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Motivation and introduction

→ With r ≤ 0.08, still room for Large Field displacements: ∆φ &
(

r
0.01

)1/2
MPl .

→ Theoretical challenges:

1 Coupling of the inflaton to UV degrees of freedom can spoil the flatness of the
potential on scales ≤ MPl .

→ Shift symmetry φ→ φ+ const protects from this effect. In string
compactifications, many axions with residual discrete shift symmetries.

2 Obtain a large inflationary field range in string compactifications.

→ In particular, transplanckian trajectories can arise in the field space of two or
more axions. [Kim, Nilles, Peloso ’04,. . . ], [Dimopoulos et al. ’05,. . . ].

? Tension with general QG constraints? [Arkani-Hamed, Motl, Nicolis, Vafa ’06,. . . ,
Rudelius ’14, Rudelius/Montero,Uranga,Valenzuela/Brown, Cotrell, Shiu, . . . ’15].

→ Alternatively, one can introduce monodromies to extend the compact field
space of one axion. [Silverstein/Westphal/McAllister ’08. . . ].

→ Focus of this talk: challenges for string-theoretic supegravity models of axion
monodromy inflation with complex structure moduli.

Fabrizio Rompineve F-term axion monodromy inflation with complex structure moduli 2 / 11



Motivation and introduction

→ With r ≤ 0.08, still room for Large Field displacements: ∆φ &
(

r
0.01

)1/2
MPl .

→ Theoretical challenges:
1 Coupling of the inflaton to UV degrees of freedom can spoil the flatness of the

potential on scales ≤ MPl .

→ Shift symmetry φ→ φ+ const protects from this effect. In string
compactifications, many axions with residual discrete shift symmetries.

2 Obtain a large inflationary field range in string compactifications.

→ In particular, transplanckian trajectories can arise in the field space of two or
more axions. [Kim, Nilles, Peloso ’04,. . . ], [Dimopoulos et al. ’05,. . . ].

? Tension with general QG constraints? [Arkani-Hamed, Motl, Nicolis, Vafa ’06,. . . ,
Rudelius ’14, Rudelius/Montero,Uranga,Valenzuela/Brown, Cotrell, Shiu, . . . ’15].

→ Alternatively, one can introduce monodromies to extend the compact field
space of one axion. [Silverstein/Westphal/McAllister ’08. . . ].

→ Focus of this talk: challenges for string-theoretic supegravity models of axion
monodromy inflation with complex structure moduli.

Fabrizio Rompineve F-term axion monodromy inflation with complex structure moduli 2 / 11



Motivation and introduction

→ With r ≤ 0.08, still room for Large Field displacements: ∆φ &
(

r
0.01

)1/2
MPl .

→ Theoretical challenges:
1 Coupling of the inflaton to UV degrees of freedom can spoil the flatness of the

potential on scales ≤ MPl .

→ Shift symmetry φ→ φ+ const protects from this effect. In string
compactifications, many axions with residual discrete shift symmetries.

2 Obtain a large inflationary field range in string compactifications.

→ In particular, transplanckian trajectories can arise in the field space of two or
more axions. [Kim, Nilles, Peloso ’04,. . . ], [Dimopoulos et al. ’05,. . . ].

? Tension with general QG constraints? [Arkani-Hamed, Motl, Nicolis, Vafa ’06,. . . ,
Rudelius ’14, Rudelius/Montero,Uranga,Valenzuela/Brown, Cotrell, Shiu, . . . ’15].

→ Alternatively, one can introduce monodromies to extend the compact field
space of one axion. [Silverstein/Westphal/McAllister ’08. . . ].

→ Focus of this talk: challenges for string-theoretic supegravity models of axion
monodromy inflation with complex structure moduli.

Fabrizio Rompineve F-term axion monodromy inflation with complex structure moduli 2 / 11



Motivation and introduction

→ With r ≤ 0.08, still room for Large Field displacements: ∆φ &
(

r
0.01

)1/2
MPl .

→ Theoretical challenges:
1 Coupling of the inflaton to UV degrees of freedom can spoil the flatness of the

potential on scales ≤ MPl .

→ Shift symmetry φ→ φ+ const protects from this effect. In string
compactifications, many axions with residual discrete shift symmetries.

