Bifid Throats for Axion Monodromy Inflation

Ander Retolaza

Instituto de Física Teórica UAM/CSIC, Madrid

Based on arXiv:1504.02103, by A.R., A. Uranga & A. Westphal

String Theory and Cosmology 2015, Hong Kong, 2nd June 2015

SPLE Advanced Grant

Sac

イロト イポト イヨト イヨト

= 990

- In Large Field Inflation you need:
 - · Control over corrections to inflaton potential
 - UV completion of inflation

• In Large Field Inflation you need:

- Control over corrections to inflaton potential
- UV completion of inflation

Our best inflaton candidate: A **String Theory Axion** \implies shift symmetry protects $V(\phi)$ against corrections

In Type IIB we have many axions...

$$b = \int_{\Sigma_2} B_2$$
; $c = \int_{\Sigma'_2} C_2$
 $b \sim b + f_b$; $c \sim c + f_c$

・ 同 ト ・ ヨ ト ・ ヨ ト …

= 990

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

In String Theory axions have $f < M_p$ Banks et al.

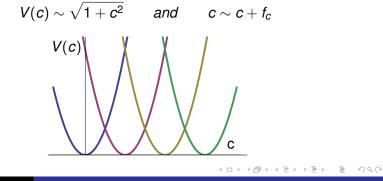
In String Theory axions have $f < M_p$ Banks et al.

Two possible ways of having Large Field Inflation:

• Many-axion models Kim, Nilles, Peloso; Dimopoulos et al

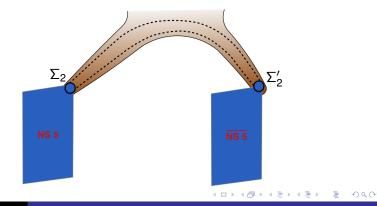
(but... Rudelius; Montero et al; Brown et al; Bachlechner et al; Hebecker et al; Blumenhagen et al; Ruehle & Wieck; Junghans)

- Axion Monodromy models
 - 5-brane Axion Monodromy McAllister, Silverstein & Westphal
 - F-term Axion Monodromy Marchesano, Shiu, Uranga; Hebecker et al, Blumenhagen et al


ヘロト ヘアト ヘビト ヘビト

= 990

5-brane Axion Monodromy Inflation McAllister, Silverstein & Westphal


Non-perturbative object (5-brane) creates potential for axion

For a NS5-brane: DBI-like action gives a potential $(c = \int_{\Sigma_2} C_2)$

5-brane Axion Monodromy Inflation McAllister, Silverstein & Westphal

- Tadpoles → NS5 NS5 in Σ₂ ~ Σ'₂
 Closed string twisted fields associated to Σ₂ ~ Σ'₂
 V(z) ~ log z Conlon
- Attraction vs. Warping : use Throats (Klebanov-Strassler...)

Ander Retolaza Bifid Throats for Axion Monodromy Inflation

5-brane Axion Monodromy Inflation

Flauger, McAllister, Pajer, Westphal, Xu

Inflationary energy backreaction may affect 4-cycle volumes

Corrections to moduli stabilization potential (from D3-brane instantons, etc.)

∜

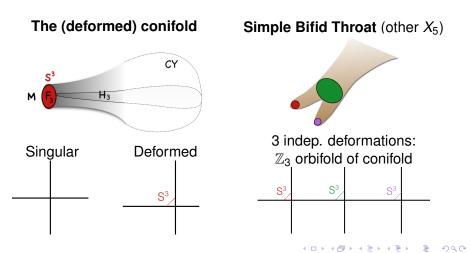
U Corrections to inflation potential

Solution (again): warping Bifid Throats

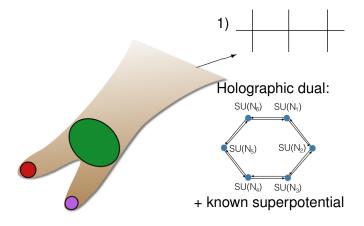
From bulk looks like a dipole

Throats I: the Conifold

- Start with cone over X₅ ~ S² × S³: ds₆² = dr² + r²dΩ²_{X₅} and put D3 branes on the bottom. Near horizon: AdS₅ × X₅
- Admits a Holographic dual Gauge theory description
- Complex deformation: grow a S³ on the bottom, hold by fluxes in SUGRA solution Klebanov-Strassler



