Brane and Antibrane Dynamics

Andrea Puhm

based on **1412.5702** with B. Michel, E. Mintun, J. Polchinski, P. Saad

String Phenomenology 2015 - Madrid, June 8th

Branes actions important for many aspects of string physics, *e.g.* singularity resolution in Polchinski-Strassler or enhançon.

Interpretation of brane actions ambiguous:

A brane is a source for bulk fields which are singular at the brane and when inserted into the brane action give divergent result. *Branes actions* important for many aspects of string physics, *e.g.* singularity resolution in Polchinski-Strassler or enhançon.

Interpretation of brane actions ambiguous:

A brane is a source for bulk fields which are singular at the brane and when inserted into the brane action give divergent result.

Brane probe actions: self-fields of brane are not included in the brane's action \sim formal limit # branes $\rightarrow 0$

Branes actions important for many aspects of string physics, *e.g.* singularity resolution in Polchinski-Strassler or enhançon.

Interpretation of brane actions ambiguous:

A brane is a source for bulk fields which are singular at the brane and when inserted into the brane action give divergent result.

Brane probe actions: self-fields of brane are not included in the brane's action \sim formal limit # branes $\rightarrow 0$

Brane effective actions: Effective field theory is correct framework for treating classical and loop divergences and dynamics. [Goldberger,Wise'01] + others, [Michel,Mintun,Polchinski,AP,Saad'14]

Motivation: Antibranes in Cosmology

De Sitter vacua from KKLT mechanism in string theory:

[Kachru, Kallosh, Linde, Trivedi'03;

Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi'03]

Motivation: Antibranes in Gauge/Gravity duality

Metastable states in field theory from antibranes in bulk: \uparrow involves strong coupling \rightarrow hard w/out field theory dualities [Intriligator, Seiberg, Shih'06]

e.g. Bubbling AdS space dual to mass-deformed M2 brane theory

[Lin, Lunin, Maldacena'04]

Non-extremal microstates from antibranes in extremal microstates:

[Bena, AP, Vercnocke'11+'12]

1 Brane effective action

- Probe actions and beyond
- Divergences
- Brane dynamics

- 2 Antibranes in flux backgrounds
 - De Sitter vacua from antibranes
 - $\overline{D3}$ in Klebanov-Strassler

Brane effective actions

A Toy Model

Free massless scalar field ϕ in d spacetime dimensions with brane in p + 1 dimensional subspace and interaction $\mathcal{L}_{brane}(\phi, \partial \phi)$:

Compute scattering amplitudes $\mathcal{T}^{(i)}$ and study divergences in EFT.

First, second, ..., *n*th order terms in amplitude for scattering of ϕ from the brane with interaction $\mathcal{L}_{brane}(\phi, \partial \phi) = \frac{1}{2}g\phi^2$:

Momentum || to brane is conserved: $k_{1\parallel} = k_{2\parallel} = k_{\parallel}$. Momentum \perp to brane diverges \rightarrow cutoff at $k_{\perp} = \Lambda$.

Probe approximation and beyond

 $\mathcal{T}^{(1)}$ is scattering $k_1 \rightarrow k_2$ in presence of brane at order g:

$$\mathcal{T}^{(1)} = g(2\pi)^{p+1} \delta^{p+1} (k_{1\parallel} - k_{2\parallel}) \equiv g \delta_{\parallel}$$

This corresponds to the probe approximation.

$$\mathcal{T}^{(2)} \text{ is scattering } k_1 \to k_2 \text{ in presence of brane at order } g^2:$$

$$\mathcal{T}^{(2)} = g^2 \delta_{\parallel} \int^{\Lambda} \frac{d^r k_{\perp}}{(2\pi)^r} \frac{1}{k_{\parallel}^2 + k_{\perp}^2}$$

 k_{2}

g

This diverges for $r \ge 2 \rightarrow$ cutoff at $k_{\perp} = \Lambda$.

The brane interacts with its own induced field \Rightarrow beyond the probe approximation.

