F-term axion monodromy inflation with complex structure moduli

Fabrizio Rompineve

Institute for Theoretical Physics, Heidelberg

IFT UAM-CSIC, Madrid, String Pheno 2015

Talk based on A. Hebecker, P. Mangat, FR, L. Witkowski [Nucl. Phys.B 894, arXiv:1411.2032].

- \rightarrow With $r \leq 0.08$, still room for Large Field displacements: $\Delta \phi \gtrsim \left(\frac{r}{0.01}\right)^{1/2} M_{Pl}$.
- $\rightarrow\,$ Theoretical challenges:

- \rightarrow With $r \leq 0.08$, still room for Large Field displacements: $\Delta \phi \gtrsim \left(\frac{r}{0.01}\right)^{1/2} M_{Pl}$.
- $\rightarrow\,$ Theoretical challenges:
 - 1 Coupling of the inflaton to UV degrees of freedom can spoil the flatness of the potential on scales $\leq M_{Pl}$.
 - $\rightarrow\,$ Shift symmetry $\phi\rightarrow\phi+const$ protects from this effect. In string compactifications, many axions with residual discrete shift symmetries.

- \rightarrow With $r \leq 0.08$, still room for Large Field displacements: $\Delta \phi \gtrsim \left(\frac{r}{0.01}\right)^{1/2} M_{Pl}$.
- $\rightarrow\,$ Theoretical challenges:
 - 1 Coupling of the inflaton to UV degrees of freedom can spoil the flatness of the potential on scales $\leq M_{Pl}$.
 - $\rightarrow\,$ Shift symmetry $\phi\rightarrow\phi+const$ protects from this effect. In string compactifications, many axions with residual discrete shift symmetries.
 - 2 Obtain a large inflationary field range in string compactifications.
 - $\rightarrow\,$ In particular, transplanckian trajectories can arise in the field space of two or more axions. [Kim, Nilles, Peloso '04,...], [Dimopoulos et al. '05,...].
 - * Tension with general QG constraints? [Arkani-Hamed, Motl, Nicolis, Vafa '06,..., Rudelius '14, Rudelius/Montero,Uranga,Valenzuela/Brown, Cotrell, Shiu, ... '15].

- \rightarrow With $r \leq 0.08$, still room for Large Field displacements: $\Delta \phi \gtrsim \left(\frac{r}{0.01}\right)^{1/2} M_{Pl}$.
- $\rightarrow\,$ Theoretical challenges:
 - 1 Coupling of the inflaton to UV degrees of freedom can spoil the flatness of the potential on scales $\leq M_{Pl}$.
 - $\rightarrow\,$ Shift symmetry $\phi\rightarrow\phi+const$ protects from this effect. In string compactifications, many axions with residual discrete shift symmetries.
 - 2 Obtain a large inflationary field range in string compactifications.
 - $\rightarrow\,$ In particular, transplanckian trajectories can arise in the field space of two or more axions. [Kim, Nilles, Peloso '04,...], [Dimopoulos et al. '05,...].
 - * Tension with general QG constraints? [Arkani-Hamed, Motl, Nicolis, Vafa '06,..., Rudelius '14, Rudelius/Montero,Uranga,Valenzuela/Brown, Cotrell, Shiu, ... '15].
 - \rightarrow Alternatively, one can introduce monodromies to extend the compact field space of one axion. [Silverstein/Westphal/McAllister '08...].

