Natural inflation and moduli stabilization in heterotic orbifolds

Fabian Ruehle

Deutsches Elektronensynchrotron DESY Hamburg

String Pheno 2015 06/09/2015

Based on [1503.07183] with Clemens Wieck

Motivation

Motivation - Large field models

Necessity of large field models

- Field range $\Delta \varphi \approx 20 \sqrt{r} \quad \leadsto \quad r \gtrsim 0.002 \Rightarrow \Delta \varphi > M_{\rm Pl}$
- Joint Planck/BICEP analysis favors $r \approx 0.05$ $\Rightarrow \Delta \varphi \approx 5 M_{\rm Pl}$ at 1.8σ , $H \sim M_{\rm GUT}^2 \sim 10^{-4} \dots 10^{-5}$
- Better results expected soon

Motivation - Large field models

Necessity of large field models

- Field range $\Delta \varphi \approx 20\sqrt{r} \rightarrow r \gtrsim 0.002 \Rightarrow \Delta \varphi > M_{Pl}$
- Joint Planck/BICEP analysis favors $r \approx 0.05$ $\Rightarrow \Delta \varphi \approx 5 M_{\rm Pl}$ at 1.8 σ , $H \sim M_{\rm CUT}^2 \sim 10^{-4} \dots 10^{-5}$
- Better results expected soon

Challenges for trans-Planckian inflation

- Inflaton candidates (moduli) live in compact space ⇒ field range bounded and sub-Planckian
- Need to worry about corrections to the inflaton potential ⇒ Axionic shift symmetry can protect you (see however [Montero,Uranga,Valenzuela;Brown,Cottrell,Shiu,Soler] & $[\mathsf{Bachlechner}, \mathsf{Long}, \mathsf{McAllister}; \mathsf{Hebecker}, \mathsf{Mangat}, \mathsf{Rompineve}, \mathsf{Witkowski}]$
- Need moduli stabilization at high scale $(\geq H)$
 - to work in single field inflation
 - to avoid Polonyi problem/not spoil BBN

Introduction

KNP inflation + moduli stabilization

Ingredients

Need several axions

- Need several axions
 - ⇒ From imaginary part of geometric moduli Kähler: $T_i = t_i + i\tau_i$, Complex structure: $U_i = u_i + i\omega_i$

KNP inflation + moduli stabilization

Ingredients

- Need several axions
 - \Rightarrow From imaginary part of **geometric moduli** Kähler: $T_i | = t_i + i\tau_i$, Complex structure: $U_i | = u_i + i\omega_i$
- 2 Need different non-perturbative effects

200

- 1 Need several axions
 - \Rightarrow From imaginary part of **geometric moduli** Kähler: $T_i | = t_i + i\tau_i$, Complex structure: $U_i | = u_i + i\omega_i$
- Need different non-perturbative effects
 - \Rightarrow Available/calculable from
 - Worldsheet instantons
 - ► Gaugino condensation

KNP inflation + moduli stabilization

- Need several axions
 - ⇒ From imaginary part of geometric moduli Kähler: $T_i = t_i + i\tau_i$, Complex structure: $U_i = u_i + i\omega_i$
- Need different non-perturbative effects
 - ⇒ Available/calculable from
 - Worldsheet instantons
 - Gaugino condensation
- Need near alignment

KNP inflation + moduli stabilization

- Need several axions
 - ⇒ From imaginary part of geometric moduli Kähler: $T_i = t_i + i\tau_i$, Complex structure: $U_i = u_i + i\omega_i$
- Need different non-perturbative effects
 - ⇒ Available/calculable from
 - Worldsheet instantons
 - Gaugino condensation
- Need near alignment
 - ⇒ Both effects related:
 - Both governed by modular forms (Dedekind eta function)
 - Near alignment from fixed modular weights of Kähler and superpotential

Inflation and moduli stabilization in heterotic orbifolds

[Dixon, Harvey, Vafa, Witten]

Orbifold data

$$\bullet : (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$$

[Dixon, Harvey, Vafa, Witten]

Orbifold data

- $\bullet : (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1, \dots, \theta^{N-1}$

[Dixon, Harvey, Vafa, Witten]

Orbifold data

- $\bullet : (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1, \dots, \theta^{N-1}$
- Moduli: Dilaton $S| = s + i\sigma$, Kähler T_i , CS U_i

