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Summary talk	




String theory scenario that 
satisfies all particle physics and 
cosmological observations and 

hopefully lead to measurable 
predictions	  

String	  Phenomenologists	  
	  Working	  Hypothesis:	  



Einstein’s	  “Credo”	  

"The	  most	  beauMful	  and	  deepest	  experience	  a	  man	  
can	  have	  is	  the	  sense	  of	  the	  mysterious."	  
Albert	  Einstein,	  "My	  Credo",	  1932	  
	  



Ibanez’	  “Credo”	  

“I	  only	  believe	  in	  two	  things:	  the	  
Standard	  Model	  and	  String	  Theory”	  
Luis	  Ibanez,	  	  (a	  few	  years	  ago)	  



First	  Thoughts	  

•  Standard	  Model	  of	  ParMcle	  physics:	  	  	  	  
excellent	  shape!	  

	  
•  Standard	  Model	  of	  Cosmology	  (ΛCDM):	  
excellent	  shape!	  

	  

•  Post	  Higgs/Bicep	  depression!	  

	  Alcaraz,	  Zwirner’s	  talks	  

Gra\on,	  Ahmed	  talks	  



BSM:	  Role	  for	  String	  
Phenomenologist?	  

•  Not	  much:	  the	  standard	  scienMfic	  procedure	  
is	  bo\on-‐up	  (experts	  will	  interpret	  any	  new	  
experimental	  discovery)	  	  

•  	  But:	  Simplicity	  vs	  top-‐down	  
	  	  	  	  	  (CMSSM,	  φ2	  inflaHon:	  RIP)	  



Einstein	  again	  !	  
	  
	  
	  
	  

“Everything	  should	  be	  as	  simple	  as	  it	  
can	  be,	  but	  not	  simpler”	  
	  
(assigned	  to	  Einstein	  by	  Louis	  Zukofsky	  1950)	  



Dirac’s	  statements	  

•  The	  discovery	  of	  the	  theory	  of	  relaMvity	  
made	  it	  necessary	  to	  modify	  the	  principle	  of	  
simplicity.	  

•  We	  now	  see	  that	  we	  have	  to	  change	  the	  
principle	  of	  simplicity	  into	  a	  principle	  of	  
mathemaMcal	  beauty.	  

P.A.M	  Dirac:	  The	  RelaHon	  between	  
MathemaHcs	  and	  Physics,	  1939	  



Overview	  Plenary	  Talks	  

1.   InflaMon	  +	  anMbranes	  

2.   Phenomenology	  +	  WGC	  

3.   F-‐theory	  models	  

4.   G2/F/HeteroMc	  models	  

5.   “ExoMcs”	  



InflaMon	  



Models	  of	  InflaMon	  

•  ExponenMal	  potenMals	  (α-‐aVractors,...)	  	  
	  	  	  	  	  	  Kallosh	  +	  Linde’s	  +	  Scalisi’s	  talks	  

•  Axion	  potenMals	  (axion	  monodromy,	  
alignement,...)	  

	  	  	  	  	  	  Silverstein,	  Blumenhagen,	  Plauschin,	  Hebecker,	  Dudas,	  Shiu,	  McCallister	  
	  	  	  	  	  +Rompinerve,	  Retolaza,	  Staessens,	  Ruelle,	  Otsuka,Kapl,	  Junghams...	  talks.	  

•  Higgs-‐oMc	  Pedro,	  Valenzuela’s	  talks	  	  



Comments	  on	  α-‐a\ractors	  

On&to&cosmology& αGalractor&models&compaJble&with&inflaJonary&data&from&Planck/Bicep&II&

Kallosh,'A.L.'and'Roest'2013'''

Supergravity&with&2&superfields:&inflaton&superfield&and&a&nilpotent&superfield&
&

agree&with&the&data,&r&is&flexible&&
�⇢

⇢
, ns

superconformal theory [8], one would expect ↵ = 1 with r ⇡ 3 ⇥ 10�3. Generic N = 1 supergravity

allows any positive ↵ and, therefore an arbitrary r, which has to be smaller than 0.11 to agree with

the current data.

2.2 T and E model attractors, and observables

A simple class of ↵-attractor models, T-models, have a potential V = tanh2n 'p
6↵

for the canonical

inflaton field '. These models have the following values of the cosmological observables [8–11] for

↵ . O(10), where there is an attractor behavior and many models have the same n-independent

predictions

ns = 1 � 2

N
, r = ↵

12

N2

, r ⇡ 3 ↵ ⇥ 10�3 . (2.1)

Once we increase ↵ beyond O(10), expressions for ns and r become somewhat di↵erent, see eqs. (5.2-

5.4) in [10]. In particular, the value of r can be increased significantly, all the way to the predictions

of the '2n models.
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Figure 1: Examples of supergravity T- models with r-dependence in logarithmic scale in r. For potentials V =

tanh

2n 'p
6↵

, the predictions of these models interpolate between the predictions of various polynomial models '2n
at

very large ↵ and the vertical attractor line for ↵  O(10). This attractor line corresponds to the predictions of the

simplest models V = tanh

2n 'p
6↵

with n = 1.