Divergences in brane actions

 \mathcal{T} is scattering $k_1 \rightarrow k_2$ in presence of brane at all orders g:

$$r = 1: \ \mathcal{T}^{(1)} = g\delta_{\parallel}, \ \mathcal{T}^{(2)} = g^{2}\delta_{\parallel}\frac{1}{2k_{\parallel}}, \ \dots \ \rightarrow \ \mathcal{T}_{r=1} = \frac{2gk_{\parallel}}{2k_{\parallel} - g}\delta_{\parallel}$$
$$r = 2: \ \mathcal{T}^{(1)} = g\delta_{\parallel}, \ \mathcal{T}^{(2)} = g^{2}\delta_{\parallel}\frac{1}{4\pi}\ln\frac{\Lambda^{2}}{k_{\parallel}^{2}}, \ \dots \ \rightarrow \ \mathcal{T}_{r=2} = \frac{1}{\frac{1}{\frac{1}{g} + \frac{1}{4\pi}\ln\frac{k_{\parallel}^{2}}{\Lambda^{2}}}$$
$$\dots$$

 $\mathcal{T}_{r=1,2,3,4,...}$: conv, log div, lin div, quadr + log div,...

For $r \ge 2$: renormalize (add counter terms, adjust coupling g,...) Solving the classical field equation

$$\partial_{\parallel}^{2}\phi + \partial_{\perp}^{2}\phi = -g\delta^{r}(x_{\perp})\phi$$

brings in full machinery of effective field theory.

A Toy Model (upgrade)

Free massless scalar field ϕ in d spacetime dimensions with brane in p + 1 dimensional subspace and interaction $\mathcal{L}_{brane}(\phi, \partial \phi)$ and moving in the transverse directions $X^m(x_{\parallel})$:

Describes brane motion and scattering of scalars from the brane accompanied by excitations of oscillations of the brane.

Wilsonian effective action

Brane effective action contains all terms allowed by symmetry with transverse momentum cut off at Λ that is matched to UV theory.

To study amplitudes to accuracy Λ^{-s} retain all terms with scaling dimension of the interaction $\Delta \leq s$.

For D-branes the UV theory is string theory w/ cutoff $\Lambda = 1/\sqrt{\alpha'}$.

 $\mathcal{T}^{(1)}$ is effective description for *disc* w/ 2 closed string vertex operators EFT - UV match: brane couplings κ to LO in g_s

 $\mathcal{T}^{(2)}$ is effective description for *annulus* w/ 2 closed string vertex operators EFT - UV match: brane couplings κ to LO in g_s^2

Application of brane effective actions: Antibranes in flux backgrounds

de Sitter Vacua from Antibranes

IIB string theory compactified on a Calabi-Yau in presence of flux:

KKLT mechanism:

excites stabilized supersymmetric Anti de Sitter vacua by adding one or more antibranes (branes with opposite supersymmetry to bgd).

(Talk by R. Kallosh.)

[Giddings,Kachru,Polchinski'01; Kachru,Pearson,Verlinde'01;

Kachru, Kallosh, Linde, Trivedi'03;

Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi'03; Kallosh, Wrase'14;

Bergshoeff, Dasgupta, Kallosh, Van Proeyen, Wrase'15]

Antibranes break supersymmetry by small amount and lift AdS to dS with cosmological constant Λ tuned by number of $\overline{D3}$ and flux quanta without destabilizing the vacuum if Calabi-Yau sufficiently warped.

Local model of warped throat: Klebanov-Strassler (KS) warped deformed conifold threaded by imaginary self-dual (ISD) flux

DBI-WZ probe action: small number of $\overline{D3}$ in KS are metastableand decay via brane-flux annihilation[Kachru, Pearson, Verlinde'01]

DBI-WZ probe action: small number of $\overline{D3}$ in KS are metastableand decay via brane-flux annihilation[Kachru, Pearson, Verlinde'01]

Supergravity backreaction:large number of $\overline{D3}$ in KS give rise tosingularities in the fluxes H_3 , $F_3 \Rightarrow$ Good or bad singularities?[McGuirk, Shiu, Sumitomo'09; Bena, Grana, Halmagyi'09] + many many othersGood if resolved (polarization) and cloaked by horizon (finite T).[Gubser'00](Talks by S. Massai and T. Van Riet.)

DBI-WZ probe action: small number of $\overline{D3}$ in KS are metastableand decay via brane-flux annihilation[Kachru, Pearson, Verlinde'01]

Supergravity backreaction:large number of $\overline{D3}$ in KS give rise tosingularities in the fluxes H_3 , $F_3 \Rightarrow$ Good or bad singularities?[McGuirk, Shiu, Sumitomo'09; Bena, Grana, Halmagyi'09] + many many othersGood if resolved (polarization) and cloaked by horizon (finite T).[Gubser'00](Talks by S. Massai and T. Van Riet.)

Brane effective action: single $\overline{D3}$ in KS

[Michel, Mintun, Polchinski, AP, Saad'14]

Correct criterion for a good singularity in fields external to brane?

 \Rightarrow Matching onto string perturbation theory.