Motivation

[Dixon, Harvey, Vafa, Witten]

Orbifold data

- $\bullet: (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1, \dots, \theta^{N-1}$
- Moduli: Dilaton $S| = s + i\sigma$, Kähler T_i , CS U_i

Advantages of orbifolds

■ Exact CFT description ⇒ Calculability

[Dixon, Harvey, Vafa, Witten]

Orbifold data

- $\bullet : (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1, \dots, \theta^{N-1}$
- Moduli: Dilaton $S| = s + i\sigma$, Kähler T_i , CS U_i

Advantages of orbifolds

- Exact CFT description ⇒ Calculability
- Known to yield good particle pheno [Blaszczyk,Buchmüller,Hamaguchi,Kim,Kyae,Lebedev,Nilles,Raby, Ramos-Sanchez,Ratz,FR,Trapletti,Vaudrevange,...]

200

Modular transformation

■ Kähler moduli T_i transform under $SL(2,\mathbb{Z})$

Modular transformation

- Kähler moduli T_i transform under $SL(2,\mathbb{Z})$
- Kähler moduli Kähler potential: $K_{mod} = -\sum_{i} \ln(T_i + \overline{T}_i)$
- $K_{\text{mod}} \to K_{\text{mod}} + \sum_{i} \ln |ic_i T_i + d_i|^2$

Modular transformation

- Kähler moduli T_i transform under SL(2, Z)
- Kähler moduli Kähler potential: $K_{mod} = -\sum_{i} \ln(T_i + \overline{T}_i)$
- $K_{\text{mod}} \to K_{\text{mod}} + \sum_{i} \ln |ic_i T_i + d_i|^2$

Introduction

• $G = K + \ln |W|^2$ has to be invariant

Modular transformation

- Kähler moduli T_i transform under SL(2, Z)
- Kähler moduli Kähler potential: $K_{mod} = -\sum_{i} \ln(T_i + \overline{T}_i)$
- $K_{\text{mod}} \to K_{\text{mod}} + \sum_{i} \ln |ic_i T_i + d_i|^2$
- $G = K + \ln |W|^2$ has to be invariant
- $W = W(\Phi_i)$ has to have modular weight -1

Modular transformation

- Kähler moduli T_i transform under $SL(2,\mathbb{Z})$
- Kähler moduli Kähler potential: $K_{mod} = -\sum_{i} \ln(T_i + \overline{T}_i)$
- $K_{\text{mod}} \to K_{\text{mod}} + \sum_{i} \ln |ic_i T_i + d_i|^2$
- $G = K + \ln |W|^2$ has to be invariant
- $W = W(\Phi_i)$ has to have modular weight -1

Dedekind η -function

- $\eta(T) \rightarrow (icT + d)^{\frac{1}{2}} \eta(T)$ (up to phase)

Superpotential

- $W \supset A(\Phi_{\alpha}) \exp\left(-\frac{\pi}{12} \sum_{i} \left[-2(1+\sum_{\alpha} m_{\alpha}^{i}) T_{i}\right]\right)$
- More complicated modular forms possible [Hamidi, Vafa; Lauer, Mas, Nilles]

9 Q (P

Gaugino condensation

At tree level: f = S

Gaugino condensation

- At tree level: f = S
- One-loop correction: [Dixon, Kaplunovsky, Louis]

$$f(S,T) = S + \frac{1}{8\pi^2} \sum_{i} (c_i b_i^{\mathcal{N}=2}) \ln[\eta(T_i)^2]$$

Inflation and moduli stabilization

Gaugino condensation

- At tree level: f = S
- One-loop correction: [Dixon, Kaplunovsky, Louis]

$$f(S, T) = S + \frac{1}{8\pi^2} \sum_{i} (c_i b_i^{N=2}) \ln[\eta(T_i)^2]$$

- ▶ Only $\mathcal{N} = 2$ subsectors contribute
- $b_i^{\mathcal{N}=2}$ is the β -function of the corresponding $\mathcal{N}=2$ subsector

Gaugino condensation

- At tree level: f = S
- One-loop correction: [Dixon, Kaplunovsky, Louis]

$$f(S,T) = S + \frac{1}{8\pi^2} \sum_{i} (c_i b_i^{N=2}) \ln[\eta(T_i)^2]$$

- ▶ Only $\mathcal{N} = 2$ subsectors contribute
- $b_i^{\mathcal{N}=2}$ is the β -function of the corresponding $\mathcal{N}=2$ subsector

