\chi_{I}^{+1} \chi_{L}^{-1}\right)\left(\chi_{K}^{+1} \chi_{J}^{-1}\right)
$$

\Rightarrow These equations define the Segrè embedding of $\mathbb{P}^{2} \times \mathbb{P}^{2}$ in \mathbb{P}^{8}

$$
\begin{array}{ccccc}
L L \text { or } L \bar{H} & e & & \text { LLe or } L \bar{H} e \\
\operatorname{Gr}(3,2)=\mathbb{P}^{2} & \times & \mathbb{P}^{2} & \longrightarrow & \mathbb{P}^{8} \\
{\left[x_{0}: x_{1}: x_{2}\right]} & & {\left[z_{0}: z_{1}: z_{2}\right]} & \rightarrow & x_{i} z_{j}
\end{array}
$$

- An affine cone over a projective variety of dimension 4, realized as the intersection of nine quadratic polynomials in \mathbb{P}^{8}
- Corresponding Hilbert series (of the first kind) is $H(t)=\frac{1+4 t+t^{2}}{(1-t)^{5}}$
- Palindromic numerator for $H(t)$ indicates this manifold is Calabi-Yau

Importance of the $L L e$ Operator

\Rightarrow The richness of the vacuum structure of the MSSM EW sector comes from an unlikely place: the $L L e$ operator
\Rightarrow These operators are subject to the relations

$$
\left(L_{\alpha}^{i} L_{\beta}^{j} e^{k} \epsilon^{\alpha \beta}\right)\left(L_{\gamma}^{m} L_{\delta}^{n} e^{p} \epsilon^{\gamma \delta}\right)=\left(L_{\alpha}^{m} L_{\beta}^{n} e^{k} \epsilon^{\alpha \beta}\right)\left(L_{\gamma}^{i} L_{\delta}^{j} e^{p} \epsilon^{\gamma \delta}\right)
$$

- An operator with a common e^{i} field is linearly proportional to another set of operators with a common e^{j} field $(i \neq j)$.
- With the labelling $y_{i+j-2+3(k-1)}=L_{\alpha}^{i} L_{\beta}^{j} e^{k} \epsilon^{\alpha \beta}$, the above relations become the ideal

$$
\begin{array}{r}
\left\langle y_{1} y_{5}-y_{2} y_{4}, y_{1} y_{6}-y_{3} y_{4}, y_{2} y_{6}-y_{3} y_{5}\right. \\
y_{1} y_{8}-y_{2} y_{7}, y_{1} y_{9}-y_{3} y_{7}, y_{2} y_{9}-y_{3} y_{8} \\
\left.y_{4} y_{8}-y_{5} y_{7}, y_{4} y_{9}-y_{6} y_{7}, y_{5} y_{9}-y_{6} y_{8}\right\rangle
\end{array}
$$

- These are precisely the nine quadratics that define the Segrè variety

Importance of the $L L e$ Operator

\Rightarrow The nature of these relations, and the resulting manifold, depends crucially on the number of generations N_{f}

- $N_{f}=1$, no $L L e$ operator possible. Moduli space is empty
- $N_{f}=2$, only two $L L e$ operators and no relation possible: $\mathcal{M}=\mathbb{C}^{2}$
- $N_{f}=3, \mathcal{M}$ is the Segrè variety
\Rightarrow For $N_{f} \geq 4$, there are now new relations, such as
$\left(L_{\alpha}^{i} L_{\beta}^{j} \epsilon^{\alpha \beta}\right)\left(L_{\gamma}^{k} L_{\delta}^{\ell} \epsilon^{\gamma \delta}\right)+\left(L_{\alpha}^{i} L_{\beta}^{k} \epsilon^{\alpha \beta}\right)\left(L_{\gamma}^{\ell} L_{\delta}^{j} \epsilon^{\gamma \delta}\right)+\left(L_{\alpha}^{i} L_{\beta}^{\ell} \epsilon^{\alpha \beta}\right)\left(L_{\gamma}^{j} L_{\delta}^{k} \epsilon^{\gamma \delta}\right)=0$
- These relations are themselves redundant - a rich set of syzygies
- Now the Grassmanian no longer degenerates to projective space, yielding the Segrè variety
- Varieties are Calabi-Yau spaces that are not explicit toric varieties
\Rightarrow In general, the LLe moduli space is (the affine cone over) the Grassmanian $\operatorname{Gr}\left(N_{f}, 2\right) \times \mathbb{P}^{N_{f}-1}$ with dimension $3 N_{f}-4$

MSSM Electroweak Sector: No Superpotential

\Rightarrow If we start with $W=0$, we are studying the moduli space determined solely by the relations among various GIOs

