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Goal

Determine universal, distinguishing characteristics of F-theory models,

with distinct phenomenological signatures.

F-theory model building based on lots of examples: local and by now also

global, with semi-realistic properties.

Challenge:

Combined package of realistic spectra, flavor, susy breaking, moduli

stabilization, etc all into one framework, and genericity of such features.

Strategy:

Ask questions of universal nature: find characteristics that can be

comprehensively understood and constrain the phenomenology



Setup

Constraining 4d N = 1 SUSY SU(5) F-theory GUTs using additional

symmetries: U(1)s and discrete.

1. Symmetries:

What continuous and discrete symmetries are both geometrically

consistent within F-theory and phenomenologically sound?

2. Anomalies:

Spectra consistent with hypercharge flux (GUT breaking) induced

anomalies

3. Flavor:

Realistic quark sector Yukawa textures from distribution of matter,

and using Froggatt-Nielsen type mechanism

Input: what are possible U(1) symmetries in F-theory?



Summary

General characterization of global ways of realizing U(1) symmetries and

possible matter charges in F-theory [Lawrie, SSN, Wong]

⇒ Model-independent, superset of charges for GUTs

⇒ All charged matter and GUT-Singlet U(1)-charges

⇒ Classification of possible Higgsings for U(1)s to discrete symmetries

Phenomenological Implications:

Combined system of F-theory U(1) charges, phenomenological

consistency and anomaly cancellation has solutions with realistic flavor

texture

⇒ Pheno: Sven Krippendorf’s talk

[Krippendorf, SSN, Wong]



I. Components in F-theory GUT model building



1. Uses of Symmetries

• Suppress unwanted couplings: Proton decay

• Forbid tree-level µ-term

• Flavor: U(1)s for Froggatt-Nielsen



Rapid Proton Decay

Protect model from Proton Decay: half-life > 1036 years.

• Dim 4: B/L-violating operators (R-parity violating)

Wdim 4 = λ(4)
i ja5̄i5̄ j10a ⊃ λ0

i jaLiL j ēa + λ1
i jad̄iL jQa + λ2

i jad̄id̄ jūa

√
λ1λ2 ≤

(

MSUSY

TeV

)

10−12

• Dim 5:

Wdim5 = δ(5)
abci10a10b10c5̄i

⊃ δ1
abci QaQbQcLi + δ2

abciūaūb ēcd̄i + δ3
abci Qaūb ēcLi

δ1
112i ≤ 16π2

(

MSUSY

M2
GUT

)

i = 1,2

⇒ U(1)s or discrete symmetries Γ to control spectrum



2. Anomalies

FY GUT breakinga generates chiral spectrum

⇒ In presence of U(1)s: Require G2
MSSM ×U(1) and U(1)Y ×U(1)×U(1)′

anomaly cancellation

[Dudas Palti], [Marsano, Saulina, SS-N], [Marsano], [Palti]

⇒ Compatibility constraints between charges and FY restriction N:

10a :















(3,2)1/6 : Ma

(3̄,1)−2/3 : Ma − Na

(1,1)1 : Ma + Na

5̄i :

{

(3̄,1)1/3 : Mi

(1̄,2)−1/2 : Mi + Ni

For example, with q = U(1)-charges:

∑
i

qα
i Ni + ∑

a

qα
a Na = 0 .

⇒ Constraints on M, N and U(1) charges.

aWilson lines generate always have chiral exotics. [Donagi, Wijnholt], [Marsano, Clemens,

Pantev, Raby, Tseng]



3. Flavor and Froggatt-Nielsen

Long History of Flavor in F-theory: [Font, Ibañez, Heckman, Vafa, Dudas, Palti,

Marchesano, Aparicio, Uranga, Regalado, Zoccarato, King, Leontaris, Ross, Hayashi,

Kawano, Tsuchiya, Watari, ....]

U(1)s to generate flavor textures, Froggatt-Nielsen (FN) type. Tree-level

Yukawas + subleading terms from U(1)-charged singlets ǫ =
〈S〉
Λ .

Consistent with SU(5) GUT e.g. [Dreiner, Thormeier]

Yu ∼









ǫ8 ǫ6 ǫ4

ǫ6 ǫ4 ǫ2

ǫ4 ǫ2 1









, Yd ∼









ǫ4 ǫ4 ǫ4

ǫ2 ǫ2 ǫ2

1 1 1









.