Local model of warped throat: Klebanov-Strassler (KS) warped deformed conifold threaded by imaginary self-dual (ISD) flux

Scale of geometry $L \gg \sqrt{\alpha'}$ + flux dilute \rightarrow EFT valid. Relevant low-energy dof of EFT: $\overline{D3}$ position. ISD flux $\rightarrow \overline{D3}$ minimizes energy at tip of the KS throat.

EFT for Antibranes in Klebanov-Strassler

IIB supergravity action:

$$\begin{split} S_{IIB} &\sim & \alpha'^{-4} \int d^{10} x \sqrt{-g} \left[e^{-2\phi} (R + \frac{1}{4} (\partial \phi)^2 + |H_3|^2) + |F_3|^2 + \frac{1}{2} |F_5|^2 \right] \\ &+ & \alpha'^{-4} \int C_4 \wedge H_3 \wedge F_3 \end{split}$$

Scaling dimension:

• $\Delta[dx] = -1$, $\Delta[\partial] = 1$, $\Delta[C, B, g] = \frac{d-2}{2} = 4$

Engineering dimension:

• $\delta[dx] = 1, \, \delta[\partial] = -1, \, \delta[C, B, g] = 0$

Coupling:

- bulk vertex: $1/g_s^2$ (gravitational), g_s^0 (Chern-Simons)
- brane vertex: $1/g_s$ (NS), g_s^0 (R)
- propagators: g_s^2 (NS), g_s^0 (R)

EFT for Antibranes in Klebanov-Strassler

Contribution from $\mathcal{T}^{(1)}$:

Contribution from $\mathcal{T}^{(2)}$:

Potentially problematic issue: backreaction on H_3

The induced *H* flux is a *small perturbation* of the background *H* flux at weak coupling even at the limit of EFT $x_{\perp} \sim \sqrt{\alpha'}$.

Mass correction from fluxes

$$\Delta M \sim \alpha^{-1} \left(g_s^2 \left(\partial \overline{F}_3 \right)^2 + (\partial \overline{H}_3)^2 \right) X^2$$

Mass term from leading order potential $\alpha'^{-2}g_s^{-1}\int d^4x\sqrt{-g_4}$:

$$M \sim \alpha'^{-2} \left(g_s \overline{F}_3^2 + g_s^{-1} \overline{H}_3^2 \right) X^2$$

The mass correction is suppressed in α'/L^2 and g_s .

Summary: single antibrane

Self-consistent use of effective field theory:

No large corrections that would signal breakdown.

Low-energy dof is antibrane position which is energetically limited to bounded space (close to tip of KS throat) $\rightarrow \exists$ minimum.

Multiple antibranes

For *p* coincident D-branes \rightarrow EFT on the brane non-Abelian.

When $g_s p \gg 1$ brane theory strongly coupled but supergravity good. (Talk by S. Massai.)

When background varies slowly on scale of brane radius $(g_s p)^{1/4} \alpha'^{1/2}$, *i.e.* $p \ll M = \int_{S^3} F_3 \rightarrow \text{effective brane description}$.

Antibranes attract at long distances (screening) but might repel at short distances (talk by S. Massai) \rightarrow separate inside bounded space to new minimum. Then EFT for a single antibrane applies.

Conclusions

Effective field theory description of (anti) branes:

- Allows use of brane actions *beyond probe approximation*, treatment of *classical and quantum divergences*.
- In flux backgrounds supersymmetry-breaking antibranes metastable if number *p* of antibranes not too large.

Conclusions

Effective field theory description of (anti) branes:

- Allows use of brane actions *beyond probe approximation*, treatment of *classical and quantum divergences*.
- In flux backgrounds supersymmetry-breaking antibranes metastable if number *p* of antibranes not too large.

For a single $\overline{D3}$ in flux threaded Klebanov-Strassler throat:

- backreaction on flux $H_3 \propto \frac{g_s^2 \alpha'^2 F_3}{x_1^4}$ small
- mass correction suppressed by powers of g_s & $lpha'/L^2$

and within this approximation *no instability*.

Conclusions

Effective field theory description of (anti) branes:

- Allows use of brane actions *beyond probe approximation*, treatment of *classical and quantum divergences*.
- In flux backgrounds supersymmetry-breaking antibranes metastable if number *p* of antibranes not too large.

For a single $\overline{D3}$ in flux threaded Klebanov-Strassler throat:

- backreaction on flux $H_3 \propto \frac{g_s^2 \alpha'^2 F_3}{x_1^4}$ small
- mass correction suppressed by powers of g_s & α'/L^2

and within this approximation *no instability*.

THANK YOU!