Higher Derivative Terms in M-Theory Reductions

based on
1408.5136 and 1412.5073 with T.W. Grimm and M.Weissenbacher

Tom Pugh

OUTLINE

- Introduction
- M-theory Vacua with 3d N=2 Supersymmetry
- The 3d Effective Theory
- Conclusions

OUTLINE

- Introduction
- M-theory Vacua with 3d N=2 Supersymmetry
- The 3d Effective Theory
- Conclusions

INTRODUCTION

- Reductions of M-theory to three dimensions present many interesting features.
- In general the vacua include fluxes and warping, which require higher derivative corrections to the 11d action for global consistency.
- These reductions represent the M-theory duals of F-theory reductions to 4d and are important for deriving the F-theory effective action.
- Higher derivative corrections in M-theory can induce corrections to the 3d effective theory and the 4 d F-theory lift.

OUTLINE

- Introduction
- M-theory Vacua with 3d N=2 Supersymmetry
o The 3d Effective Theory
o Conclusions

The Higher Derivative Vacua

- The 11d action and field equations are given as an expansion in the 11d plank length
- So the solutions we will study exist as an expansion in $\alpha \sim\left(\kappa_{11}\right)^{\frac{2}{3}} \sim l_{p}^{3}$

$$
\begin{gathered}
d \hat{s}^{2}=e^{\alpha^{2} Z}\left(e^{-2 \alpha^{2} W^{(2)}} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+2 e^{\alpha^{2} W^{(2)}} g_{m \bar{n}} d y^{m} d y^{\bar{n}}\right) \\
g_{m \bar{n}}=g_{m \bar{n}}^{(0)}+\alpha^{2} g_{m \bar{n}}^{(2)} \\
\hat{G}_{m \bar{n} r \bar{s}}=\alpha G_{m \bar{n} r \bar{s}}^{(1)} \quad \hat{G}_{\mu \nu \rho m}=\epsilon_{\mu \nu \rho} \partial_{m} e^{-3 \alpha^{2} W^{(2)}}
\end{gathered}
$$

- Where $3 \mathrm{~d} \mathrm{~N}=2$ supersymmetry at lowest order in α implies
[Becker, Becker]

$$
d J^{(0)}=d \Omega^{(0)}=0 \quad G^{(1)} \wedge J^{(0)}=0 \quad G^{(1)} \in H^{2,2}\left(Y_{4}\right)
$$

$\mathcal{O}\left(\alpha^{2}\right)$ Constraints on the Vacua

- And at second order in α the solution is constrained by the warp factor equation

$$
d^{\dagger} d W^{(2)}+G^{(1)} \wedge G^{(1)}+X_{8}=0
$$

- And the internal space part of the metric field equation [Becker, Becker] [Lu, Pope, Stelle, Townsend]

$$
\begin{gathered}
R_{m \bar{n}}^{(2)}=\partial_{m}^{(0)} \bar{\partial}_{\bar{n}}^{(0)} Z \quad Z=*^{(0)}\left(J^{(0)} \wedge c_{3}^{(0)}\right) \\
c_{3}^{(0)}=i \operatorname{Tr}\left(\mathcal{R}^{(0)} \wedge \mathcal{R}^{(0)} \wedge \mathcal{R}^{(0)}\right)
\end{gathered}
$$

- This is solved by
[Grimm, TP, Weissenbacher]

$$
\begin{gathered}
c_{3}^{(0)}=H c_{3}^{(0)}+i \partial^{(0)} \bar{\partial}^{(0)} F \\
g_{m \bar{n}}^{(2)}=\nabla_{m}^{(0)} \bar{\nabla}_{\bar{n}}^{(0)} *^{(0)}\left(F \wedge J^{(0)} \wedge J^{(0)}\right)
\end{gathered}
$$

OUTLINE

- Introduction
- M-theory Vacua with 3d N=2 Supersymmetry
- The 3d Effective Theory
o Conclusions

Perturbations for KÄHLER Moduli

- We make an ansatz for the perturbations that correspond to Kähler moduli where

$$
\begin{array}{lll}
\delta g_{m \bar{n}}^{(0)}=i \delta v^{i} \omega_{i m \bar{n}}^{(0)} & \delta \hat{G} & =F^{i} \wedge \omega_{i}^{(0)} \\
F^{i}=d A^{i} & d *^{(0)} \omega_{i}^{(0)}=d \omega_{i}^{(0)}=0
\end{array}
$$

- The metric shift induces a shift of the higher derivative parts of the ansatz

$$
\delta Z=i \delta v^{i} Z^{\bar{n} m} \omega_{i m \bar{n}}^{(0)}+\ldots
$$

- And induces a shift of the warping

$$
W^{(2)}\left|\rightarrow W^{(2)}\right|+\partial_{i} W^{(2)} \mid \delta v^{i}+\ldots
$$