Even the simplest of these T-models are interesting phenomenologically for cosmology. For these

models the parameter ↵ can take any non-zero value; it describes the inverse curvature of the Kähler

manifold [9, 11]. The cosmological predictions of these models, for various values of ↵, are shown in

Fig. 1. As one can see, the line with n = 1 begins at a point corresponding to the predictions of

the simplest quadratic model m2

2

�2 for ↵ > 103, and then, for smaller ↵, it rapidly cuts through the

region most favored by the Planck data, towards the predictions of the Starobinsky model and the

Higgs inflation model r ⇡ 0.003 for ↵ = 1, continues further down towards the prediction r ⇡ 0.0003

2

Meaning&of&α&&

1 Introduction

During the next few years we might expect some dramatic new information from B-mode experiments

either detecting primordial gravity waves or establishing a new upper bound on r, and from LHC

discovery/non-discovery of low scale supersymmetry. A theoretical framework to discuss both of

these important factors in cosmology and particle physics has been proposed recently. It is based on

the construction of new models of chaotic inflation [1] in supergravity compatible with the current

cosmological data [2] as well as involving a controllable supersymmetry breaking at the minimum

of the potential [3–7]. In this paper we will develop supergravity models of inflation motivated by

either string theory or extended supergravity consderations, known as cosmological ↵-attractors [8–16].

Here we will enhance them with a controllable supersymmetry breaking and cosmological constant at

the minimum. We find this to be a compelling framework for the discussion of the crucial new data

on cosmology and particle physics expected during the next few years. Some models of this type were

already discussed in [14].

The paper is organized as follows. We begin in Section 2 with a brief review of key vocabulary and

features of these and related models with references to more in-depth treatments. In Section 3 we

present the ↵-attractor supergravity models that make manifest an inflaton shift-symmetry by virtue

of having the Kähler potential inflaton independent – which we will refer to as Killing-adapted form.

Section 4 presents a universal rule: given a bosonic inflationary potential of the form F2(') one can

reconstruct the superpotential W =
⇣
S+ 1

b

⌘
f(�) for the Kähler potentials described in Section 3. The

resulting models with f 0(') = F(') have a cosmological constant ⇤ and an arbitrary SUSY breaking

M at the minimum. In Section 5 we study more general class of models with W = g(') + Sf((')

and the same Kähler potential. For these models it is also possible to get agreement with the Planck

data as well as dark energy and SUSY breaking. Moreover, these models have nice properties with

regard to initial conditions for inflation, analogous to the ones studied in [28] for models without SUSY

breaking and dark energy. We close in Section 6 with a summary of what we have accomplished.

2 Review

2.1 ↵, and attraction

There is a key parameter ↵ in these models, for which the Kähler potential K = �3↵ ln(T + T̄ ). It

describes the moduli space curvature [9] given by RK = � 2

3↵ . Another, also geometric, interpretation

of this parameter is in terms of the Poincaré disk model of a hyperbolic geometry with the radiusp
3↵, illustrated by the Escher’s picture Circle Limit IV [15, 16]. As clarified in these references,

from the fundamental point of view, there are particularly interesting values of ↵ depending on the

original theory. From the maximal N = 4 superconformal theory, [17], one would expect ↵ = 1/3

with r ⇡ 10�3. This corresponds to the unit radius Escher disk [15], as well as a target of the

future space mission for B-mode detection, as specified in CORE (Cosmic ORigins Explorer). Some

interesting simplifications occur for ↵ = 1/9, which corresponds to the GL model [18,19]. From N = 1
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Commercial	  

Stringy	  realisaHon	  of	  α-‐aVractors	  including	  
moduli	  stabilisaHon	  for	  
	  
α=2	  (fibre	  inflaHon)	  Burgess,	  Cicoli,	  FQ	  (2007)	  
	  
α=(VlnV)-‐1	  (Kahler	  blow-‐up	  inflaHon)	  	  
Conlon,	  FQ	  (2006)	  +	  	  Sumitomo’s	  talk	  
	  

α=(lnV)-‐1	  (polyinstanton	  inflaHon)	  Cicoli,	  Pedro,	  Tasinato	  (2011)	  

LV SV1 SV2

C0 5.8 · 10−8 0.012 0.023

C1 292.4 20629.4 39786.9

C2 73.1 5157.35 9946.73

Cup 219.3 1200.8 29840.2

R = C0/C2 8 · 10−10 2.3 · 10−6 2.3 · 10−6

Table 3: Coefficients of the inflationary potential for the various parameter sets

discussed in the text.
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V

Figure 2: V (in arbitrary units) versus ϕ̂, with V and τ3 fixed at their minima. The plot assumes
the parameters used in the text (for which ϕ̂ip ≃ 0.80, ϕ̂end = 1.0, and R ≡ C0/C2 ∼ 10−6).

3.3 Inflationary slow roll

We next ask whether the scalar potential (3.31) can support a slow roll, working in the

most natural limit identified above, with A,C ≪ B and B > 0. As we have seen, this case

also implies 0 < C0 ≪ C1 = 4C2, leaving a potential well approximated by

V ≃ C2
⟨V⟩10/3

[

(3−R)− 4

(

1 +
1

6
R

)

e−κϕ̂/2 +

(

1 +
2

3
R

)

e−2κϕ̂ +R eκϕ̂
]

(3.33)

which uses Cup ≃ C1 − C0 − C2 and C1/C2 ≃ 4, and works to linear order in

R :=
C0
C2

= 2g4s

(
CKK
1 CKK

2

CW
12

)2

≪ 1 . (3.34)

The normalization of the potential may instead be traded for the mass of the inflaton field

at its minimum: m2
ϕ = V ′′(0) = 4

(

1 + 7
6 R
)

C2/⟨V⟩10/3.
In practice the powers of R can be neglected in all but the last term in the potential,

where it multiplies a positive exponential which must eventually become important for