- \rightarrow With $r \leq 0.08$, still room for Large Field displacements: $\Delta \phi \gtrsim \left(\frac{r}{0.01}\right)^{1/2} M_{Pl}$.
- $\rightarrow\,$ Theoretical challenges:
 - 1 Coupling of the inflaton to UV degrees of freedom can spoil the flatness of the potential on scales $\leq M_{Pl}$.
 - $\rightarrow\,$ Shift symmetry $\phi\rightarrow\phi+const$ protects from this effect. In string compactifications, many axions with residual discrete shift symmetries.
 - 2 Obtain a large inflationary field range in string compactifications.
 - $\rightarrow\,$ In particular, transplanckian trajectories can arise in the field space of two or more axions. [Kim, Nilles, Peloso '04,...], [Dimopoulos et al. '05,...].
 - * Tension with general QG constraints? [Arkani-Hamed, Motl, Nicolis, Vafa '06,..., Rudelius '14, Rudelius/Montero,Uranga,Valenzuela/Brown, Cotrell, Shiu, ... '15].
 - \rightarrow Alternatively, one can introduce monodromies to extend the compact field space of one axion. [Silverstein/Westphal/McAllister '08...].
- \rightarrow Focus of this talk: challenges for string-theoretic supegravity models of axion monodromy inflation with complex structure moduli.

F-term axion monodromy inflation

• Consider a shift symmetric Kähler potential

$$\mathcal{K} \equiv \mathcal{K}(z^n, \bar{z}^n, u + \bar{u})$$

- The inflaton candidate is y = Im(u). zⁿ, u = x + iy are complex structure moduli of a CY 3-fold. More generally, one can consider complex structure of CY 4-folds. Then brane position moduli are also included.
- Such a shift symmetry arises at special points of moduli space. In our case, we require *u* to be in the Large Complex Structure (LCS) regime. [Arends, Hebecker, Heimpel, Kraus, Lüst, Mayrhofer, Schick, Weigand /McAllister, Silverstein, Westphal, Wrase/ Blumenhagen, Herrschmann, Plauschinn/Hayashi, Matsuda, Watari/Garcia-Extebarria, Grimm, Valenzuela.]
- The shift symmetry is weakly broken by the superpotential. In the simplest case, by a flux choice we can consider:

$$W = w\left(\{z^i\}\right) + au, \quad ext{with } a \ll w \sim O(1) \Rightarrow a \equiv a\left(\{z^i\}\right)$$

see also [Blumenhagen, Herrschmann, Plauschinn '14] for the alternative choice $w \gg 1$.

• The inflaton candidate acquires an F-term potential:

$$V_{F} = e^{\mathcal{K}} \left[\mathcal{K}^{I\bar{J}} D_{I} W \overline{D_{J} W} \right] + \underbrace{V_{\text{Kähler moduli}}^{\simeq 0 \text{ due to no-scale structure}}}_{\text{Kähler moduli} - 3|W|^{2}}$$

• The inflaton candidate acquires an F-term potential:

$$V_{F} = e^{\mathcal{K}} \left[\mathcal{K}^{I\bar{J}} D_{I} W \overline{D_{J} W} \right] + \underbrace{V_{\text{Kähler moduli}}^{\simeq 0 \text{ due to no-scale structure}}}_{\text{Kähler moduli} - 3|W|^{2}}$$

Crucial: we take all the complex structure moduli to be dynamical, i.e. we do
not integrate out any zⁱ. From now on ∂_{zⁱ} = ∂_i.

• The inflaton candidate acquires an F-term potential:

$$V_{F} = e^{\mathcal{K}} \left[\mathcal{K}^{I\bar{J}} D_{I} W \overline{D_{J} W} \right] + \underbrace{V_{\text{Kähler moduli}} - 3|W|^{2}}_{\text{Kähler moduli}}$$

- Crucial: we take all the complex structure moduli to be dynamical, i.e. we do
 not integrate out any zⁱ. From now on ∂_{zⁱ} = ∂_i.
- The result is a quadratic potential for *y*, with *moduli-dependent* cross-couplings:

$$V_{F}(x, y, z, \bar{z}) = A(z, \bar{z}, x) + B(z, \bar{z}, x)y + C(z, \bar{z}, x)y^{2},$$
(1)

with A = B = 0 at the global minimum $(z_0, \overline{z}_0, x_0, y_0)$.