- Bilinears only $\{L H, H \bar{H}\}$: no relations, $\mathcal{M}=\mathbb{C}^{4}$
- LLe OR $L \bar{H} e: \mathcal{M}$ is the Segrè variety
- LLe AND $L \bar{H} e: \mathcal{M}$ is a seven-dimensional variety, defined by

$$
\begin{array}{ccccc}
\{L L, L \bar{H}\} \\
\operatorname{Gr}(4,2) & & e & & \{L L e L \bar{H} e\} \\
{\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right]}
\end{array} \times \begin{array}{cc}
\mathbb{P}^{2} & \\
{\left[z_{0}: z_{1}: z_{2}\right]} & \rightarrow
\end{array}
$$

subject to a single Plücker relation, with $H(t)=\left(1+11 t+15 t^{2}+3 t^{3}\right) /(1-t)^{7}$

- All GIOs $\{L H, H \bar{H} L L e, L \bar{H} e\}: \mathcal{M}$ a nine-dimension Calabi-Yau, defined by

$$
\begin{array}{ccccc}
\{L L, L \bar{H}, L H, H \bar{H}\} \\
\operatorname{Gr}(5,2) \\
{\left[x_{0}-x_{5}: x_{6}: x_{7}: x_{8}: x_{9}\right]}
\end{array} \times \begin{array}{cccc}
e & & \{L L e L \bar{H} e, L H, H \bar{H}\} \\
\mathbb{P}^{2} & \longrightarrow & \mathbb{C}^{2} \\
{\left[z_{0}: z_{1}: z_{2}\right]} & \rightarrow & \left(x_{i} z_{j}, x_{6}, x_{7}, x_{8}, x_{9}\right)
\end{array}
$$

subject to five Plücker relations, with $H(t)=\left(1+13 t+28 t^{2}+13 t^{3}+t^{4}\right) /(1-t)^{9}$

MSSM with Charged Leptons

$$
W=C^{0} \sum_{\alpha, \beta} H_{\alpha} \bar{H}_{\beta} \epsilon^{\alpha \beta}+\sum_{i, j} C_{i j}^{3} \sum_{\alpha, \beta} L_{\alpha}^{i} \bar{H}_{\beta} e^{j} \epsilon^{\alpha \beta}
$$

\Rightarrow F-term equations force the following combinations to vanish

- $F_{H}: \quad 0=C^{0} \bar{H}_{\beta} \epsilon^{\alpha \beta}$
- $F_{\bar{H}}: \quad 0=C^{0} H_{\alpha} \epsilon^{\alpha \beta}+\sum_{i, j} C_{i j}^{3} L_{\alpha}^{i} e^{j} \epsilon^{\alpha \beta}$
- $F_{L^{j}}: \quad 0=C_{i j}^{3} e^{i} \bar{H}_{\beta} \epsilon^{\alpha \beta}$
- $F_{e} i: \quad 0=\sum_{i, j} C_{i j}^{3} L_{\alpha}^{j} \bar{H}_{\beta} \epsilon^{\alpha \beta}$
\Rightarrow Summary of these constraints:
- \bar{H} vanishes, $L \bar{H} e, H \bar{H}$ not involved in vacuum manifold
- $F_{\bar{H}}$ equation relates $L H$ and $L L e$ operators in the vacuum
\Rightarrow Therefore, \mathcal{M} determined solely by the $L L e$ relations \Rightarrow the Segrè embedding
\Rightarrow This only happens for $N_{f}=3$ and $N_{h}=1$!

MSSM with Seesaw Neutrinos

\Rightarrow Add in three right-handed neutrinos: now 16 total scalar fields, 25 GIOs

$$
W=C^{0} \sum_{\alpha, \beta} H_{\alpha} \bar{H}_{\beta} \epsilon \alpha \beta+\sum_{i, j} C_{i j}^{3} \sum_{\alpha, \beta} L_{\alpha}^{i} \bar{H}_{\beta} e^{j} \epsilon^{\alpha \beta}+\sum_{i, j} C_{i j}^{4} \nu^{i} \nu^{j}+\sum_{i, j} C_{i j}^{5} \sum_{\alpha, \beta} L_{\alpha}^{j} H_{\beta} \nu^{i} \epsilon^{\alpha \beta}
$$

$\Rightarrow \mathrm{F}$-term equations force the following combinations to vanish

- $F_{H}: \quad 0=\sum_{i, j} C_{i j}^{5} \nu^{i} L_{\alpha}^{j} \epsilon^{\alpha \beta}-C^{0} \bar{H}_{\alpha} \epsilon^{\alpha \beta}$
- $F_{\bar{H}}: \quad 0=C^{0} H_{\alpha} \epsilon^{\alpha \beta}+\sum_{i, j} C_{i j}^{3} L_{\alpha}^{i} e^{j} \epsilon^{\alpha \beta}$
- $F_{L^{j}}: \quad 0=\sum_{i, j} C_{i j}^{5} \nu^{i} H_{\beta} \epsilon^{\alpha \beta}+C_{i j}^{3} e^{i} \bar{H}_{\beta} \epsilon^{\alpha \beta}$
- $F_{\nu i}: \quad 0=\sum_{j} C_{i j}^{4} \nu^{i}+\sum_{i, j} C_{i j}^{5} L_{\alpha}^{j} H_{\beta} \epsilon^{\alpha \beta}$
- $F_{e^{i}}: \quad 0=\sum_{i, j} C_{i j}^{3} L_{\alpha}^{j} \bar{H}_{\beta} \epsilon^{\alpha \beta}$