Superpotential from gaugino condensation

■
$$W \supset B e^{\frac{-24\pi^2}{\beta}f(S,T)}$$

= $B(\Phi_{\alpha}) \exp\left(\frac{-24\pi^2}{\beta}S\right) \exp\left(-\frac{\pi}{12}\sum_{i}\tilde{c}_{i}b_{i}^{\mathcal{N}=2}\right)$

990

Target space gauge anomaly

■ E₈ × E₈ broken to non-Abelian GGs & multiple U(1)'s

- E₈ × E₈ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous

- $E_8 \times E_8$ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism

- E₈ × E₈ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism
- Induces transformation $S \to S + i\delta_{GS}\Lambda$, $\overline{S} \to \overline{S} i\delta_{GS}\Lambda$

- E₈ × E₈ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism
- Induces transformation $S \to S + i\delta_{GS}\Lambda$, $\overline{S} \to \overline{S} i\delta_{GS}\Lambda$
- Anomaly-free combination $S + \overline{S} \delta_{GS} \mathcal{V}_{A}$

- E₈ × E₈ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism
- Induces transformation $S \to S + i\delta_{GS}\Lambda$, $\overline{S} \to \overline{S} i\delta_{GS}\Lambda$
- Anomaly-free combination $S + \overline{S} \delta_{GS} \mathcal{V}_{A}$
- Induces FI term $\xi = \frac{\delta_{GS}}{(S + \overline{S})} \approx \mathcal{O}(0.1)$

- $E_8 \times E_8$ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism
- Induces transformation $S \to S + i\delta_{GS}\Lambda$, $\overline{S} \to \overline{S} i\delta_{GS}\Lambda$
- Anomaly-free combination $S + \overline{S} \delta_{GS} \mathcal{V}_{A}$
- Induces FI term $\xi = \frac{\delta_{GS}}{(S + \overline{S})} \approx \mathcal{O}(0.1)$
- Resulting *D*-term $V_D \propto \sum_{\alpha} q_{\alpha} |\Phi_{\alpha}|^2 \xi = 0$

Target space gauge anomaly

- E₈ × E₈ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism
- Induces transformation $S \to S + i\delta_{GS}\Lambda$, $\overline{S} \to \overline{S} i\delta_{GS}\Lambda$
- Anomaly-free combination $S + \overline{S} \delta_{GS} \mathcal{V}_{A}$
- Induces FI term $\xi = \frac{\delta_{GS}}{(S+\overline{S})} \approx \mathcal{O}(0.1)$
- Resulting *D*-term $V_D \propto \sum_{\alpha} q_{\alpha} |\Phi_{\alpha}|^2 \xi = 0$

Superpotential from anomalous U(1)

• $W \subset C(\Phi_{\alpha}) \exp[-\sum_{\alpha} \frac{q_{\alpha}}{\delta_{CS}}S]$

Alignment & moduli stabilization using GC+instantons

Challenges

- Full analysis involved [Parameswaran,Ramos-Sanchez,Zavala]
- $W \supset A(\Phi)e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)} + B(\Phi) e^{-(b_1T_1+b_2T_2)} + C(\Phi) e^{\frac{-q}{\delta_{GS}}S}$ One of the racetrack terms for T_i from GC term

200

Alignment & moduli stabilization using GC+instantons

Challenges

- Full analysis involved [Parameswaran,Ramos-Sanchez,Zavala]
- $W \supset A(\Phi)e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)} + B(\Phi) e^{-(b_1T_1+b_2T_2)} + C(\Phi) e^{\frac{-q}{\delta_{GS}}S}$ One of the racetrack terms for T_i from GC term
- GC term highly suppressed:
 - for realistic $S \sim 2 \implies e^{-\frac{48\pi^2}{\beta}}$
 - ightharpoonup smallish $\langle S \rangle \simeq 1.5$ and/or largish gauge groups (SU(6), SO(10), E₆) preferred

Challenges

- Full analysis involved [Parameswaran, Ramos-Sanchez, Zavala]
- $W \supset A(\Phi)e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)} + B(\Phi) e^{-(b_1T_1+b_2T_2)} + C(\Phi) e^{\frac{-q}{\delta_{GS}}S}$ One of the racetrack terms for T_i from GC term
- GC term highly suppressed:
 - for realistic $S \sim 2 \implies e^{-\frac{48\pi^2}{\beta}}$
 - smallish $\langle S \rangle \simeq 1.5$ and/or largish gauge groups (SU(6), SO(10), E₆) preferred
- Thus [de Carlos, Casas, Munoz] and [Dundee, Raby, Westphal] problematic