• The inflaton candidate acquires an F-term potential:

$$V_{F} = e^{\mathcal{K}} \left[\mathcal{K}^{I\bar{J}} D_{I} W \overline{D_{J} W} \right] + \underbrace{V_{\text{Kähler moduli}}^{\simeq 0 \text{ due to no-scale structure}}}_{\text{Kähler moduli} - 3 |W|^{2}}$$

- Crucial: we take all the complex structure moduli to be dynamical, i.e. we do
 not integrate out any zⁱ. From now on ∂_{zⁱ} = ∂_i.
- The result is a quadratic potential for *y*, with *moduli-dependent* cross-couplings:

$$V_F(x, y, z, \bar{z}) = A(z, \bar{z}, x) + B(z, \bar{z}, x)y + C(z, \bar{z}, x)y^2,$$
(1)

with A = B = 0 at the global minimum $(z_0, \overline{z}_0, x_0, y_0)$.

• Tuning: Flat direction requires $C(z_0, \overline{z}_0, x_0) \ll 1$. Which quantities do we need to tune?

Around the minimum the scalar potential is exactly quadratic in $\Delta y \equiv y - y_{min}$:

$$V = e^{\mathcal{K}} \left[\mathcal{K}^{u\bar{u}} | \mathcal{K}_{u} \mathbf{a} |^{2} + \mathcal{K}^{i\bar{j}} (\mathbf{a}_{i} + \mathcal{K}_{i} \mathbf{a}) \overline{(\mathbf{a}_{j} + \mathcal{K}_{j} \mathbf{a})} \right] (\Delta y)^{2} \\ + \left[(\mathcal{K}^{u\bar{j}} (\mathcal{K}_{u} \mathbf{a}) (\overline{\mathbf{a}_{j} + \mathcal{K}_{j} \mathbf{a}}) + h.c.) \right] (\Delta y)^{2} + \underbrace{\cdots}_{\text{backreaction of } x, z^{i}}$$

Around the minimum the scalar potential is exactly quadratic in $\Delta y \equiv y - y_{min}$:

$$V = e^{\mathcal{K}} \left[\mathcal{K}^{u\bar{u}} | \mathcal{K}_{u} a |^{2} + \mathcal{K}^{i\bar{j}} (\underline{a}_{i} + \mathcal{K}_{i} a) \overline{(\underline{a}_{j} + \mathcal{K}_{j} a)} \right] (\Delta y)^{2} \\ + \left[(\mathcal{K}^{u\bar{j}} (\mathcal{K}_{u} a) (\overline{\underline{a}_{j} + \mathcal{K}_{j} a}) + h.c.) \right] (\Delta y)^{2} + \underbrace{\cdots}_{\text{backreaction of } x, z^{i}}$$

• At the minimum, we set $|a| \sim \epsilon \ll 1$. Additionally, we need $|\partial_i a + \mathcal{K}_i a| \sim \epsilon^2 \ll 1!$

Around the minimum the scalar potential is exactly quadratic in $\Delta y \equiv y - y_{min}$:

$$V = e^{\mathcal{K}} \left[\mathcal{K}^{u\bar{u}} | \mathcal{K}_{u} a |^{2} + \mathcal{K}^{i\bar{j}} (a_{i} + \mathcal{K}_{i} a) \overline{(a_{j} + \mathcal{K}_{j} a)} \right] (\Delta y)^{2} \\ + \left[(\mathcal{K}^{u\bar{j}} (\mathcal{K}_{u} a) (\overline{a_{j} + \mathcal{K}_{j} a}) + h.c.) \right] (\Delta y)^{2} + \underbrace{\cdots}_{\text{backreaction of } x.z^{i}}$$

- At the minimum, we set $|a| \sim \epsilon \ll 1$. Additionally, we need $|\partial_i a + \mathcal{K}_i a| \sim \epsilon^2 \ll 1!$
- \star These conditions cannot be realised using GVW superpotential for 3-folds \Rightarrow We need 4-folds!