MSSM with Seesaw Neutrinos

\Rightarrow Summary of these equations

- GIOs $\nu, L H, H \bar{H}$ and $L \bar{H} e$ all vanish in the vacuum
- Vacuum manifold again determined by LLe operators, but we do NOT obtain the Segrè variety
\Rightarrow New constraint emerges from $F_{\bar{H}}$ equation: $\sum_{i j} C_{i j}^{3} e^{i} L_{\alpha}^{j} L_{\beta}^{k} \epsilon^{\alpha \beta}=0$
- These are three (free k index) new linear relations on the $L L e$ operators
- The defining ideal is modified to

$$
\begin{array}{r}
\left\langle y_{1} y_{5}-y_{2} y_{4}, y_{1} y_{6}-y_{3} y_{4}, y_{2} y_{6}-y_{3} y_{5}, y_{1} y_{8}-y_{2} y_{7}\right. \\
y_{1} y_{9}-y_{3} y_{7}, y_{2} y_{9}-y_{3} y_{8}, y_{4} y_{8}-y_{5} y_{7}, y_{4} y_{9}-y_{6} y_{7} \\
\left.y_{5} y_{9}-y_{6} y_{8}, y_{1}-y_{9}, y_{2}-y_{6}, y_{4}-y_{8}\right\rangle
\end{array}
$$

\Rightarrow Defines a variety of dimension three; choose d.o.f. to be $\left[y_{3}: y_{5}: y_{7}\right]$

$$
\begin{array}{lll}
y 1 \rightarrow x_{0} x_{2} ; & y_{2} \rightarrow x_{0} x_{1} ; & y_{3} \rightarrow x_{0}^{2} \\
y_{4} \rightarrow x_{1} x_{2} ; & y_{5} \rightarrow x_{1}^{2} ; & y_{1} \rightarrow x_{1} x_{0} \\
y_{7} \rightarrow x_{2}^{2} ; & y_{8} \rightarrow x_{2} x_{1} ; & y_{9} \rightarrow x_{2} x_{0}
\end{array}
$$

\Rightarrow This is the Veronese embedding of \mathbb{P}^{2} into \mathbb{P}^{5}

MSSM with Seesaw Neutrinos

\Rightarrow How did this happen?

- New relation $\sum_{i j} C_{i j}^{3} e^{i} L_{\alpha}^{j} L_{\beta}^{k} \epsilon^{\alpha \beta}=0$ effectively identifies $L L$ coordinates to e coordinates
- Thus, the two \mathbb{P}^{2} factors in the Segrè embedding are now identified

$$
\begin{gathered}
L L \\
\mathbb{P}^{2} \\
\left.: x_{1}: x_{2}\right]
\end{gathered} \times \begin{array}{ccc}
e & & L L e \\
\mathbb{P}^{2} & \longrightarrow & \mathbb{P}^{8} \\
{\left[z_{0}: z_{1}: z_{2}\right]} & \rightarrow & x_{i} z_{j}
\end{array},
$$

becomes simply

$$
\begin{array}{ccc}
\mathbb{P}^{2} & \rightarrow & \mathbb{P}^{5} \\
{\left[x_{0}: x_{1}: x_{2}\right]} & \rightarrow & {\left[x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}: x_{0} x_{2}: x_{1} x_{2}: x_{2}^{2}\right]}
\end{array},
$$

\Rightarrow A similar identification between the variables of $\operatorname{Gr}(4,2)$ and \mathbb{P}^{3} occurs for the case of $N_{f}=4$ with seesaw neutrinos

- But here the identification is not complete, and a Severi variety does not emerge

MSSM with Dirac Neutrinos

\Rightarrow Something different occurs in cases where the Majorana mass term is absent

$$
W=C^{0} \sum_{\alpha, \beta} H_{\alpha} \bar{H}_{\beta} \epsilon \alpha \beta+\sum_{i, j} C_{i j}^{3} \sum_{\alpha, \beta} L_{\alpha}^{i} \bar{H}_{\beta} e^{j} \epsilon^{\alpha \beta}+\sum_{i, j} C_{i j}^{5} \sum_{\alpha, \beta} L_{\alpha}^{j} H_{\beta} \nu^{i} \epsilon^{\alpha \beta}
$$

- $F_{\bar{H}}=0$ still gives $\sum_{i j} C_{i j}^{3} e^{i} L_{\alpha}^{j} L_{\beta}^{k} \epsilon^{\alpha \beta}=0$

Effectively identifies $L L$ coordinates to e coordinates
Would seem to imply a Veronese variety

- $F_{\nu^{i}}=0$ now implies $\sum_{i j} C_{i j}^{5} \nu^{i} L_{\alpha}^{j} L_{\beta}^{k} e^{\ell} \epsilon_{\alpha, \beta}=0$
* Would-be ν^{i} d.o.f. now related back to the remaining $L L e$ d.o.f.