Reducing The 11D Action

- Next we reduce the action on the background described

$$
S=S^{(0)}+\alpha^{2} S_{\hat{R}^{4}}^{(2)}+\alpha^{2} S_{\hat{G}^{2} \hat{R}^{3}}^{(2)}+\alpha^{2} S_{(\hat{\nabla} \hat{G})^{2} \hat{R}^{2}}^{(2)}
$$

$$
+\mathcal{O}\left(\hat{G}^{3} \alpha^{2}\right)+\mathcal{O}\left(\alpha^{3}\right) \quad \text { LLiu, Minasian }
$$

- We derive the effective action to second order in 3 d derivatives, $\alpha, \delta v^{i}$ and A^{i}. This is sufficient to determine the higher derivative contributions to 3d kinetic terms and mass terms.
- This results in an effective action given in terms of

$$
Z_{m \bar{n} r \bar{s}}=\left(\epsilon_{8}^{(0)} \epsilon_{8}^{(0)} R^{(0) 3}\right)_{m \bar{n} r \bar{s}}
$$

$$
Z_{m \bar{m}}=i Z_{m \bar{m} n}^{n}=\left(*^{(0)} c_{3}^{(0)}\right)_{m \bar{m}} \quad Z_{m}{ }^{m}=Z
$$

Kinetic Terms in The Effective Action

- Substituting into the 11d action and integrating we find
$S_{\mathrm{kin}}=\frac{1}{2 \kappa_{11}} \int_{\mathcal{M}_{3}}\left[R * 1-\left(G_{i j}^{T}+\mathcal{V}_{T}^{-2} K_{i}^{T} K_{j}^{T}\right) D v^{i} \wedge * D v^{j}-\mathcal{V}_{T}^{2} G_{i j}^{T} F^{i} \wedge * F^{j}\right]$
- Where
$G_{i j}^{T} \sim \frac{1}{\mathcal{V}_{0}} \int_{Y_{4}}\left[e^{3 \alpha^{2} W^{(2)}+\alpha^{2} Z} \omega_{i m \bar{n}}^{(0)} \omega_{j}^{(0) \bar{n} m}+\alpha^{2} Z_{m \bar{n} r \bar{s}} \omega_{j}^{(0) \bar{n} m} \omega_{i}^{(0) \bar{s} r}\right] *^{(0)} 1$

$$
K_{i}^{T}=\int_{Y_{4}}\left[e^{3 \alpha^{2} W^{(2)}+\alpha^{2} Z} \omega_{i m}^{(0) m}-Z_{m \bar{n}} \omega_{i}^{(0) \bar{n} m}\right] *^{(0)} 1
$$

$$
\mathcal{V}_{T}=\int_{Y_{4}} e^{3 \alpha^{2} W^{(2)}+\alpha^{2} Z} *^{(0)} 1
$$

Scalar Mass Terms

- The additional mass terms for the scalar fluctuations cancel

$$
\begin{aligned}
& \left.\int \hat{t}_{8} \hat{t}_{8} \hat{R}^{4} \hat{x} 1\right|_{\text {mass }}=-\int_{\mathcal{M}_{3}} \delta v^{i} \delta v^{j} *_{3} 1 \int_{Y_{4}} \nabla_{r} \nabla^{r} Z \omega_{i m \bar{n}}^{(0)} \omega_{j}^{(0) \bar{n} m} *_{8} 1 \\
& \left.\int \hat{R} \hat{\otimes} 1\right|_{\text {mass }}=\alpha^{2} \int_{\mathcal{M}_{3}} \delta v^{i} \delta v^{j} *_{3} 1 \int_{Y_{4}} \nabla_{r} \nabla^{r} Z \omega_{i m \bar{n}}^{(0)} \omega_{j}^{(0) \bar{n} m} *_{8} 1
\end{aligned}
$$

- So that the only potential terms are

$$
S_{\mathrm{pot}}=\frac{\alpha^{2}}{4 \kappa_{11}} \int_{\mathcal{M}_{3}} *_{3} 1 \int_{Y_{4}}\left(G^{(1)} \wedge *^{\prime} G^{(1)}-G^{(1)} \wedge G^{(1)}\right)
$$

- These come with the associated Chern-Simons terms for the vectors

$$
S_{C S}=\alpha \int_{\mathcal{M}_{3}} A^{i} \wedge F^{j} \int_{Y_{4}} G^{(1)} \wedge \omega_{i} \wedge \omega_{j}
$$

OUTLINE

- Introduction
- M-theory Vacua with 3d N=2 Supersymmetry
- The 3d Effective Theory
- Conclusions

Conclusions

- Effective theories including higher derivative corrections for 3d moduli may be derived in the way we have described.
- This process involves corrections to the vacua, ansatz and action parameterized by the 11d Planck length.
- These computations required significant use of computer algebra packages such as xAct.
- The masses of the 3d fluctuations are not altered.
- All corrections may be written in terms of $Z_{m \bar{n} r \bar{s}}=\left(\epsilon_{8}^{(0)} \epsilon_{8}^{(0)} R^{(0) 3}\right)_{m \bar{n} r \bar{s}}$ and the warp factor.

Thank You