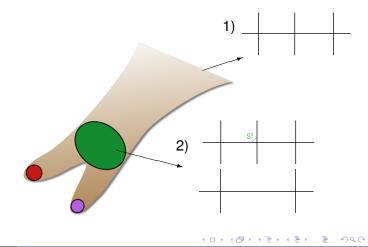
 Suppression of scales on the bottom due to warping Randall & Sundrum; H. Verlinde; Giddings, Kachru & Polchinski


Sar

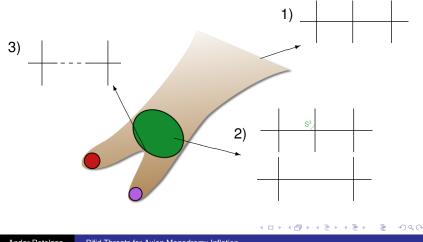
イロト イ押ト イヨト イヨトー

Toric geometry: Web diagrams

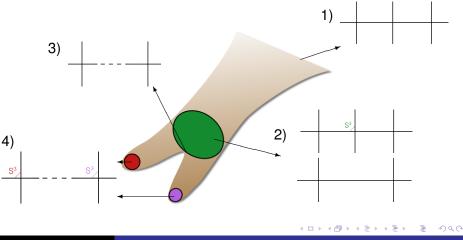
Base of cone X_5 changes as one goes to smaller radius (= gauge theory changes as one goes to the IR)



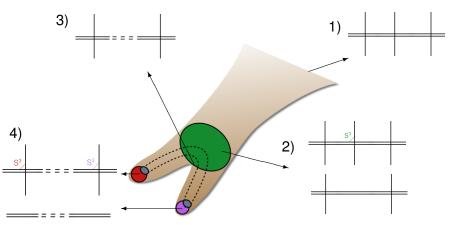
イロト イポト イヨト イヨト


э

DQC


Base of cone X_5 changes as one goes to smaller radius (= gauge theory changes as one goes to the IR)

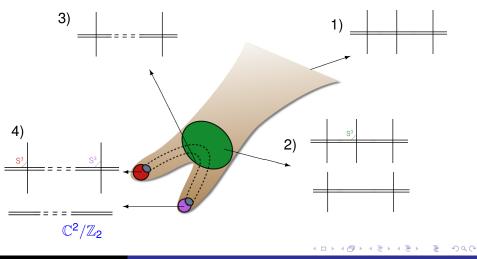
Base of cone X_5 changes as one goes to smaller radius (= gauge theory changes as one goes to the IR)



Base of cone X_5 changes as one goes to smaller radius (= gauge theory changes as one goes to the IR)

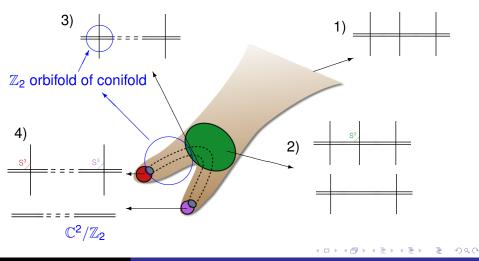
Throats III: Bifid Throat with homologous 2-cycles

In order to have homologous 2-cycles at the bottom take an extra \mathbb{Z}_2 action: $\mathbb{Z}_3 \times \mathbb{Z}_2$ orbifold of conifold



э

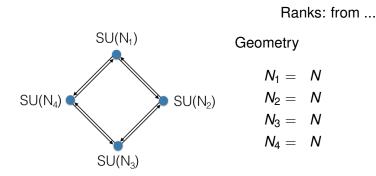
DQC


Throats III: Bifid Throat with homologous 2-cycles

In order to have homologous 2-cycles at the bottom take an extra \mathbb{Z}_2 action: $\mathbb{Z}_3 \times \mathbb{Z}_2$ orbifold of conifold

Throats III: Bifid Throat with homologous 2-cycles

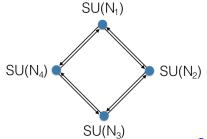
In order to have homologous 2-cycles at the bottom take an extra \mathbb{Z}_2 action: $\mathbb{Z}_3 \times \mathbb{Z}_2$ orbifold of conifold



Holography I: Daughter Throats

We have a \mathbb{Z}_2 orbifold of the conifold

イロト イポト イヨト イヨト


E DQC

Holography I: Daughter Throats

We have a \mathbb{Z}_2 orbifold of the conifold

Ranks: from ...