200

Challenges

- Full analysis involved [Parameswaran,Ramos-Sanchez,Zavala]
- $W \supset A(\Phi)e^{\frac{-24\pi^2}{\beta}S}e^{-(\beta_1T_1+\beta_2T_2)} + B(\Phi)e^{-(b_1T_1+b_2T_2)} + C(\Phi)e^{\frac{-q}{\delta_{GS}}S}$ One of the racetrack terms for T_i from GC term
- GC term highly suppressed:
 - for realistic $S \sim 2 \implies e^{-\frac{48\pi^2}{\beta}}$
 - smallish $\langle S \rangle \simeq 1.5$ and/or largish gauge groups (SU(6), SO(10), E₆) preferred
- Thus [de Carlos, Casas, Munoz] and [Dundee, Raby, Westphal] problematic

$$W \supset \chi_1[C e^{-\frac{24\pi^2}{\beta}S} e^{-(\beta_1 T_1 + \beta_2 T_2)} - B_1]$$

$$+ \chi_2[A_2 e^{-(b_1 T_1 + b_2 T_2)} - B_2] + \chi_3[A_3 e^{-\frac{q}{\delta_{GS}}S} - B_3]$$

- ▶ Need $\langle \chi_1 \rangle \neq 0$ since it corresponds to mesonic mass term
- ▶ has to be around Hubble scale to avoid BBN problems
- Get high-scale SUSY breaking $\sim \langle \chi_1 \rangle B_1$

2 d G

Fields

Untwisted fields χ , twisted fields $\varphi^{(k)}$

Fields

Untwisted fields χ , twisted fields $\varphi^{(k)}$

Kähler potential

$$\mathit{K} = -\ln(\mathit{S} + \overline{\mathit{S}}) - \ln(\mathit{T}_1 + \overline{\mathit{T}}_1 - |\chi_{\mathit{A}}|^2) - \ln(\mathit{T}_2 + \overline{\mathit{T}}_2 - |\chi_{\mathit{B}}|^2) + \mathit{f}(\mathit{T}, \mathit{U}) |\Phi_{\alpha}|^2$$

Fields

Untwisted fields χ , twisted fields $\varphi^{(k)}$

Kähler potential

$$\mathit{K} = -\ln(\mathit{S} + \overline{\mathit{S}}) - \ln(\mathit{T}_1 + \overline{\mathit{T}}_1 - |\chi_{\mathit{A}}|^2) - \ln(\mathit{T}_2 + \overline{\mathit{T}}_2 - |\chi_{\mathit{B}}|^2) + f(\mathit{T}, \mathit{U}) |\Phi_{\alpha}|^2$$

D-terms of $U(1)_A$ and $U(1)_i$

$$\sum_{\alpha} q_{\alpha}^{\mathsf{A}} |\Phi_{\alpha}|^2 = \xi, \qquad \sum_{\alpha} q_{\alpha}^{i} |\Phi_{\alpha}|^2 = 0$$

Fields

Untwisted fields χ , twisted fields $\varphi^{(k)}$

Kähler potential

$$\mathcal{K} = -\ln(S+\overline{S}) - \ln(T_1+\overline{T}_1 - |\chi_A|^2) - \ln(T_2+\overline{T}_2 - |\chi_B|^2) + f(T,U)|\Phi_\alpha|^2$$

D-terms of $U(1)_A$ and $U(1)_i$

$$\sum_{\alpha} q_{\alpha}^{\mathsf{A}} |\Phi_{\alpha}|^2 = \xi, \qquad \sum_{\alpha} q_{\alpha}^{i} |\Phi_{\alpha}|^2 = 0$$

Superpotential

$$W \supset \chi_{A} \left[\chi_{1} \chi_{2} e^{-q/\delta_{GS} S} - \chi_{3} \chi_{4} \right]$$

$$+ \chi_{B} \left[\chi_{5} \varphi^{(1)} \varphi^{(1)} \varphi^{(4)} e^{-\pi/12(2T_{1}+2T_{2})} - \chi_{6} \chi_{7} \right]$$

$$+ \chi_{C} \left[\varphi^{(1)} \varphi^{(3)} \varphi^{(4)} \varphi^{(4)} e^{-\pi/12(6T_{1}+4T_{2})} - \chi_{8} \chi_{9} \right]$$