– 22 –

V~A-‐Be-‐√2/3α	  



ns#

log10r#

↵ = 1, r ⇠ 0.13

↵ = 1, r = 3⇥ 10�3

↵ = 1/9, r = 4⇥ 10�4

↵ = 1/3, r = 10�3

conformal)a*ractors,)
Higgs)infla2on)))

N=4)supergravity,)
unit)size)Poincare)disk)

GoncharovALinde)model)

Any&&α&<&27&
Generic&&&N=1&supergravity&

r < 0.09 3↵ = R2
Escher ⇡ 103r

↵ = 1, r ⇠ 0.13

↵ = 1, r = 3⇥ 10�3

↵ = 1/9, r = 4⇥ 10�4

↵ = 1/3, r = 10�3
N=4$supergravity,$
unit$size$Poincare$disk$

Goncharov:Linde$model$

ns#

log10r#

Starobinsky$model,$
conformal$aAractors$$

↵ = 1, r = 3⇥ 10�3
Fiber	  r<7x10-‐3	  
Large	  graviHno	  mass	  

Kahler	  Blow-‐up	  



&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&`Refined’&αGalractor&models&&

It shows that in N = 1 d=4 supergravity with a nilpotent goldstino multiplet generic de Sitter minima

require a universal condition that the goldstino energy M2 exceeds the negative gravitino contribution

to energy where m2

3/2 = M2

b2
.

V = M2 � 3m2

3/2 > 0 . (2.6)

We keep here generic values of the parameter b2 > 3 which allow generic de Sitter vacua of the string

landscape type, including the case

⇤ = M2 � 3m2

3/2 =
⇣
1 � 3

b2

⌘
M2 ⇠ 10�120 . (2.7)

3 Killing-adapted ↵-attractor supergravity models.

We study here the following N = 1 supergravity models, which can be described in disk geometry

coordinates of the moduli space Z,

K = �3↵ log
⇣
1 � ZZ̄

⌘
+ SS̄ , S2(x, ✓) = 0 , W = Ã(Z) + SB̃(Z) . (3.1)
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2.4 Shift Symmetry and Z, T, and � variables

The inflationary models made with a shift-symmetric canonical Kähler potential, and controllable

supersymmetry breaking have been studied in [3–5]. The basic feature of all such models is as follows.

At the potential’s minimum supersymmetry is spontaneously broken. With the simplest choice of the

Kähler potential, the models are given by K = 1

2

(� � �̄)2 + SS̄, W = g(�) + Sf(�), S2(x, ✓) = 0,

where the superpotential depends on two functions of the inflaton field �. The di↵erence with earlier

models [24–26], is the presence of an S-independent function g(�) in W and the requirement that S

is nilpotent. The mass of the gravitino at the minimum of the potential, W = m
3/2 = g(0), is non-

vanishing in these new models, and SUSY is broken in the goldstino direction with DSW = M 6= 0.

In [24–26] the mass of the gravitino was vanishing. Typically the minimum of the potential is these

models had an unbroken supersymmetry in Minkowski minima. But in new models in [3–5] with

g(�) 6= 0 we find instead either de Sitter or Minkowski minima with spontaneously broken SUSY.

From the point of view of string theory and N � 2 spontaneously broken supergravity, another

class of Kähler potentials, such as K = �3↵ ln(T + T̄ ), is more interesting due to their geometric

nature and symmetries. The same models in Poincaré disk variables are given by K = �3↵ ln(1�ZZ̄).

It is particularly important that these models have a boundary of the moduli space at

ZZ̄ ! 1 , Z ! ±1 , T ! 0 , T�1 ! 0 (2.2)

where T = 1+Z
1�Z , T�1 = 1�Z

1+Z [7, 10, 14]. Inflation takes place near the boundary which leads to an

attractor behavior when many models lead to the same inflationary predictions. A simple way to

explain it is to refer to a geometric nature of the kinetic terms of the form
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The kinetic term has a pole behavior near t�1 ! 0, near the boundary of the moduli space T�1 ! 0.

This explains why the potentials can be changed without a change in cosmological observables and r

depends on the residue of the pole, i.e. on ↵ [12]. We may therefore change our potentials by small

terms depending on t�1 without changing the observables during inflation.

We study these models here. They can use either the Poincaré disk variables ZZ̄ < 1 or the

half-plane variables T + T̄ > 0. We will also use the set of variables discussed in [27], where

T = e

q
2
3↵�

, Z = tanh
�p
6↵

. (2.4)

In the context of our moduli space geometry the variables � represent the Killing adapted frame where

the metric is inflaton independent. We will therefore call them Killing variables.

Our purpose here is to generalize the models in [7–10] to break N = 1 SUSY spontaneously. The

new models with S2(x, ✓) = 0, which are compatible with established cosmological data and designed

to be compatible with the future data on r and m
3/2 will depend on four parameters: ↵, describing

the Kähler geometry, M , defining the scale of SUSY breaking by goldstino DSW = M , and µ, related

to scale of inflationary energy and b. The role of b is the following: at the minimum
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⇣
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In both cases, at S = 0 the geometry is associated with the Poincare disk or half plane geometry

where 3↵ = R2

E corresponds to the radius square of the Escher disk [14].

