Natural inflation with and without modulations in string theory

Hajime Otsuka (Waseda University)

with

Hiroyuki Abe (Waseda Univ.)
Tatsuo Kobayashi (Hokkaido Univ.)

based on JHEP 1504 (2015) 160

Inflation

i) Solving the fine tuning problem (Horizon problem and flatness problem) ii) Producing the origin of the density perturbations

Fig. 1. Marginalized joint 68% and 95% CL regions for n_s and $r_{0.002}$ from *Planck* in combination with other data sets compared to the theoretical predictions of selected inflationary models.

Planck

2

OA lot of axions in string theory

- O Perturbative flat potential (shift symmetry)
- A good candidate for the inflaton

From the dimensional reduction, the fundamental

axion decay constants are $f \ll M_{
m Pl}$

K. Choi and J. E. Kim (1985), T. Banks, et al. (2003),...

Axion decay constant is severely constrained,

$$f \ll M_{\rm Pl}$$

In order to enhance the axion decay constant,

Multiple axions

OAlignment mechanism, N-flation, •••

J. E. Kim, H. P. Nilles and M. Peloso ('04), S. Dimopoulos, S. Kachru,
J. McGreevy, J. G. Wacker ('05)

Single axion

OThreshold correction

H. Abe, T. Kobayashi, and H. O. ('14)

We propose the single-field natural inflation by (closed) string axion.

Outline

- i) Introduction
- ii) Trans-Planckian axion decay constant
 iii) Natural inflation with modulations
- iii) Natural inflation with modulations
 - (type IIB string)
- iv) Conclusion

Type IIB string on toroidal orientifold and orbifold with D3/D7-branes $T^6/(Z_2 \times Z_2)$

On D7-branes, the gauge coupling receives the moduli-dependent threshold corrections

$$\frac{1}{g^2} = \frac{T}{4\pi} + \frac{\Delta(U)}{16\pi^2}$$

U :Complex structure moduli ${\mathcal T}$:Kähler moduli

D. Lüst and S. Stieberger, ('03)

Moduli-dependent threshold corrections

6

Type IIB string on toroidal orientifold and orbifold with D3/D7-branes $T^6/(Z_2 \times Z_2)$

On D7-branes, the gauge coupling receives the moduli-dependent threshold corrections

$$\frac{1}{g^2} = \frac{T}{4\pi} + \frac{\Delta(U)}{16\pi^2}$$

$$\Delta = -4b_{N=2} \ln \eta(i \, U)$$

D. Lüst and S. Stieberger, ('03)

The gaugino condensation on D7-branes (SU(L) SYM)

$$W = Ae^{-8\pi^2/Lg^2} = Ae^{-\frac{2\pi T}{L} - \frac{2b_{N=2}}{L}\ln\eta(iU)}$$

Type IIB string on toroidal orientifold and orbifold with D3/D7-branes $T^6/(Z_2 \times Z_2)$

On D7-branes, the gauge coupling receives the moduli-dependent threshold corrections

$$\frac{1}{g^2} = \frac{T}{4\pi} + \frac{\Delta(U)}{16\pi^2}$$

$$\Delta = -4b_{N=2} \ln \eta(i \, U)$$

D. Lüst and S. Stieberger, ('03)

The gaugino condensation on D7-branes (SU(L) SYM)

$$W = Ae^{-8\pi^2/Lg^2} = Ae^{-\frac{2\pi T}{L} - \frac{2b_{N=2}}{L}\ln\eta(iU)}$$

$$\eta(i U) \to e^{-\frac{\pi}{12}U} \left[1 - \mathcal{O}(e^{-2\pi U})\right], \operatorname{Re} U \gg 1$$

$$W = Ae^{-\frac{2\pi T}{L}}e^{-\frac{b_{N=2}\pi}{6L}U}$$

Type IIB string on toroidal orientifold and orbifold with D3/D7-branes $T^6/(Z_2 imes Z_2)$

Superpotential

$$W = Ae^{-\frac{2\pi T}{L}}e^{-\frac{b_{N=2}\pi}{6L}U}$$

Integrate out the moduli except for $\,{
m Im}\, U$

Axion potential

$$V_{ ext{eff}} = \Lambda^4 \left(1 - \cos \left(\frac{b_{N=2} \pi \sqrt{2} \langle \operatorname{Re} U \rangle}{6L} \phi \right) \right)$$

$$f \simeq \frac{1.4 L}{b_{N-2} \langle \operatorname{Re} U \rangle}$$

$$\phi \simeq \frac{\operatorname{Im} U}{\sqrt{2} \langle \operatorname{Re} U \rangle}$$

In the case of $L/b_{N=2}>1$ and $\langle {
m Re}\, U
angle \simeq 1$, we can realize the trans-Planckian axion decay constant.