Fields

Untwisted fields χ , twisted fields $\varphi^{(k)}$

Kähler potential

$$\mathcal{K} = -\ln(S + \overline{S}) - \ln(T_1 + \overline{T}_1 - |\chi_A|^2) - \ln(T_2 + \overline{T}_2 - |\chi_B|^2) + f(T, U)|\Phi_\alpha|^2$$

D-terms of $U(1)_A$ and $U(1)_i$

$$\sum_{\alpha} q_{\alpha}^{\mathsf{A}} |\Phi_{\alpha}|^2 = \xi, \qquad \sum_{\alpha} q_{\alpha}^{i} |\Phi_{\alpha}|^2 = 0$$

Superpotential

$$W \supset \chi_A \left[A_1 e^{-S} - B_1 \right]$$

$$+ \chi_B \left[A_2 e^{-\pi/12(2T_1 + 2T_2)} - B_2 \right]$$

$$+ \chi_C \left[A_3 e^{-\pi/12(6T_1 + 4T_2)} - B_3 \right]$$

Moduli stabilization with two WS Instantons

$\chi_{A,B,C}$	S	T_1	T_2	A_1	A_2	A ₃	B_1	B ₂	B ₃
0	1.8	1.05	1.25	$3 \cdot 10^{-4}$	$7 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$3 \cdot 10^{-5}$	$2 \cdot 10^{-4}$

Moduli stabilization with two WS Instantons

$\chi_{A,B,C}$	S	T_1	<i>T</i> ₂	A_1	A_2	A ₃	B_1	B ₂	B ₃
0	1.8	1.05	1.25	$3 \cdot 10^{-4}$	$7 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$3 \cdot 10^{-5}$	$2 \cdot 10^{-4}$

Moduli stabilization with two WS Instantons

- Rotate to aligned basis $(T_1, T_2) o (\widetilde{T}_1, \widetilde{T}_2)$
- Solve coupled EOMs numerically
- Extract CMB observables

Moduli stabilization with two WS Instantons

$\chi_{A,B,C}$	S	T_1	T_2	A_1	A_2	A ₃	B_1	B ₂	B ₃
0	1.8	1.05	1.25	$3 \cdot 10^{-4}$	$7 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$3 \cdot 10^{-5}$	$2 \cdot 10^{-4}$

Moduli stabilization with two WS Instantons

- Rotate to aligned basis $(T_1, T_2) \rightarrow (T_1, T_2)$
- Solve coupled EOMs numerically
- Extract CMB observables

Moduli stabilization and inflation

 Experimental results suggest large field inflation at large Hubble scale

Moduli stabilization and inflation

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - Near alignment → small hierarchy between decay constants

Motivation Introduction Inflation and moduli stabilization Conclusion

Conclusion

Moduli stabilization and inflation

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - $lackbox{Near alignment}
 ightarrow ext{small hierarchy between decay constants}$

Realization in heterotic orbifolds

■ Several axions present (partner of geometric moduli) w/ shift symmetry from $SL(2,\mathbb{Z})$

Motivation

Moduli stabilization and inflation

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - $lackbox{Near alignment}
 ightarrow ext{small hierarchy between decay constants}$

Realization in heterotic orbifolds

- Several axions present (partner of geometric moduli) w/ shift symmetry from $SL(2,\mathbb{Z})$
- Naturally enter w/ same function in non-perturbative terms
 - ▶ in instantonic couplings to ensure modular covariance of W
 - ▶ in gaugino condensation from 1-loop correction to f

Motivation

Moduli stabilization and inflation

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - $lackbox{Near alignment}
 ightarrow ext{small hierarchy between decay constants}$

Realization in heterotic orbifolds

- Several axions present (partner of geometric moduli) w/ shift symmetry from $SL(2,\mathbb{Z})$
- Naturally enter w/ same function in non-perturbative terms
 - ▶ in instantonic couplings to ensure modular covariance of *W*
 - ▶ in gaugino condensation from 1-loop correction to f
- Stabilization
 - ► for GC+WS instantons tension
 - for 2 WS instantons easier

Thank you for your attention!