So this is a Veronese-like embedding into a higher-dimensional space
\Rightarrow We refer to it as the "deformed Veronese" variety, which is defined by

$$
\left.\begin{array}{c}
L L \simeq e \\
\mathbb{P}^{2} \\
{\left[x_{0}: x_{1}: x_{2}\right]}
\end{array} \times \begin{array}{c}
\nu \\
\mathbb{C}
\end{array}\right] \begin{array}{ccc}
& \longrightarrow \nu, L L e\} \\
{[\lambda]} & \rightarrow & {\left[x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}: x_{0} x_{2}: x_{1} x_{2}: x_{2}^{2}: \lambda x_{0}: \lambda x_{1}: \lambda x_{2}\right]}
\end{array}
$$

which is a non-compact, 4D toric CY with $H(t)=\left(1+5 t+t^{2}\right) /(1-t)^{4}$

Example of Outcomes with Bilinear Deformations

\Rightarrow Inclusion of both gauge-invariant trilinears gives a trivial background
\Rightarrow Computation of vacuum manifold \mathcal{M} for various bilinear deformations

Deformation	$L \overline{\bar{H}} e$	LLe	$L \bar{H} e+L H \nu$	$L L e+L H \nu$
none	Segrè $\times \mathbb{C}^{4}$	def. Ver. $\times \mathbb{C}$	def. Ver. $\times \mathbb{C}$	$\left(10\|6,14\| 3^{6} 2^{3}\right)$
$+H \bar{H}$	Segrè	point	def. Ver.	\mathbb{C}^{3}
$+L H$	\mathbb{C}	conifold	def. Ver. $\times \mathbb{C}$	$\left(10\|6,14\| 3^{6} 2^{3}\right)$
$+L H+H \bar{H}$	\mathbb{C}	point	def. Ver.	\mathbb{C}^{3}
$+\nu^{2}$	Segrè $\times \mathbb{C}^{4}$	def. Ver. $\times \mathbb{C}$	Veronese $\times \mathbb{C}$	Veronese $\times \mathbb{C}$
$+\nu^{2}+H \bar{H}$	Segrè	point	Veronese	\emptyset
$+\nu^{2}+L H$	\mathbb{C}	conifold	conifold $\times \mathbb{C}^{2}$	conifold $\times \mathbb{C}^{2}$
$+\nu^{2}+L H+H \bar{H}$	\mathbb{C}	point	conifold $\times \mathbb{C}^{2}$	\emptyset

\Rightarrow A systematic treatment of the nature of R-parity from the point of view of geometry is now underway

- "Interesting" geometry (non-trivial structure and small dimensionality) seems to prefer the "natural" R-parity assignment
- Seesaw mechanism plus μ-term seems to demand the "natural" R-parity assignment

Future Prospects and Potential

\Rightarrow Ultimately we expect string theory to motivate/identify the connection between compactification geometry and geometry of the gauge theory vacuum space

- For example, the MSSM likes the Veronese embedding
- The Veronese variety is a Severi variety with underlying $S U(3)$ isometry in which two \mathbb{P}^{2} factors are identified
- This is getting closer to the sorts of data that can be sought after in large classes of string compactifications

Future Prospects and Potential

\Rightarrow Ultimately we expect string theory to motivate/identify the connection between compactification geometry and geometry of the gauge theory vacuum space

- For example, the MSSM likes the Veronese embedding
- The Veronese variety is a Severi variety with underlying $S U(3)$ isometry in which two \mathbb{P}^{2} factors are identified
- This is getting closer to the sorts of data that can be sought after in large classes of string compactifications
\Rightarrow Vacuum geometry cares about both the superpotential and the GIO set which defines the polynomial ring
- Two theories with the same W but different GIO sets give different moduli spaces!
- Example: imposing $R=(-1)^{-L}$ and $U(1)_{L}$ symmetries do not give the same answers for the MSSM superpotential
- There may be a geometrical origin for R-parity conservation that is not obviously due to field theory symmetries

Future Prospects and Potential

\Rightarrow Ultimately we expect string theory to motivate/identify the connection between compactification geometry and geometry of the gauge theory vacuum space

- For example, the MSSM likes the Veronese embedding
- The Veronese variety is a Severi variety with underlying $S U(3)$ isometry in which two \mathbb{P}^{2} factors are identified
- This is getting closer to the sorts of data that can be sought after in large classes of string compactifications
\Rightarrow Vacuum geometry cares about both the superpotential and the GIO set which defines the polynomial ring
- Two theories with the same W but different GIO sets give different moduli spaces!
- Example: imposing $R=(-1)^{-L}$ and $U(1)_{L}$ symmetries do not give the same answers for the MSSM superpotential
- There may be a geometrical origin for R-parity conservation that is not obviously due to field theory symmetries
\Rightarrow Finally, non-trivial geometries require $N_{f} \geq 3$. Small $\operatorname{dim}(\mathcal{M})$ requires $N_{f}<4$. Three generations are special.