We will now perform a Kähler transformation [15,27] so that our new Kähler potential is inflaton
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where

G(T ) + SF (T ) = T�3↵/2(G̃(T ) + SF̃ (T )) . (3.8)

Since we have performed a Kähler transform of the type

K ! K +
3↵

2
log[(1 � Z2)(1 � Z̄2)], W ! (1 � Z2)�3↵/2W W ! (1 � Z̄2)�3↵/2W . (3.9)

K ! K +
3↵

2
log[4T T̄ ], W ! T�3↵/2W W ! T̄�3↵/2W . (3.10)

the geometry did not change, it is still given by (3.2) and (3.4), respectively.

Our next step is to switch to moduli space coordinates (2.4) where the metric is manifestly inflaton-

independent. The choice of coordinates Z = tanh �

6↵ and T = e
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in the disk/half-plane geometry

corresponds to a Killing-adapted choice of coordinates where the metric does not depend on ' = Re �.

We find that in these coordinates with Killing variables � = ' + i#
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Note that in our models # = 0 during inflation and therefore the new holomorphic variable � during

inflation becomes a real canonical variable '. This is also easy to see from the kinetic terms in these

variables, which are conformal to flat,
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At # = 0 they are both canonical ds2|#=0
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Here one should keep in mind that our original half-plane variable T is related to � as follows,
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. We will use the following notation
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To summarize, in Killing variables the ↵-attractor supergravity models are
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+ SS̄ , W = g(�) + Sf(�) . (3.17)
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It shows that in N = 1 d=4 supergravity with a nilpotent goldstino multiplet generic de Sitter minima

require a universal condition that the goldstino energy M2 exceeds the negative gravitino contribution

to energy where m2

3/2 = M2

b2
.

V = M2 � 3m2

3/2 > 0 . (2.6)

We keep here generic values of the parameter b2 > 3 which allow generic de Sitter vacua of the string

landscape type, including the case

⇤ = M2 � 3m2

3/2 =
⇣
1 � 3

b2

⌘
M2 ⇠ 10�120 . (2.7)

3 Killing-adapted ↵-attractor supergravity models.

We study here the following N = 1 supergravity models, which can be described in disk geometry

coordinates of the moduli space Z,

K = �3↵ log
⇣
1 � ZZ̄

⌘
+ SS̄ , S2(x, ✓) = 0 , W = Ã(Z) + SB̃(Z) . (3.1)

The geometry has the SU(1, 1) symmetry

ds2 = KZ ¯ZdZdZ̄ = �3↵
dZdZ̄

(1 � ZZ̄)2
. (3.2)

Alternatively, we can use the half-plane coordinates T

K = �3 ↵ log
�
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�
+ SS̄ , S2(x, ✓) = 0 , W = G̃(T ) + SF̃ (T ) . (3.3)

The geometry has an SL(2,R) symmetry

ds2 = KT ¯TdTdT̄ = �3↵
dTdT̄

(T + T̄ )2
. (3.4)

In both cases, at S = 0 the geometry is associated with the Poincare disk or half plane geometry

where 3↵ = R2

E corresponds to the radius square of the Escher disk [14].

We will now perform a Kähler transformation [15,27] so that our new Kähler potential is inflaton

shift-symmetric. First we use the original disk and half-plane variables and redefine the Kähler and

superpotentials as follows
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2
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(1 � Z2)(1 � Z
2
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#
+ SS̄ , S2(x, ✓) = 0 , W = A(Z) + SB(Z) . (3.5)

where

A(Z) + SB(Z) = (1 � Z2)�3↵/2(Ã(Z) + SB̃(Z)) . (3.6)

In half-plane case
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�
+ SS̄ , S2(x, ✓) = 0 , W = G(T ) + SF (T ) . (3.7)
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In half-plane case

K = �3

2
↵ log


(T + T̄ )2

4T T̄

�
+ SS̄ , S2(x, ✓) = 0 , W = G(T ) + SF (T ) . (3.7)

5

2.4 Shift Symmetry and Z, T, and � variables

The inflationary models made with a shift-symmetric canonical Kähler potential, and controllable

supersymmetry breaking have been studied in [3–5]. The basic feature of all such models is as follows.

At the potential’s minimum supersymmetry is spontaneously broken. With the simplest choice of the

Kähler potential, the models are given by K = 1

2

(� � �̄)2 + SS̄, W = g(�) + Sf(�), S2(x, ✓) = 0,

where the superpotential depends on two functions of the inflaton field �. The di↵erence with earlier

models [24–26], is the presence of an S-independent function g(�) in W and the requirement that S

is nilpotent. The mass of the gravitino at the minimum of the potential, W = m
3/2 = g(0), is non-

vanishing in these new models, and SUSY is broken in the goldstino direction with DSW = M 6= 0.

In [24–26] the mass of the gravitino was vanishing. Typically the minimum of the potential is these

models had an unbroken supersymmetry in Minkowski minima. But in new models in [3–5] with

g(�) 6= 0 we find instead either de Sitter or Minkowski minima with spontaneously broken SUSY.

From the point of view of string theory and N � 2 spontaneously broken supergravity, another

class of Kähler potentials, such as K = �3↵ ln(T + T̄ ), is more interesting due to their geometric

nature and symmetries. The same models in Poincaré disk variables are given by K = �3↵ ln(1�ZZ̄).

It is particularly important that these models have a boundary of the moduli space at

ZZ̄ ! 1 , Z ! ±1 , T ! 0 , T�1 ! 0 (2.2)

where T = 1+Z
1�Z , T�1 = 1�Z

1+Z [7, 10, 14]. Inflation takes place near the boundary which leads to an

attractor behavior when many models lead to the same inflationary predictions. A simple way to

explain it is to refer to a geometric nature of the kinetic terms of the form

3↵
@T@T̄

(T + T̄ )2
|T=

¯T=t =
3↵

4

✓
@t

t

◆
2

=
3↵

4

✓
@(t�1)

t�1

◆
2

(2.3)

The kinetic term has a pole behavior near t�1 ! 0, near the boundary of the moduli space T�1 ! 0.