Moduli stabilization

We consider the scenario similar to the KKLT scenario.

Moduli

- S • dilaton, T • Overall Kähler moduli (for simplicity)
- U_i • Three complex structure moduli
- (One of $Im(U_i)$ is the inflation.)
- i) Flux compactification to stabilize the linear combination of S and U. $W_{\mathrm{flux}}(U,S) = \int G_3 \wedge \Omega$
- ii) Non-perturbative effects for S and T (racetrack superpotential)
- iii) Uplifting potential (E.g., F-term uplifting)

Outline

- i) Introduction
- ii) Trans-Planckian axion decay constant
- iii) Natural inflation with modulations (type IIB string)
- iv) Conclusion

Natural inflation with modulatoins

Superpotential

$$W = \underline{A e^{-\frac{2\pi}{L}T} \eta(iU)^{2b_{N=2}/L}} + \cdots$$

$$\frac{1}{Ae^{-\frac{2\pi}{L}T} e^{-\frac{b_{N=2}\pi}{6L}U}} \left[1 - e^{-2\pi U} - \mathcal{O}(e^{-4\pi U})\right], \operatorname{Re} U > 1$$

$$Ae^{-\frac{2\pi}{L}T} e^{-\frac{b_{N=2}\pi}{6L}U} \left(1 - e^{-2\pi U}\right)$$

Inflaton potential

$$V_{\text{eff}} \simeq \Lambda - \Lambda_1 \cos(\lambda_1 \phi) + \Lambda_2 \cos(\lambda_2 \phi)$$

T. Kobayashi and F. Takahashi ('10)

Modulation term

$$\Lambda_2 = \Lambda_1 \frac{2b}{L} e^{-\left(2\pi + \frac{b_{N=2}\pi}{6L}\right)\langle \operatorname{Re} U^2 \rangle} < \Lambda_1$$

$$\lambda_1 = \frac{b_{N=2}\pi\sqrt{2}\langle \operatorname{Re} U \rangle}{6L} \qquad \lambda_2 = \left(2\pi + \frac{b_{N=2}\pi}{6L}\right)\sqrt{2}\langle \operatorname{Re} U \rangle \qquad {}_{12}$$

The behavior of the slow-roll parameters

$$\epsilon = \frac{1}{2} \left(\frac{\partial_{\phi} V_{\text{eff}}}{V_{\text{eff}}} \right)^{2} \quad \eta = \frac{\partial_{\phi} \partial_{\phi} V_{\text{eff}}}{V_{\text{eff}}} \quad \xi = \frac{\partial_{\phi} V_{\text{eff}} \partial_{\phi} \partial_{\phi} \partial_{\phi} V_{\text{eff}}}{V_{\text{eff}}^{2}}$$

Without modulations

$\eta(i\,U) \to e^{-\frac{\pi}{12}U} \Big[1 - \mathcal{O}(e^{-2\pi U}) \Big]$

With modulations

$$\eta(i\,U) \to e^{-\frac{\pi}{12}U} \Big[1 - e^{-2\pi U} - \mathcal{O}(e^{-\frac{4\pi}{13}U}) \Big]$$

$$V_{\text{eff}} \simeq \Lambda - \Lambda_1 \cos(\lambda_1 \phi) + \Lambda_2 \cos(\lambda_2 \phi)$$