Backup Slides

Interlude on Complexified Gauge Groups

$\Rightarrow N=1$ SUSY action on previous page has very large symmetry group

$$
\Phi_{i} \rightarrow g \cdot \Phi_{i} ; \quad e^{V} \rightarrow\left(g^{\dagger}\right)^{-1} e^{V} g^{-1}
$$

where $g=e^{i \Lambda}$ and Λ is a chiral superfield
\Rightarrow Normally we don't see all of this invariance because we work in Wess-Zumino gauge

$$
V_{a}=-\theta \sigma_{\mu} \bar{\theta} v_{a}^{\mu}+i \theta^{2} \overline{\theta \lambda}_{a}-i \bar{\theta}^{2} \theta \lambda_{a}+\frac{1}{2} \theta^{2} \bar{\theta}^{2} D_{a}
$$

- Residual gauge symmetry is just the usual one with real parameters
- In this gauge the D-flatness condition is $D_{a}=\sum_{i} q_{i} \phi_{i}^{\dagger} t_{a} \phi_{i}=0$
- NOTE: This constraint is not holomorphic in the fields ϕ_{i}

Interlude on Complexified Gauge Groups

$\Rightarrow N=1$ SUSY action on previous page has very large symmetry group

$$
\Phi_{i} \rightarrow g \cdot \Phi_{i} ; \quad e^{V} \rightarrow\left(g^{\dagger}\right)^{-1} e^{V} g^{-1}
$$

where $g=e^{i \Lambda}$ and Λ is a chiral superfield
\Rightarrow Normally we don't see all of this invariance because we work in Wess-Zumino gauge

$$
V_{a}=-\theta \sigma_{\mu} \bar{\theta} v_{a}^{\mu}+i \theta^{2} \overline{\theta \lambda}_{a}-i \bar{\theta}^{2} \theta \lambda_{a}+\frac{1}{2} \theta^{2} \bar{\theta}^{2} D_{a}
$$

- Residual gauge symmetry is just the usual one with real parameters
- In this gauge the D-flatness condition is $D_{a}=\sum_{i} q_{i} \phi_{i}^{\dagger} t_{a} \phi_{i}=0$
- NOTE: This constraint is not holomorphic in the fields ϕ_{i}
\Rightarrow Now imagine choosing a less restrictive gauge such that

$$
V_{a}=C_{a}-\theta \sigma_{\mu} \bar{\theta} v_{a}^{\mu}+i \theta^{2} \overline{\theta \lambda}-i \bar{\theta}^{2} \theta \lambda_{a}+\frac{1}{2} \theta^{2} \bar{\theta}^{2} D_{a}
$$

Interlude on Complexified Gauge Groups

- Residual gauge symmetry is now the complexification \mathcal{G}^{C} of group \mathcal{G}
- The D-flatness condition in this gauge becomes

$$
\frac{\partial}{\partial C_{a}} \sum_{i} \phi_{i}^{\dagger} e^{C} \phi_{i}=0
$$

\Rightarrow Now imagine some ϕ_{i}^{0} which satisfies the above and $\partial W /\left.\partial \phi_{i}\right|_{\phi_{i}=\phi_{i}^{0}}$.

- Use the extra gauge invariance to define $\hat{\phi}_{i}^{0} \equiv e^{C / 2} \phi_{i}^{0}$

$$
\frac{\partial}{\partial \hat{C}_{a}} \sum_{i}\left(\hat{\phi}_{i}^{0}\right)^{\dagger} e^{\hat{C}} \hat{\phi}_{i}^{0}=\frac{\partial}{\partial \hat{C}_{a}} \sum_{i} X\left(e^{\hat{C} / 2} \hat{\phi}_{i}^{0}\right)=0 ; \quad X(\phi) \equiv \phi^{\dagger} \phi
$$

- F-flatness conditions holomorphic and invariant under \mathcal{G}^{C}
- Can always perform such a transformation to take $C_{a} \rightarrow 0$, giving an F - and D-flat solution in WZ gauge
- The D-flatness conditions are now trivial: just a gauge-fixing condition!
\Rightarrow Gauge invariant holomorphic operators form a basis for these D-orbits