This explains why the potentials can be changed without a change in cosmological observables and r

depends on the residue of the pole, i.e. on ↵ [12]. We may therefore change our potentials by small

terms depending on t�1 without changing the observables during inflation.

We study these models here. They can use either the Poincaré disk variables ZZ̄ < 1 or the

half-plane variables T + T̄ > 0. We will also use the set of variables discussed in [27], where

T = e

q
2
3↵�

, Z = tanh
�p
6↵

. (2.4)

In the context of our moduli space geometry the variables � represent the Killing adapted frame where

the metric is inflaton independent. We will therefore call them Killing variables.

Our purpose here is to generalize the models in [7–10] to break N = 1 SUSY spontaneously. The

new models with S2(x, ✓) = 0, which are compatible with established cosmological data and designed

to be compatible with the future data on r and m
3/2 will depend on four parameters: ↵, describing

the Kähler geometry, M , defining the scale of SUSY breaking by goldstino DSW = M , and µ, related

to scale of inflationary energy and b. The role of b is the following: at the minimum

V =
⇣
b2 � 3

⌘M2

b2
, ) b2 = 3 , V = 0 . (2.5)
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It shows that in N = 1 d=4 supergravity with a nilpotent goldstino multiplet generic de Sitter minima

require a universal condition that the goldstino energy M2 exceeds the negative gravitino contribution

to energy where m2

3/2 = M2

b2
.

V = M2 � 3m2

3/2 > 0 . (2.6)

We keep here generic values of the parameter b2 > 3 which allow generic de Sitter vacua of the string

landscape type, including the case

⇤ = M2 � 3m2

3/2 =
⇣
1 � 3

b2

⌘
M2 ⇠ 10�120 . (2.7)

3 Killing-adapted ↵-attractor supergravity models.
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coordinates of the moduli space Z,
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The geometry has an SL(2,R) symmetry
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(T + T̄ )2
. (3.4)

In both cases, at S = 0 the geometry is associated with the Poincare disk or half plane geometry

where 3↵ = R2

E corresponds to the radius square of the Escher disk [14].

We will now perform a Kähler transformation [15,27] so that our new Kähler potential is inflaton

shift-symmetric. First we use the original disk and half-plane variables and redefine the Kähler and

superpotentials as follows
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M2 ⇠ 10�120 . (2.7)

3 Killing-adapted ↵-attractor supergravity models.

We study here the following N = 1 supergravity models, which can be described in disk geometry

coordinates of the moduli space Z,

K = �3↵ log
⇣
1 � ZZ̄

⌘
+ SS̄ , S2(x, ✓) = 0 , W = Ã(Z) + SB̃(Z) . (3.1)

The geometry has the SU(1, 1) symmetry

ds2 = KZ ¯ZdZdZ̄ = �3↵
dZdZ̄

(1 � ZZ̄)2
. (3.2)

Alternatively, we can use the half-plane coordinates T

K = �3 ↵ log
�
T + T̄

�
+ SS̄ , S2(x, ✓) = 0 , W = G̃(T ) + SF̃ (T ) . (3.3)

The geometry has an SL(2,R) symmetry

ds2 = KT ¯TdTdT̄ = �3↵
dTdT̄

(T + T̄ )2
. (3.4)

In both cases, at S = 0 the geometry is associated with the Poincare disk or half plane geometry

where 3↵ = R2

E corresponds to the radius square of the Escher disk [14].

We will now perform a Kähler transformation [15,27] so that our new Kähler potential is inflaton

shift-symmetric. First we use the original disk and half-plane variables and redefine the Kähler and

superpotentials as follows
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where

G(T ) + SF (T ) = T�3↵/2(G̃(T ) + SF̃ (T )) . (3.8)

Since we have performed a Kähler transform of the type

K ! K +
3↵

2
log[(1 � Z2)(1 � Z̄2)], W ! (1 � Z2)�3↵/2W W ! (1 � Z̄2)�3↵/2W . (3.9)

K ! K +
3↵

2
log[4T T̄ ], W ! T�3↵/2W W ! T̄�3↵/2W . (3.10)

the geometry did not change, it is still given by (3.2) and (3.4), respectively.

Our next step is to switch to moduli space coordinates (2.4) where the metric is manifestly inflaton-

independent. The choice of coordinates Z = tanh �

6↵ and T = e

q
2
3↵�

in the disk/half-plane geometry

corresponds to a Killing-adapted choice of coordinates where the metric does not depend on ' = Re �.