Around the minimum the scalar potential is exactly quadratic in $\Delta y \equiv y - y_{min}$:

$$V = e^{\mathcal{K}} \left[\mathcal{K}^{u\bar{u}} | \mathcal{K}_{u} a |^{2} + \mathcal{K}^{i\bar{j}} (a_{i} + \mathcal{K}_{i} a) \overline{(a_{j} + \mathcal{K}_{j} a)} \right] (\Delta y)^{2} \\ + \left[(\mathcal{K}^{u\bar{j}} (\mathcal{K}_{u} a) (\overline{a_{j} + \mathcal{K}_{j} a}) + h.c.) \right] (\Delta y)^{2} + \underbrace{\cdots}_{\text{backreaction of } x.z^{i}}$$

- At the minimum, we set $|a| \sim \epsilon \ll 1$. Additionally, we need $|\partial_i a + \mathcal{K}_i a| \sim \epsilon^2 \ll 1!$
- $\star\,$ These conditions cannot be realised using GVW superpotential for 3-folds $\Rightarrow\,$ We need 4-folds!
- The result of this tuning is a very flat *naive* inflationary potential:

$$V_{naive} = \mu^2 \Delta y^2 \tag{2}$$

where $\mu^2 \sim e^{\mathcal{K}} \epsilon^4 \ll 1$.

As Δy moves along the inflationary trajectory, the other moduli $\{z^i, x\}$ can be displaced from their values at the minimum.

As Δy moves along the inflationary trajectory, the other moduli $\{z^i, x\}$ can be displaced from their values at the minimum.

 $\label{eq:Full backreacted potential might} \hfill not be suitable for inflation!$

As Δy moves along the inflationary trajectory, the other moduli $\{z^i, x\}$ can be displaced from their values at the minimum.

 $\label{eq:Full backreacted potential might} \hfill not be suitable for inflation!$

Strategy

As Δy moves along the inflationary trajectory, the other moduli $\{z^i, x\}$ can be displaced from their values at the minimum.

 $\label{eq:Full backreacted potential might} \hfill not be suitable for inflation!$

Strategy

1 Expand the scalar potential at second order in $\Delta = \{\delta x, \delta v^i, \delta w^i\}$, where $x = Re(u), v^i = Re(z^i), w^i = Im(z^i)$.

As Δy moves along the inflationary trajectory, the other moduli $\{z^i, x\}$ can be displaced from their values at the minimum.

 $\label{eq:Full backreacted potential might} \hfill not be suitable for inflation!$

Strategy

1 Expand the scalar potential at second order in $\Delta = \{\delta x, \delta v^i, \delta w^i\}$, where $x = Re(u), v^i = Re(z^i), w^i = Im(z^i)$.

2 Minimise with respect to Δ .

As Δy moves along the inflationary trajectory, the other moduli $\{z^i, x\}$ can be displaced from their values at the minimum.

 $\label{eq:Full backreacted potential might} \hfill not be suitable for inflation!$

Strategy

1 Expand the scalar potential at second order in $\Delta = \{\delta x, \delta v^i, \delta w^i\}$, where $x = Re(u), v^i = Re(z^i), w^i = Im(z^i)$.

2 Minimise with respect to Δ .

 $ightarrow \Delta_{\it min}$ describes how the moduli shift as Δy moves away from the minimum.

 $\rightarrow\,$ Minimised potential takes into account the effect of backreaction.

Results for model with 4 moduli, $\mathcal{K}_{I\bar{I}} \sim O(1)$, $\epsilon \sim 10^{-2}$.

Plots of δx (blue), δv^1 , δw^1 , δv^2 , δw^2 , δv^3 , δw^3 vs. Δy .

Results for model with 4 moduli, $\mathcal{K}_{I\bar{I}} \sim O(1)$, $\epsilon \sim 10^{-2}$.

Plots of δx (blue), δv^1 , δw^1 , δv^2 , δw^2 , δv^3 , δw^3 vs. Δy .

1 $\Delta y \leq O(1)$: the displacements are generic functions of Δy . Backreaction is not always under control.

Results for model with 4 moduli, $\mathcal{K}_{I\bar{J}} \sim O(1)$, $\epsilon \sim 10^{-2}$.

Plots of δx (blue), δv^1 , δw^1 , δv^2 , δw^2 , δv^3 , δw^3 vs. Δy .