Attacking the MSSM

\Rightarrow Seven species of chiral superfields $\Rightarrow 49$ scalar fields ($n=49$)
\Rightarrow All 973 possible GIOs tabulated below ($k=973$)
T. Gherghetta, C. Kolda, S. Martin, Nucl. Phys., B468 (1996)

Operator	Explicit Sum	Index	Number
$L H_{u}$	$L_{i}^{\alpha} H^{\beta} \epsilon_{\alpha \beta}$	$i=1,2,3$	3
$H_{u} H_{d}$	$H_{\alpha}\left(H_{d}\right)_{\beta} \epsilon^{\alpha \beta}$	NA	1
$L L e$	$L_{\alpha}^{i} L_{\beta}^{j} e^{k} \epsilon^{\alpha \beta}$	$i, j=1,2,3 ; k=1, \ldots, j-1$	9
$L H_{d} e$	$L_{\alpha}^{i}\left(H_{d}\right)_{\beta} e^{j} \epsilon^{\alpha \beta}$	$i, j=1,2,3$	9
$u d d$	$u_{a}^{i} d_{b}^{j} d_{c}^{k} \epsilon^{a b c}$	$i, j=1,2,3 ; k=1, \ldots, j-1$	9
$Q d L$	$Q_{a, \alpha}^{i} d_{a}^{j} L_{\beta}^{k} \epsilon^{\alpha \beta}$	$i, j, k=1,2,3$	27
$Q u H_{u}$	$Q_{a, \alpha}^{i} u_{a}^{j}\left(H_{u}\right)_{\beta} \epsilon^{\alpha \beta}$	$i, j=1,2,3$	9
$Q d H_{d}$	$Q_{a, \alpha}^{i} d_{a}^{j}\left(H_{d}\right)_{\beta} \epsilon^{\alpha \beta}$	$i, j=1,2,3$	9
$Q Q Q L$	$Q_{a, \beta}^{i} Q_{b, \gamma}^{j} Q_{c, \alpha}^{k} L_{\delta}^{l} \epsilon^{a b c} \epsilon^{\beta \gamma} \epsilon^{\alpha \delta}$	$i, j, k, l=1,2,3 ; i \neq k, j \neq k$, $j<i,(i, j, k) \neq(3,2,1)$	24
$Q u Q d$	$Q_{a, \alpha}^{i} u_{a}^{j} Q_{b, \beta}^{k} d_{b}^{l} \epsilon^{\alpha \beta}$	$i, j, k, l=1,2,3$	81
$Q u L e$	$Q_{a, \alpha}^{i} u_{a}^{j} L_{\beta}^{k} e^{l} \epsilon^{\alpha \beta}$	$i, j, k, l=1,2,3$	81
$u u d e$	$u_{a}^{i} u_{b}^{j} d_{c}^{k} e^{l} \epsilon^{a b c}$	$i, j, k, l=1,2,3 ; j<i$	27
$Q Q Q H_{d}$	$Q_{a, \beta}^{i} Q_{b, \gamma}^{j} Q_{c, \alpha}^{k}\left(H_{d}\right)_{\delta} \epsilon^{a b c} \epsilon^{\beta \gamma} \epsilon^{\alpha \delta}$	$i, j, k, l=1,2,3 ; i \neq k, j \neq k$, $j<i,(i, j, k) \neq(3,2,1)$	8
$Q u H_{d} e$	$Q_{a, \alpha}^{i} u_{a}^{j}\left(H_{d}\right)_{\beta} e^{k} \epsilon^{\alpha \beta}$	$i, j, k=1,2,3$	27
$d d d L L$	$d_{a}^{i} d_{b}^{j} d_{c}^{k} L_{\alpha}^{m} L_{\beta}^{n} \epsilon^{a b c} \epsilon_{i j k} \epsilon^{\alpha \beta}$	$m, n=1,2,3 ; n<m$	3

$i, j, k=1,2,3 \leftrightarrow$ flavor indices, $\quad a, b, c=1,2,3 \leftrightarrow$ color indices, $\quad \alpha, \beta, \gamma=1,2 \leftrightarrow S U(2)_{L}$ indices

