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Outline

• For concreteness, D6-branes in IIA CY orientifolds. Geometric moduli.

• Usual counting of moduli (ignoring backreaction).

• Taking backreaction into account.

• Linear equivalence.

• Superpotential analysis.



Counting D6-brane moduli in CY
• In Type II D-brane models, we typically ignore the backreaction 

of D-branes on the background (           ).  

• Worldsheet or worldvolume supersymmetry analysis     
(ignoring WS instantons).

gs ! 0

D6-branes wrap SLags      with flat bundles     :F

This talk :  Does this change if we take into account the backreaction?

• Moduli: deformations that preserve this                   complex scalars.
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Setting up the problem
• Equations for 4d N=1 Minkowski vacua.

• Quantisation of the field strength.

• Bianchi identities.
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Tool: Linear equivalence

• Field strength coupled to magnetic sources and not electric

• We can use Hodge’s decomposition for the field strength

dF2 = �(⇧), d†F2 = 0 [⇧] = 0with

F2 = ↵2 + d†�3 + d�1 ↵2with      harmonic

• The quantization condition fixes the harmonic piece

We say that      is linearly equivalent to zero iff ⇧ ↵2 = 0
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Supersymmetric configurations (geometry)
• Supersymmetry implies that

d(e��Re⌦) = �J ^ F2

SUSY
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• Using Bianchi + Quantisation:
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Lefschetz duality
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Obstruction to deformations
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Superpotential analysis
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• Critical points:
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• Full superpotential: W (Jc,⇧, A) =
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(Lagrangian) (D-brane linear equivalence)

• Close to SUSY:
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Summary and outlook
• We have revisited the counting of moduli associated to D6-branes in CY.

• Extra condition: D6-branes and O6-planes are linearly equivalent to zero. 
Mechanism to lift position moduli and Wilson lines.

• Simple topological criterion (non-trivial 2-cycles in the D6 which are 
non-trivial in the bulk).

• We have recovered this result from known superpotential.

• Something similar occurs for magnetised D7-branes.

• Extend this to other configurations.

• Applications to model buiding: reduce the number of moduli, inflation…



Thank you!