- 1 $\Delta y \lesssim O(1)$: the displacements are generic functions of Δy . Backreaction is not always under control.
- 2 Interesting regime for large field inflation: $O(1) \leq \Delta y \ll 1/\epsilon$: $\delta v^i, \delta w^i \sim \epsilon^2$, $\delta x \sim \epsilon^2 \Delta y$. Backreaction is under control!

The effective potential in the regime $O(1) \lesssim \Delta y \ll 1/\epsilon$

The backreacted potential is given by:

$$V_{eff} \simeq \underbrace{-O(1)e^{\mathcal{K}}\epsilon^{4}\Delta y^{2}}_{\equiv V_{backreaction}} + \underbrace{\mu^{2}\Delta y^{2}}_{\equiv V_{aff}} \equiv \mu_{eff}^{2}\Delta y^{2}, \quad \text{with } \mu \sim e^{\mathcal{K}}\epsilon^{4}$$

The effective potential in the regime $O(1) \lesssim \Delta y \ll 1/\epsilon$

The backreacted potential is given by:

$$V_{eff} \simeq \underbrace{-O(1)e^{\mathcal{K}}\epsilon^4 \Delta y^2}_{\equiv V_{backreaction}} + \underbrace{\mu^2 \Delta y^2}_{\mu^2 \Delta y^2} \equiv \mu_{eff}^2 \Delta y^2, \quad ext{with } \mu \sim e^{\mathcal{K}}\epsilon^4$$

 \rightarrow Plots of the effective inflaton potential (blue, solid) and the 'naive' inflaton potential (red, dashed) vs. $\Delta y.$

 \rightarrow The potential is quadratic and in principle suitable for inflation. Backreaction leads to flattening: $\mu_{eff} < \mu!$

Fabrizio Rompineve

• F-term monodromy inflation offers the opportunity to study the interplay between inflation and moduli stabilisation in a supergravity setting.

- F-term monodromy inflation offers the opportunity to study the interplay between inflation and moduli stabilisation in a supergravity setting.
- We presented a model where the inflaton is the axionic component of a complex structure modulus.

- F-term monodromy inflation offers the opportunity to study the interplay between inflation and moduli stabilisation in a supergravity setting.
- We presented a model where the inflaton is the axionic component of a complex structure modulus.
- We described two challenges/features which arise in such a model, and that we believe are generic in this framework:

- F-term monodromy inflation offers the opportunity to study the interplay between inflation and moduli stabilisation in a supergravity setting.
- We presented a model where the inflaton is the axionic component of a complex structure modulus.
- We described two challenges/features which arise in such a model, and that we believe are generic in this framework:
 - 1 A certain, potentially heavy, amount of tuning to ensure flatness over large field displacements.

- F-term monodromy inflation offers the opportunity to study the interplay between inflation and moduli stabilisation in a supergravity setting.
- We presented a model where the inflaton is the axionic component of a complex structure modulus.
- We described two challenges/features which arise in such a model, and that we believe are generic in this framework:
 - 1 A certain, potentially heavy, amount of tuning to ensure flatness over large field displacements.
 - 2 Backreaction of complex structure moduli coupled to the inflaton cannot be neglected.
 - $\rightarrow\,$ It reduces the inflaton mass at large field displacements.

- F-term monodromy inflation offers the opportunity to study the interplay between inflation and moduli stabilisation in a supergravity setting.
- We presented a model where the inflaton is the axionic component of a complex structure modulus.
- We described two challenges/features which arise in such a model, and that we believe are generic in this framework:
 - 1 A certain, potentially heavy, amount of tuning to ensure flatness over large field displacements.
 - 2 Backreaction of complex structure moduli coupled to the inflaton cannot be neglected.
 - $\rightarrow\,$ It reduces the inflaton mass at large field displacements.
- Some open questions:
 - 1 10D understanding. (see also [Ibanez, Marchesano, Valenzuela '14].
 - 2 Kähler moduli stabilisation.
 - 3 New opportunities for uplifting to dS?