Attacking the MSSM

Operator	Explicit Sum	Index	Number
uuuee	$u_{a}^{i} u_{b}^{j} u_{c}^{k} e^{m} e^{n} \epsilon^{a b c} \epsilon_{i j k}$	$m, n=1,2,3 ; n \leq m$	6
QuQue	$Q_{a, \alpha}^{i} u_{a}^{j} Q_{b, \beta}^{k} u_{b}^{m} e^{n} \epsilon_{\alpha \beta}$	$i, j, k, m, n=1,2,3 ;$ $\operatorname{as}\{(i, j),(k, m)\}$	108
$Q Q Q Q u$	$Q_{a, \beta}^{i} Q_{b, \gamma}^{j} Q_{c, \alpha}^{k} Q_{f, \delta}^{m} u_{f}^{n} \epsilon^{a b c} \epsilon^{\beta \gamma} \epsilon^{\alpha \delta}$	$i, j, k, m=1,2,3 ; i \neq m$, $j \neq m, j<i$, $(i, j, k) \neq(3,2,1)$	72
$d d d L H_{d}$	$d_{a}^{i} d_{b}^{j} d_{c}^{k} L_{\alpha}^{m}\left(H_{d}\right)_{\beta} \epsilon^{a b c} \epsilon_{i j k} \epsilon_{\alpha \beta}$	$m=1,2,3$	3
$u u d Q d H_{u}$	$u_{a}^{i} u_{b}^{j} d_{c}^{k} Q_{f, \alpha}^{m} d_{f}^{n}\left(H_{u}\right)_{\beta} \epsilon^{a b c} \epsilon_{\alpha \beta}$	$i, j, k, m=1,2,3 ; j<i$	81
$(Q Q Q)_{4} L L H_{u}$	$(Q Q Q)_{4}^{\alpha \beta \gamma} L_{\alpha}^{m} L_{\beta}^{n}\left(H_{u}\right)_{\gamma}$	$m, n=1,2,3 ; n \leq m$	6
$(Q Q Q)_{4} L H_{u} H_{d}$	$(Q Q Q)_{4}^{\alpha \beta \gamma} L_{\alpha}^{m}\left(H_{u}\right)_{\beta}\left(H_{d}\right)_{\gamma}$	$m=1,2,3$	3
$(Q Q Q)_{4} H_{u} H_{d} H_{d}$	$(Q Q Q)_{4}^{\alpha \beta \gamma}\left(H_{u}\right)_{\alpha}\left(H_{d}\right)_{\beta}\left(H_{d}\right)_{\gamma}$	NA	1
$(Q Q Q)_{4} L L L e$	$(Q Q Q)_{4}^{\alpha \beta \gamma} L_{\alpha}^{m} L_{\beta}^{n} L_{\gamma}^{p} e^{q}$	$m, n, p, q=1,2,3 ;$ $n \leq m ; p \leq n$	27
$u u d Q d Q d$	$u_{a}^{i} u_{b}^{j} d_{c}^{k} Q_{f, \alpha}^{m} d_{f}^{n} Q_{g, \beta}^{p} d_{g}^{q} \epsilon^{a b c} \epsilon_{\alpha \beta}$	$i, j, k, m, n, p, q=1,2,3 ;$ $j<i, a s\{(m, n),(p, q)\}$	324
$(Q Q Q)_{4} L L H_{d} e$	$(Q Q Q)_{4}^{\alpha \beta \gamma} L_{\alpha}^{m} L_{\beta}^{n}\left(H_{d}\right)_{\gamma} e^{p}$	$m, n, p=1,2,3 ; n \leq m$	9
$(Q Q Q)_{4} L H_{d} H_{d} e$	$(Q Q Q)_{4}^{\alpha \beta \gamma} L_{\alpha}^{m}\left(H_{d}\right)_{\beta}\left(H_{d}\right)_{\gamma} e^{n}$	$m, n=1,2,3$	9
$(Q Q Q)_{4} H_{d} H_{d} H_{d} e$	$(Q Q Q)_{4}^{\alpha \beta \gamma}\left(H_{d}\right)_{\alpha}\left(H_{d}\right)_{\beta}\left(H_{d}\right)_{\gamma} e^{m}$	$m=1,2,3$	3

In the above we defined $\left[(Q Q Q)_{4}\right]_{\alpha \beta \gamma}=Q_{a, \alpha}^{i} Q_{b, \beta}^{j} Q_{c, \gamma}^{k} \epsilon^{a b c} \epsilon^{i j k}$
\Rightarrow The reason the problem is unsolved after two decades...

Hilbert Series

\Rightarrow Hilbert series provides technology for enumerating GIOs in a supersymmetric quantum field theory
\Rightarrow For a variety $\mathcal{M} \subset \mathbb{C}\left[y_{1}, \ldots, y_{k}\right]$, the Hilbert series is the formal series

$$
H(t)=\sum_{n=-\infty}^{\infty} \operatorname{dim} \mathcal{M}_{n} t^{n}=\frac{P(t)}{(1-t)^{d}}
$$

- Hilbert series encodes information about the chiral ring and geometric features of the variety
- $\operatorname{dim}\left(\mathcal{M}_{n}\right)$ is the number of independent polynomials of degree n on \mathcal{M}
\Rightarrow A palindromic Hilbert Series obeys $H(t)=\sum_{k=0}^{N} a_{k} t^{k}$ with $a_{k}=a_{N-k}$
- By a theorem of Stanley, the corresponding algebraic variety is Calabi-Yau (in the sense of a trivial canonical sheaf)