2 Obtain a large inflationary field range in string compactifications.

→ In particular, transplanckian trajectories can arise in the field space of two or
more axions. [Kim, Nilles, Peloso ’04,. . . ], [Dimopoulos et al. ’05,. . . ].

? Tension with general QG constraints? [Arkani-Hamed, Motl, Nicolis, Vafa ’06,. . . ,
Rudelius ’14, Rudelius/Montero,Uranga,Valenzuela/Brown, Cotrell, Shiu, . . . ’15].

→ Alternatively, one can introduce monodromies to extend the compact field
space of one axion. [Silverstein/Westphal/McAllister ’08. . . ].

→ Focus of this talk: challenges for string-theoretic supegravity models of axion
monodromy inflation with complex structure moduli.

Fabrizio Rompineve F-term axion monodromy inflation with complex structure moduli 2 / 11



Motivation and introduction

→ With r ≤ 0.08, still room for Large Field displacements: ∆φ &
(

r
0.01

)1/2
MPl .

→ Theoretical challenges:
1 Coupling of the inflaton to UV degrees of freedom can spoil the flatness of the

potential on scales ≤ MPl .

→ Shift symmetry φ→ φ+ const protects from this effect. In string
compactifications, many axions with residual discrete shift symmetries.

2 Obtain a large inflationary field range in string compactifications.

→ In particular, transplanckian trajectories can arise in the field space of two or
more axions. [Kim, Nilles, Peloso ’04,. . . ], [Dimopoulos et al. ’05,. . . ].

? Tension with general QG constraints? [Arkani-Hamed, Motl, Nicolis, Vafa ’06,. . . ,
Rudelius ’14, Rudelius/Montero,Uranga,Valenzuela/Brown, Cotrell, Shiu, . . . ’15].

→ Alternatively, one can introduce monodromies to extend the compact field
space of one axion. [Silverstein/Westphal/McAllister ’08. . . ].

→ Focus of this talk: challenges for string-theoretic supegravity models of axion
monodromy inflation with complex structure moduli.
Fabrizio Rompineve F-term axion monodromy inflation with complex structure moduli 2 / 11



F-term axion monodromy inflation

Consider a shift symmetric Kähler potential

K ≡ K(zn, z̄n, u + ū)

The inflaton candidate is y = Im(u). zn, u = x + iy are complex structure
moduli of a CY 3-fold. More generally, one can consider complex structure of
CY 4-folds. Then brane position moduli are also included.

Such a shift symmetry arises at special points of moduli space. In our case,
we require u to be in the Large Complex Structure (LCS) regime.
[Arends, Hebecker, Heimpel, Kraus, Lüst, Mayrhofer, Schick, Weigand /McAllister,
Silverstein, Westphal, Wrase/ Blumenhagen, Herrschmann, Plauschinn/Hayashi, Matsuda,
Watari/Garcia-Extebarria, Grimm, Valenzuela.]

The shift symmetry is weakly broken by the superpotential. In the simplest
case, by a flux choice we can consider:

W = w
(
{z i}

)
+ au, with a� w ∼ O(1)⇒ a ≡ a

(
{z i}

)
see also [Blumenhagen, Herrschmann, Plauschinn ’14] for the alternative choice w � 1.
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Features of the F-term potential

The inflaton candidate acquires an F-term potential:

VF = eK
[
KI J̄DIWDJW

]
+

'0 due to no-scale structure︷ ︸︸ ︷
VKähler moduli − 3|W |2

Crucial: we take all the complex structure moduli to be dynamical, i.e. we do
not integrate out any z i . From now on ∂z i = ∂i .

The result is a quadratic potential for y , with moduli-dependent
cross-couplings:

VF (x , y , z , z̄) = A(z , z̄ , x) + B(z , z̄ , x)y + C (z , z̄ , x)y2, (1)

with A = B = 0 at the global minimum (z0, z̄0, x0, y0).

Tuning: Flat direction requires C (z0, z̄0, x0)� 1. Which quantities do we
need to tune?
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Additional tunings

Around the minimum the scalar potential is exactly quadratic in ∆y ≡ y − ymin:

V = eK
[
Kuū|Kua|2 +Ki j̄ (ai +Kia)(aj +Kja)

]
(∆y)2

+
[
(Kuj̄ (Kua)(aj +Kja) + h.c .)