- F-term monodromy inflation offers the opportunity to study the interplay between inflation and moduli stabilisation in a supergravity setting.
- We presented a model where the inflaton is the axionic component of a complex structure modulus.
- We described two challenges/features which arise in such a model, and that we believe are generic in this framework:
 - 1 A certain, potentially heavy, amount of tuning to ensure flatness over large field displacements.
 - 2 Backreaction of complex structure moduli coupled to the inflaton cannot be neglected.
 - $\rightarrow\,$ It reduces the inflaton mass at large field displacements.
- Some open questions:
 - 1 10D understanding. (see also [Ibanez, Marchesano, Valenzuela '14].
 - 2 Kähler moduli stabilisation.
 - 3 New opportunities for uplifting to dS?

\rightarrow Many thanks!

Superpotential and Kähler potential

$$\Pi = \begin{pmatrix} 1 \\ z^{I} \\ \frac{1}{2^{K_{IJK}} z^{J} z^{K} + non - pert.} \\ -\frac{1}{3!} \kappa_{IJK} z^{I} z^{J} z^{K} + non - pert.} \end{pmatrix}.$$
 (3)

$$W = (N_F - SN_H)^{\alpha} \Pi_{\alpha}(z, u)$$

$$\mathcal{K} = -\ln(S - \bar{S}) - \ln\left[\Pi_{\alpha}(z, u) \bar{\Pi}^{\alpha}(\bar{z}, \bar{u})\right]$$
(5)

In the LCS for u:

$$W = w(S,z) + a(S,z)u + \frac{1}{2}b(S,z)u^{2} + \frac{1}{3!}c(S)u^{3}$$
(6)

with $c(S) \sim (m + nS)$.

Backreaction of complex structure moduli

As Δy moves along the inflationary trajectory, the other moduli $\{z^i, x\}$ can be displaced from their values at the minimum. How do we quantify this effect?

Backreaction of complex structure moduli

As Δy moves along the inflationary trajectory, the other moduli $\{z^i, x\}$ can be displaced from their values at the minimum. How do we quantify this effect?

- 1 Expand the scalar potential at second order in $\Delta = \{\delta x, \delta v^i, \delta w^i\}$, where $x = Re(u), v^i = Re(z^i), w^i = Im(z^i)$.
- $\rightarrow\,$ The resulting potential is a quadratic form in Δ

$$V_{F} = \frac{1}{2} \Delta^{T} \mathcal{D}(\Delta y) \Delta + [\mathbf{b}(\Delta y, \eta_{I})]^{T} \Delta + \mu^{2} (\Delta y)^{2},$$

where $\mathcal{D} \equiv \mathcal{D}_{ij}$ and **b** contain second and first derivatives of the potential respectively and $\mu \sim \epsilon^4$ is the naive inflaton mass.

Backreaction of complex structure moduli

As Δy moves along the inflationary trajectory, the other moduli $\{z^i, x\}$ can be displaced from their values at the minimum. How do we quantify this effect?

- 1 Expand the scalar potential at second order in $\Delta = \{\delta x, \delta v^i, \delta w^i\}$, where $x = Re(u), v^i = Re(z^i), w^i = Im(z^i)$.
- $\rightarrow\,$ The resulting potential is a quadratic form in Δ

$$V_{F} = \frac{1}{2} \Delta^{T} \mathcal{D}(\Delta y) \Delta + [\mathbf{b}(\Delta y, \eta_{I})]^{T} \Delta + \mu^{2} (\Delta y)^{2},$$

where $\mathcal{D} \equiv \mathcal{D}_{ij}$ and **b** contain second and first derivatives of the potential respectively and $\mu \sim \epsilon^4$ is the naive inflaton mass.

2 Minimize V_F with respect to Δ for fixed Δy :

$$\mathcal{D}\Delta_{min} = -\mathbf{b}.$$

⇒ The result $\Delta_{min} \equiv \Delta_{min}(\Delta y)$ describes how the moduli are displaced as Δy moves away from the minimum.