Segrè Embedding Explicitly

To see the Segrè embedding explicitly let x_{i} be the coordinates of one \mathbb{P}^{2} (representing the three independent $L L$ operators), and let z_{i} be coordinates of the second \mathbb{P}^{2} (representing the three independent e_{i} operators)
\Rightarrow The Segrè embedding is given by

\Rightarrow The $L L e$ syzygies are then recovered when we identify the coordinates y_{i} of \mathbb{P}^{8} via

$$
\begin{aligned}
& y_{1} \rightarrow z_{0} x_{2}, \quad y_{2} \rightarrow z_{0} x_{1}, \quad y_{3} \rightarrow z_{0} x_{0}, \\
& y_{4} \rightarrow z_{1} x_{2}, \quad y_{5} \rightarrow z_{1} x_{1}, \quad y_{6} \rightarrow z_{1} x_{0}, \\
& y_{7} \rightarrow z_{2} x_{2}, \quad y_{8} \rightarrow z_{2} x_{1}, \quad y_{9} \rightarrow z_{2} x_{0},
\end{aligned}
$$

Severi Varieties

\Rightarrow Any smooth non-degenerate algebraic variety X of (complex) dimension n embedded into \mathbb{P}^{m} with $m<\frac{3}{2} n+2$ has the property that its secant variety $\operatorname{Sec}(\mathrm{X})$ is equal to \mathbb{P}^{m} [Hartshorne-Zak]

- Limiting case where $m=\frac{3}{2} n+2$ and $\operatorname{Sec}(\mathrm{X}) \neq \mathbb{P}^{n}$ is a Severi variety
\Rightarrow All Severi varieties have been classified [Zak]; there are only four:

1. $n=2$: The Veronese surface $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{5}$
2. $n=4$: The Segrè variety $\mathbb{P}^{2} \times \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{8}$;
3. $n=8$: The Grassmannian $\operatorname{Gr}(6,2)$ of two-planes in \mathbb{C}^{6}, embedded into \mathbb{P}^{14}
4. $n=16$: The Cartan variety of the orbit of the highest weight vector of a certain non-trivial representation of E_{6}
\Rightarrow Only the first two cases involve products of projective spaces

Severi Varieties

\Rightarrow There exist precisely four division algebras: the real numbers \mathbb{R}, the complex numbers \mathbb{C}, the quaternions \mathbb{H}, and the octonions \mathbb{O}
\Rightarrow If we imagine the projective planes formed from each of these division algebras, the complexification of these spaces are precisely homeomorphic to the four Severi varieties

Projective Plane	Severi Variety	Homogenous Space
$\mathbb{R P}^{2}$	$\mathbb{C P}^{2}$	$S U(3) / S(U(1) \times U(2))$
$\mathbb{C P}^{2}$	$\mathbb{C P}^{2} \times \mathbb{C P}^{2}$	$S U(3)^{2} / S(U(1) \times U(2))^{2}$
$\mathbb{H P P}^{2}$	$\operatorname{Gr}(6,2)$	$S U(6) / S(U(2) \times U(4))$
$\mathbb{O P}^{2}$	S	$E_{6} / \operatorname{Spin}(10) \times U(1)$

One Generation MSSM

\Rightarrow Drop all flavor indices $(i=j=k=1$) so now $n=9$
\Rightarrow There are now only 9 GIOs (one of each variety)

$$
L H_{u}, H_{u} H_{d}, Q d L, Q u H_{u}, Q d H_{d}, L H_{d} e, Q u Q d, Q u L e, Q u H_{d} e
$$

\Rightarrow Simplified superpotential

$$
\begin{aligned}
W_{0}= & \lambda^{0} \sum_{\alpha, \beta} H_{u}^{\alpha} H_{d}^{\beta} \epsilon_{\alpha \beta}+\lambda^{1} \sum_{\alpha, \beta, a} Q_{a, \alpha}\left(H_{u}\right)_{\beta} u_{a} \epsilon^{\alpha \beta} \\
& +\lambda^{2} \sum_{\alpha, \beta, a} Q_{a, \alpha}\left(H_{d}\right)_{\beta} d_{a} \epsilon^{\alpha \beta}+\lambda^{3} \sum_{\alpha, \beta} L_{\alpha}\left(H_{d}\right)_{\beta} e \epsilon^{\alpha \beta}
\end{aligned}
$$

\Rightarrow Computation of vacuum manifold \mathcal{M} for various deformations

$W_{0}+?$	$\operatorname{dim}(\mathcal{M})$	\mathcal{M}	$W_{0}+?$	$\operatorname{dim}(\mathcal{M})$	\mathcal{M}
0	1	\mathbb{C}	$Q u Q d$	1	\mathbb{C}
$L H_{u}$	0	point	$Q u L e$	1	\mathbb{C}
$Q d L$	0	point	$Q u H_{d} e$	1	\mathbb{C}