We find that in these coordinates with Killing variables � = ' + i#

K = �3↵ log
h
cosh

� � �̄p
6↵

i
+ SS̄ . (3.11)

and

ds2 = �3↵
dZdZ̄

(1 � ZZ̄)2
= �3↵

dTdT̄

(T + T̄ )2
=

@�@�̄

2 cos2
⇣q

2

3↵ Im�
⌘ . (3.12)

The superpotential is now

W = A
⇣

tanh
�p
6↵

⌘
+ S B

⇣
tanh

�p
6↵

⌘
= G

⇣
e

q
2
3↵�

⌘
+ SF

⇣
e

q
2
3↵�

⌘
. (3.13)

Note that in our models # = 0 during inflation and therefore the new holomorphic variable � during

inflation becomes a real canonical variable '. This is also easy to see from the kinetic terms in these

variables, which are conformal to flat,

ds2 =
d'2 + d#2

2 cos2
q

2

3↵#
. (3.14)

At # = 0 they are both canonical ds2|#=0

= d'2
+d#2

2

. Thus, we will work with ↵-attractor models

(3.1), (3.3) in the form

K = �3↵ log
h
cosh

� � �̄p
6↵

i
+ SS̄ , W = G

⇣
e

q
2
3↵�

⌘
+ SF

⇣
e

q
2
3↵�

⌘
. (3.15)

Here one should keep in mind that our original half-plane variable T is related to � as follows,

T = e

q
2
3↵�

. We will use the following notation

G
⇣
e

q
2
3↵�

⌘
⌘ g(�) , F

⇣
e

q
2
3↵�

⌘
⌘ f(�) . (3.16)

To summarize, in Killing variables the ↵-attractor supergravity models are

K = �3↵ log
h
cosh

� � �̄p
6↵

i
+ SS̄ , W = g(�) + Sf(�) . (3.17)
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Refined	  α-‐a\ractor	  

S:	  Stabiliser	  

S	  appears	  naturally	  in	  (nonlinear)	  
supersymmetric	  version	  of	  anMbrane	  in	  KKLT	  
Consistent	  with	  small	  graviMno	  mass	  

Kallosh’s	  talk	  



This'is'the'simplest'quadra=c'infla=onary'poten=al,'with'angels'
and'devils'concentrated'near'the'boundary'of'the'moduli'space'

Linde’s	  talk	  



Axion	  inflaMon	  issues	  

•  Weak	  gravity	  conjecture	  ?	  Shiu,	  McCallister,	  Hebecker,	  
Soler,	  Witkowski,	  Montero’s	  talks	  

•  Controlled	  moduli	  stabilisaHon	  Hebecker,	  
Blumenhagen’s	  talk	  

	  	  	  	  	  
	  	  	  	  (also	  issue	  for	  Higgs-‐oHc	  inflaHon)	  



AnMbranes	  



AnM-‐brane	  issues	  

•  Singularity	  and	  its	  relevance	  Massai’s	  talk	  

•  Consistent	  effecHve	  field	  theory	  descripHon	  
	  	  	  	  	  	  Puhm’s	  talk	  

•  Non-‐linearly	  realised	  supersymmetry	  Kallosh’s	  talk	  



LHC	  String	  Phenomenology	  



LHC	  String	  Phenomenology	  

•  General	  remarks	  Zwirner’s	  talk	  

•  Concrete	  soo	  terms	  calculaHons	  Cicoli	  +	  Aparicio’s	  
talks	  

	  



Different SUSY Scenarios 

•  First two not yet obtained from dS uplifting 
•  3rd: high scale SUSY breaking (e.g. Ibanez et al.) 

•  4th +5th SUSY ‘solve’ hierarchy small ‘tuning’ 
by flux dependence of GUT soft terms. 



   Compactification   
 
 
 



Soft terms for Sequestered Scenarios 

The coefficients c are flux-dependent! (explicit stringy tuning at UV!) 
i)  Local and ultra-local dS1: split SUSY scenario 
ii)  Ultra-local dS2: standard MSSM with possible small non-universalities 

Need to perform RG running down to LHC scale, study SUSY phenomenology 
combined with cosmological constrains from dark matter and dark radiation 



Nonthermal CMSSM* 
•  Assume:	  CMSSM	  parameters	  (M,m,A,tanβ,	  
signμ	  plus	  Trh)	  

•  REWSB	  with	  125	  GeV	  Higgs	  
•  Constraints:	  
	  	  	  Colliders	  (LEP,	  LHC)	  
	  	  	  	  CMB	  (Planck)	  
	  	  	  	  Direct	  (LUX,	  XENON100,	  CDMS,	  IceCube)	  
	  	  	  	  Indirect	  (Fermi)	  

	  	  	  	  

Trh<Tf=m/20 

* Warning: at this stage is purely phenomenological not stringy! 



Survivors 

Non-thermal CMSSM
[Aparicio, MC, Dutta, Krippendorf, Maharana, Muia, Quevedo]

[See  Aparicio’s  talk]

[Dutta, Gurrola, Kamon, John, Sinha, Sheldon]

Neutralino Higgsino-like saturates Planck’s 
density for m=300 GeV, Trh=2 GeV 
Adding nonuniversalities increase allowed 
parameter space                                 Aparicio’s talk 

 



Spectrum 

the plot) Higgsino-like, but the masses are closer to MW and h�vi is no longer described

by (4.1) but by something like (with x = µ/mW ):

h�
e↵

vi ⇠ 9g4

16⇡m2

W

x2

(4x2 � 1)2
. (4.6)

In Fig. 12, we show the spectra of SUSY particles for the allowed regions of Fig. 6 (blue

points below the LUX line). We find that sleptons, staus, Higgses, all other scalar masses

and gluinos are rather heavy since they are between about 2 and 7 TeV. The lightest and

second to lightest neutralino and the lightest chargino are around 280 - 340 GeV while all

other neutralinos and charginos are heavy. The allowed region for TR = 2 GeV is shown

on the left side of the vertical line with the label TR = 2 GeV where the points situated

exactly on the line satisfy all the constraints including the current DM content as measured

by Planck. Similarly, the allowed region for TR � 5 GeV is shown on the left side of the

vertical line with the label TR � 5 GeV even if there are no points in this region which

saturate the current DM content. Notice that the spectrum is essentially independent of

the reheating temperature TR and the hierarchy between the di↵erent sparticles is robust.