Modulation term

$$n_s = 1 + 2\eta - 6\epsilon + \cdots$$

$$r = 16\epsilon$$

$$\lambda_1 = \frac{b_{N=2} \pi \sqrt{2} \langle \operatorname{Re} U \rangle}{6L}$$

$$\lambda_2 = \left(2\pi + \frac{b_{N=2} \pi}{6L}\right) \sqrt{2} \langle \operatorname{Re} U \rangle$$

b/L	$\langle \operatorname{Re} U^2 \rangle$	N_e	n_s	r	$dn_s/d\ln k$
1/10	1.3	50	0.96	0.14	-0.0008
1/10	1.3	57	0.96	0.12	-0.012
1/5	1.2	55	0.96	0.08	-0.002
1/5	1.2	60	0.96	0.08	-0.001
1/4	1.2	53	0.96	0.07	-0.002
1/4	1.2	58	0.96	0.06	-0.001
1/3	1.1	54	0.96	0.04	-0.002
1/3	1.1	60	0.96	0.04	-0.001
1/2	1.1	50	0.95	0.01	-0.00034

$$V_{\text{eff}} \simeq \Lambda - \Lambda_1 \cos(\lambda_1 \phi) + \Lambda_2 \cos(\lambda_2 \phi)$$

Modulation term

$$n_s = 1 + 2\eta - 6\epsilon + \cdots$$

$$r = 16\epsilon$$

$$\lambda_1 = \frac{b_{N=2} \pi \sqrt{2} \langle \operatorname{Re} U \rangle}{6L}$$

$$\lambda_2 = \left(2\pi + \frac{b_{N=2} \pi}{6L}\right) \sqrt{2} \langle \operatorname{Re} U \rangle$$

b/L	$\langle \operatorname{Re} U^2 \rangle$	N_e	n_s	r	$dn_s/d\ln k$
1/10	1.3	50	0.96	0.14	-0.0008
1/10	1.3	57	0.96	0.12	-0.012
1/5	1.2	55	0.96	0.08	-0.002
1/5	1.2	60	0.96	0.08	-0.001
1/4	1.2	53	0.96	0.07	-0.002
1/4	1.2	58	0.96	0.06	-0.001
1/3	1.1	54	0.96	0.04	-0.002
1/3	1.1	60	0.96	0.04	-0.001
1/2	1.1	50	0.95	0.01	-0.00035

Conclusion

i)We propose the single-field natural inflation w/ and w/o modulations (type IIB).

g. 1. Marginalized joint 68% and 95% CL regions for n_s and $r_{0.002}$ from Planck in combination with other data sets compared to theoretical predictions of selected inflationary models.

 n_{s}

ii)The axion decay constant is enhanced by the inverse of loop factor.

iii)String threshold corrections include the modulation terms.

Appendix

$$K = -\ln(S + \overline{S}) - 3\ln(T + \overline{T}) - \Sigma_{i} \ln(U_{i} + \overline{U_{i}})$$

$$W_{flux} = w_{1} + iw_{2}(U_{1} - U_{2}) + iw_{3}U_{3} + iw_{4}S$$

$$+ w_{5}SU_{3} + (U_{1} - U_{2})(w_{6}U_{3} + w_{7}S + iw_{8}SU_{3})$$

$$\begin{split} W_{flux} &= w_1 + i w_2 (U_4) + i w_3 U_3 + i w_4 S \\ &+ w_5 S U_3 + (U_4) (w_6 U_3 + w_7 S + i w_8 S U_3) \end{split}$$

Only S, U_3 and $U_4=U_1-U_2$ appear in the superpotential. One of complex structure moduli is massless.

$$\begin{split} K = &-\ln(U_2 + \overline{U}_2) - \ln(U_4 + \overline{U}_4 + U_2 + \overline{U}_2) \\ &- 3\ln(T' + \overline{T}' - c(U_2 + \overline{U}_2)) \end{split}$$

$$\begin{split} W_{non} &= A \exp[-8\pi^2 f_1 / N_1] + B \exp[-8\pi^2 f_2 / N_2] \\ &+ C \exp[-8\pi^2 f_3 / N_3] + D \exp[-8\pi^2 f_4 / N_4] \\ f_1 &= f_2 = T / (2\pi) + b_{N=2} U_2 / (48\pi) = T' / (2\pi) \\ f_3 &= f_4 = S / (2\pi) \end{split}$$

S and T' are stabilized and Re U_2 is also stabilized as

$$K_{U2}W = 0$$

Inflaton potential

$$W = w_0 + A' \exp[-2b_{N=2} \ln \eta(iU_2)/L]$$