Geometry + fluxes

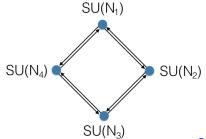
$$N_1 = N + P$$

$$N_2 = N$$

$$N_3 = N + P$$

$$N_4 = N$$

Cascade of Seiberg Dualities


イロト イポト イヨト イヨト

E DQC

Holography I: Daughter Throats

We have a \mathbb{Z}_2 orbifold of the conifold

Ranks: from ...

Geometry + fluxes + Brane(s)¹

$$N_1 = N + P + K$$

$$N_2 = N + K$$

$$N_3 = N + P$$

$$N_4 = N$$

Sac

Cascade of Seiberg Dualities

¹ What about antibranes? ; They are D5-s here, not NS5-s

Holography II: The log profile Conlon

Take the brane(s) out of the bottom along the $\mathbb{C}^2/\mathbb{Z}_2$ curve: some bifundamentals get vevs & ranks of gauge groups change making modes masive. Integrate out massive modes to relate scales in e.g. group 1:

$$\Lambda_1^{4P} = \Lambda_1^{4P+2K} z^{-2K}$$

And as the dynamical scale of any gauge group is

$$\Lambda^{3N_c-N_f} = \mu^{3N_c-N_f} \exp\left(rac{1}{g_{
m YM}^2(\mu)} + i heta
ight)$$

(日)

글 > 글

Holography II: The log profile Conlon

Take the brane(s) out of the bottom along the $\mathbb{C}^2/\mathbb{Z}_2$ curve: some bifundamentals get vevs & ranks of gauge groups change making modes masive. Integrate out massive modes to relate scales in e.g. group 1:

$$\Lambda_1^{4P} = \Lambda_1^{4P+2K} z^{-2K}$$

And as the dynamical scale of any gauge group is

$$\Lambda^{3N_c-N_f} = \mu^{3N_c-N_f} \exp\left(rac{1}{g_{
m YM}^2(\mu)} + i heta
ight)$$

In the holographic picture the log profile is gauge coupling dependence on the Coulomb branch parameter

$$rac{1}{g_{
m YM}^2(\mu)}\sim K\log z$$

Backreaction

Compare contribution from brane(s) to background flux contributions

$$rac{\Delta g_{ ext{YM}}^{-2}(\mu)}{g_{ ext{YM}}^{-2}(\mu)}\sim rac{\mathcal{K}}{\mathcal{P}}\lograc{z}{\Lambda'}<rac{\mathcal{K}}{\mathcal{P}}\lograc{\Lambda}{\Lambda'}$$

 Λ and Λ' are scales associatted to big and daughter throats respectively. For the geometry to work we need a hierarchy

 $\Lambda \gg \Lambda'$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Backreaction

Compare contribution from brane(s) to background flux contributions

$$rac{\Delta g_{
m YM}^{-2}(\mu)}{g_{
m YM}^{-2}(\mu)}\sim rac{K}{P}\lograc{z}{\Lambda'}<rac{K}{P}\lograc{\Lambda}{\Lambda'}\simeq 2.3 imesrac{K}{P}\ll 1$$

 Λ and Λ' are scales associatted to big and daughter throats respectively. For the geometry to work we need a hierarchy

 $\Lambda \gg \Lambda'$

Impossing COBE normalization of curvature perturbations at $\phi_c = 11 M_p$ (60e-folds), a typical value would be $\Lambda \simeq 10\Lambda'$.

The backreaction is small compared to the effects of fluxes

・ 同 ト ・ ヨ ト ・ ヨ ト …

= 990

Thank you :)

Ander Retolaza Bifid Throats for Axion Monodromy Inflation

Extra winding due to suppression of f

The effect of warping affects the axion decay constant

$$f\sim e^{-rac{2\pi K}{3Mg_s}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

So axion winds around potential more times ($\sim \frac{1}{f} \sim e^{\frac{2\pi K}{3Mg_s}}$)

Extra winding due to suppression of f

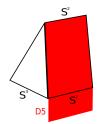
The effect of warping affects the axion decay constant

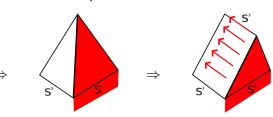
$$f\sim e^{-rac{2\pi K}{3Mg_s}}$$

So axion winds around potential more times ($\sim \frac{1}{f} \sim e^{\frac{2\pi K}{3Mg_s}}$)

Not a big problem Franco, Galloni, A.R., Uranga

Field tunneling: D3-brane creation with less energy state inside


(日本) (日本)


Sac

Extra exponential suppression in probability of other routes

Fluxes are fractional branes

Take the most simple case: the conifold

ヨトーヨ

Dac