Figure 12. The mass spectra of superpartners for allowed points shown in Fig. 6 for di↵erent
values of TR.

4.2 Astrophysical uncertainties

The direct detection cross section can involve various uncertainties, e.g. strange quark

content of proton, form factor, local DM density and LSP contribution to the total amount

of observed DM abundance. The local density can be 0.1-0.7 GeV/cm3 [40]. There could

also be astrophysical uncertainties in the indirect detection results beyond what has been

considered so far. Recently, it is mentioned in [41] that if the thermal neutralinos do not

produce the entire amount of cold dark matter, the direct and indirect detection cross

sections should be reduced by R and R2 respectively with R ⌘ ⌦h2/0.12. Possible bounds

arising from Fermi are now almost negligible since they are suppressed by R2. Once the
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Non	  Standard	  SUSY	  Physics	  

•  Sol	  terms	  much	  lighter	  than	  graviMno	  

•  Lightest	  modulus	  much	  lighter	  than	  graviMno	  

•  Light	  reheaMng	  temperature	  

•  Nonthermal	  dark	  ma\er	  

•  GraviMno	  mass	  and	  inflaMon	  scale	  	  	  	  	  see	  Kallosh	  talk	  

•  Dark	  radiaMon	  issue	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  see	  Muia’s	  talk	  



Model	  Building	  



Model	  Building	  

•  F-‐theory	  (talks	  by:	  PalH,	  Weigand,	  Klevers,	  Schaeffer-‐Nameki,	  Krippendorf,	  
Leontaris,	  Lin,	  Taylor,	  Grimm,	  Watari,	  Garcia-‐Etxeberria,	  Mayorga,	  Colinucci,	  Gray,	  
Anderson,	  Baume,	  Oehlman,	  Till,	  ..)	  	  

•  HeteroMc	  (supersymmetric	  and	  non	  supersymmetric)	  	  
	  	  	  	  	  (talks	  by	  Anderson,	  Vaudrevange,	  Lukas,	  Groot-‐NIbbelink,	  Mavroudi,	  	  
	  	  	  	  	  	  Kuwakino,	  Athanasopoulos,	  Ashfaque...)	  

•  G2	  manifolds	  (talk	  by	  Halverson)	  

•  D-‐branes	  (Berasaluce-‐Gonzalez,...)	  



F-‐Theory	  

•  U(1)’s	  and	  discrete	  symmetries	  under	  much	  
beVer	  control	  

•  Improved	  model	  building	  

•  StaHsHcs	  and	  classificaHons	  (Taylor,	  Watari,	  Gao,	  Gray,	  	  
see	  also	  Marsh,	  Nelson)	  

•  EffecHve	  field	  theory	  open...?	  



Moduli	  StabilisaMon	  



Moduli	  StabilisaMon	  
•  Non	  geometric	  fluxes	  (Blumenhagen,	  Plauschin,	  Shukla,...)	  

	  
•  General	  constraints	  for	  inflaHon(Dudas,	  Hebecker)	  

•  de	  SiVer	  (Rummel,	  Soussa,	  ...)	  

•  D-‐brane	  moduli	  (Regalado)	  
	  
•  Others	  (Angus,	  Ciupke)....	  	  



EffecMve	  Field	  Theory	  



EffecMve	  Field	  Theory	  

•  Warped	  Kahler	  potenHal	  (Martucci’s	  talk)	  

	  
•  Yukawa’s	  in	  heteroHc	  (Lukas’	  talk)	  



“ExoMcs”	  



Post	  InflaMon	  Cosmology	  

•  ALP’s	  and	  dark	  ma\er	  (Conlon,	  Takahashi	  and	  MarHn	  
Lozano’s	  talks	  )	  

•  Dark	  radiaMon	  (Muia’s	  talk)	  

•  Nonthermal	  history	  (Aparicio’s	  talk)	  

•  Anthropics	  (Talk	  Schellekens,	  aoer	  dinner	  speech	  Linde!)	  

Also:	  Neutron-‐anMneutron	  
oscillaMons	  (Bianchi,	  Addazzi)	  	  

	  



Conclusions	  

•  InteresHng	  recent	  developments	  
•  ConHnuously	  progressing	  field	  
•  Concrete	  achievements	  
•  Some	  open	  debates	  
•  Long	  term	  goals	  
•  Well	  defined	  open	  quesHons	  (remember	  bow)	  
•  The	  field	  is	  well	  and	  alive!	  
•  Hopefully	  experimental	  results	  will	  change	  it	  
radically	  soon....	  