]
(∆y)2 + ...︸︷︷︸

backreaction of x,z i

At the minimum, we set |a| ∼ ε� 1. Additionally, we need
|∂ia +Kia| ∼ ε2 � 1!

? These conditions cannot be realised using GVW superpotential for 3-folds ⇒
We need 4-folds!

The result of this tuning is a very flat naive inflationary potential:

Vnaive = µ2∆y2 (2)

where µ2 ∼ eKε4 � 1.
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The problem of backreaction

As ∆y moves along the
inflationary trajectory, the other
moduli {z i , x} can be displaced

from their values at the
minimum.

→ Full backreacted potential might
not be suitable for inflation!

Strategy

1 Expand the scalar potential at second order in ∆ =
{
δx , δv i , δw i

}
, where

x = Re(u), v i = Re(z i ),w i = Im(z i ).

2 Minimise with respect to ∆.

→ ∆min describes how the moduli shift as ∆y moves away from the minimum.

→ Minimised potential takes into account the effect of backreaction.
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Results for model with 4 moduli, KI J̄ ∼ O(1), ε ∼ 10−2.

Plots of δx (blue), δv1, δw1, δv2, δw2, δv3, δw3 vs. ∆y .

(a) (b)

1 ∆y . O(1): the displacements are generic functions of ∆y . Backreaction is
not always under control.

2 Interesting regime for large field inflation: O(1) . ∆y � 1/ε: δv i , δw i ∼ ε2,
δx ∼ ε2∆y . Backreaction is under control!
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The effective potential in the regime O(1) . ∆y � 1/ε

The backreacted potential is given by:

Veff ' −O(1)eKε4∆y2︸ ︷︷ ︸
≡Vbackreaction

+

≡Vnaive︷ ︸︸ ︷
µ2∆y2 ≡ µ2

eff ∆y2, with µ ∼ eKε4

→ Plots of the effective inflaton potential (blue, solid) and the ‘naive’ inflaton
potential (red, dashed) vs. ∆y .

(g) (h)
→ The potential is quadratic and in principle suitable for inflation. Backreaction

leads to flattening: µeff < µ!
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Summary and outlook

F-term monodromy inflation offers the opportunity to study the interplay
between inflation and moduli stabilisation in a supergravity setting.

We presented a model where the inflaton is the axionic component of a
complex structure modulus.

We described two challenges/features which arise in such a model, and that
we believe are generic in this framework:

1 A certain, potentially heavy, amount of tuning to ensure flatness over large
field displacements.

2 Backreaction of complex structure moduli coupled to the inflaton cannot be
neglected.

→ It reduces the inflaton mass at large field displacements.

Some open questions:

1 10D understanding. (see also [Ibanez, Marchesano, Valenzuela ’14].
2 Kähler moduli stabilisation.
3 New opportunities for uplifting to dS?

→ Many thanks!
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3 New opportunities for uplifting to dS?

→ Many thanks!
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Superpotential and Kähler potential

Π =


1
z I

1
2κIJK z

JzK + non − pert.
− 1

3!κIJK z
I zJzK + non − pert.

 . (3)

W = (NF − SNH )αΠα(z , u) (4)

K = − ln(S − S̄)− ln
[
Πα(z , u)Π̄α(z̄ , ū)

]
(5)

In the LCS for u:

W = w(S , z) + a(S , z)u +
1
2
b(S , z)u2 +

1
3!
c(S)u3 (6)

with c(S) ∼ (m + nS).
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Backreaction of complex structure moduli

As ∆y moves along the inflationary trajectory, the other moduli {z i , x} can be
displaced from their values at the minimum. How do we quantify this effect?

1 Expand the scalar potential at second order in ∆ =
{
δx , δv i , δw i

}
, where

x = Re(u), v i = Re(z i ),w i = Im(z i ).

→ The resulting potential is a quadratic form in ∆

VF =
1
2

∆TD(∆y)∆ + [b(∆y , ηI )]T ∆ + µ2(∆y)2,

where D ≡ Dij and b contain second and first derivatives of the potential
respectively and µ ∼ ε4 is the naive inflaton mass.

2 Minimize VF with respect to ∆ for fixed ∆y :

D∆min = −b.

⇒ The result ∆min ≡ ∆min(∆y) describes how the moduli are displaced as ∆y
moves away from the minimum.
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