F.	  Quevedo	  Statements	  
Es	  cosa	  averiguada,	  así	  lo	  siente	  Metrodoro	  Chío	  y	  otros	  muchos,	  que	  no	  se	  
sabe	  nada,	  y	  que	  todos	  son	  ignorantes,	  y	  aun	  esto	  no	  se	  sabe	  de	  cierto,	  que	  a	  
saberse	  ya	  se	  supiera	  algo;	  sospéchase.	  Dícelo	  así	  el	  doczsimo	  Francisco	  
Sánchez,	  médico	  y	  filósofo,	  en	  su	  libro	  cuyo	  ztulo	  es	  Nihil	  Scitur,	  no	  se	  sabe	  
nada.	  En	  el	  mundo	  hay	  algunos	  que	  no	  saben	  nada	  y	  estudian	  para	  saber,	  y	  
estos	  Henen	  buenos	  deseos	  y	  vano	  ejercicio,	  porque	  al	  cabo	  solo	  les	  sirve	  el	  
estudio	  de	  conocer	  cómo	  toda	  la	  verdad	  la	  quedan	  ignorando.	  Otros	  hay	  que	  
no	  saben	  nada	  y	  no	  estudian	  porque	  piensan	  que	  lo	  saben	  todo;	  son	  destos	  
muchos	  irremediables;	  a	  estos	  se	  les	  ha	  de	  invidiar	  el	  ocio	  y	  la	  saHsfacHón	  y	  
llorarles	  el	  seso.	  Otros	  hay	  que	  no	  saben	  nada	  y	  dicen	  que	  no	  saben	  nada	  
porque	  piensan	  que	  saben	  algo	  de	  verdad,	  pues	  lo	  es	  que	  no	  saben	  nada,	  y	  a	  
estos	  se	  les	  había	  de	  casHgar	  la	  hipocresía	  con	  creerles	  la	  confesión.	  Otros	  
hay,	  y	  en	  estos,	  que	  son	  los	  peores,	  entro	  yo,	  que	  no	  saben	  nada,	  ni	  quieren	  
saber	  nada,	  ni	  creen	  que	  se	  sepa	  nada	  y	  dicen	  de	  todos	  que	  no	  saben	  nada	  y	  
todos	  dicen	  dellos	  lo	  mismo	  y	  nadie	  miente.	  Y	  como	  gente	  que	  en	  cosas	  de	  
letras	  y	  sciencias	  no	  Hene	  que	  perder	  tampoco,	  se	  atreven	  a	  imprimir	  y	  sacar	  
a	  luz	  todo	  cuanto	  sueñan.	  
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sabe	  nada,	  y	  que	  todos	  son	  ignorantes,	  y	  aun	  esto	  no	  se	  sabe	  de	  cierto,	  que	  a	  
saberse	  ya	  se	  supiera	  algo;	  sospéchase.	  Dícelo	  así	  el	  doczsimo	  Francisco	  
Sánchez,	  médico	  y	  filósofo,	  en	  su	  libro	  cuyo	  ztulo	  es	  Nihil	  Scitur,	  	  
no	  se	  sabe	  nada.	  En	  el	  mundo	  hay	  algunos	  que	  no	  saben	  nada	  y	  estudian	  para	  
saber,	  y	  estos	  Henen	  buenos	  deseos	  y	  vano	  ejercicio,	  porque	  al	  cabo	  solo	  les	  
sirve	  el	  estudio	  de	  conocer	  cómo	  toda	  la	  verdad	  la	  quedan	  ignorando.	  Otros	  
hay	  que	  no	  saben	  nada	  y	  no	  estudian	  porque	  piensan	  que	  lo	  saben	  todo;	  son	  
destos	  muchos	  irremediables;	  a	  estos	  se	  les	  ha	  de	  invidiar	  el	  ocio	  y	  la	  
saHsfacHón	  y	  llorarles	  el	  seso.	  Otros	  hay	  que	  no	  saben	  nada	  y	  dicen	  que	  no	  
saben	  nada	  porque	  piensan	  que	  saben	  algo	  de	  verdad,	  pues	  lo	  es	  que	  no	  
saben	  nada,	  y	  a	  estos	  se	  les	  había	  de	  casHgar	  la	  hipocresía	  con	  creerles	  la	  
confesión.	  Otros	  hay,	  y	  en	  estos,	  que	  son	  los	  peores,	  entro	  yo,	  que	  no	  saben	  
nada,	  ni	  quieren	  saber	  nada,	  ni	  creen	  que	  se	  sepa	  nada	  y	  dicen	  de	  todos	  que	  
no	  saben	  nada	  y	  todos	  dicen	  dellos	  lo	  mismo	  y	  nadie	  miente.	  Y	  como	  gente	  
que	  en	  cosas	  de	  letras	  y	  sciencias	  no	  Hene	  que	  perder	  tampoco,	  se	  atreven	  a	  
imprimir	  y	  sacar	  a	  luz	  todo	  cuanto	  sueñan.	  

Francisco	  de	  Quevedo	  y	  Villegas	  
Great	  Spanish	  writer	  XVII	  century	  



Rough	  TranslaHon	  
It	  is	  understood	  that	  nothing	  is	  known	  and	  that	  we	  
are	  all	  ignorants	  and	  even	  this	  is	  not	  known	  since	  if	  
it	  were	  known	  we	  would	  already	  know	  
something...In	  the	  world	  there	  are	  some	  that	  know	  
nothing	  and	  study	  in	  vain	  to	  learn.	  Others	  that	  
know	  nothing	  and	  claim	  that	  they	  know	  nothing	  
because	  they	  think	  they	  know	  something...Others,	  
including	  myself,	  are	  the	  worst	  since	  they	  know	  
nothing	  and	  don’t	  want	  to	  know	  anything	  since	  
they	  think	  nothing	  is	  known	  and	  claim	  nobody	  
knows	  anything	  and	  the	  others	  say	  the	  same	  about	  
them	  and	  nobody	  lies...	  



Thank	  you	  Luis,	  Angel	  and	  Fernando	  
(La	  Casta)!	  

	  
and	  
	  

All	  others	  who	  helped	  to	  make	  this	  a	  
great	  conference!	  