For local F-theory GUTs: no realistic FN models from E8 [Dudas, Palti].

Why reconsider now?

New insights and general understanding of U(1)s in F-theory.



New insights from Geometry

Idea of this Program:

1. Phenomenological constraints on Symmetries, 2. Anomalies, and 3.

Realistic Flavor combined with global, geometric consistencies imply

constraints on resulting 4d EFT.

F-theory/String theory input:

Constraints on F-theory compactification geometries for GUTs with extra

U(1)s. What type of U(1) charges can be realized?

⇒ This talk.



GUTs with extra U(1)s

• Toric Constructions with extra U(1)s.

[Morrison, Park][Braun, Grimm, Keitel][Mayrhofer, Palti, Weigand][Cvetic, Klever,

Piragua], [Morrison, Taylor]...

• All toric hypersurfaces: [Klever, Pena, Piragua, Oehlmann, Reuter]

• Multiple 10 matter loci:

[Mayrhofer, Palti, Weigand], [Kuentzler, SSN], [Lawrie, Sacco],[Braun, Grimm, Keitel]

• Preliminary Pheno: [Krippendorf, Pena, Oehlmann, Ruehle]

• Systematic approach: Tate-like forms, however limited by ability to

factor polynomials of UFD... [Kuentzler, SSN][Lawrie, Sacco]

Goal: Find general way to constrain U(1)s from first principles

[Lawrie, SSN, Wong]



I. Non-Abelian Gauge Groups in F-theory



F-theory and Elliptic Fibrations

4d vacua: Elliptically fibered Calabi-Yau, τ = C0 + ie−φ axio-dilaton of IIB:

τ1 τ3

τ2

B

⇒ Eτ fibers = Tori C/Z⊕ τZ with marked point O (elliptic curve, with

O = origin) with complex structure τ

⇒ Exists “zero section” σ0: B→ Eτ : b 7→ O

⇒ For such there is always a Weierstrass form with O = [0,1,1]

y2
= x3

+ f xw4
+ gw6 [w, x, y] ∈ P(1,2,3)



4d gauge bosons from F-theory

Reduce M-theory 3-form along (1,1) forms ω(1,1) in fiber:

C3 = ω(1,1) ∧ A

⇒ abelian gauge potentials A. Two types

1. ω from special fibers (ADE like singularities)⇒ GUT gauge bosons

2. ω from rational sections⇒ U(1)s [Morrison, Vafa]

Mathematically: maps from base to fiber: σ : B→ Eτ : b 7→ P with

P a rational solution to y2
= x3

+ f xw4
+ gw6, P 6= O

τ1 τ3

τ2

B



(1,1) Forms and Singular Fibers

[Kodaira]: ∃ ”Singular fibers”, which are P
1s intersecting in affine ADE

Dynkin diagram⇒ ω(1,1) from volume form of P
1

• Kodaira fibers from resolutions of singular fibrations

• Elliptic curve is y2
= x3

+ f xw4
+ gw6 singular if

∆ = 4 f 3
+ 27g2

= 0

Here ∆ depends on base:

∆(z) = O(zn) ⇔ z = 0 is surface S ⊂ B

• Physics:

Syncs with 7-branes intuition in IIB, which sources F9

and τ ∼ log(x− x0) undergoes monodromy SL2Z

B

S



Gauge theory from Singular Fibers

Geometrization
=⇒

B

S

Resolution
=⇒

SU(5)

2-spheres

B

S

• Resolution of singularities:

Trees of P
1s, intersecting in Affine SU(5) Dynkin diagram

P
1
= S2

= curves in resolved fiber
1:1←→ simple roots of gauge group SU(5)

• M/F-theory:

Gauge bosons from C3 = Ai ∧ ω(1,1)
i and wrapped M2



Matter

SU(5)

U(1)
SU(6)

=⇒

S

B
P5

SU(5)

SU(6)

U(1)

=⇒

SU(5)

SU(6)

S

B P5

C+ C-

• Matter is localized along codimension 2 loci Σ: Singularity worsens

∆ = P5z5
+ O(z6)

• Matter determined by fiber type along codim 2:

z = P5 = 0 : SU(6)→ SU(5)×U(1) : 35→ 240 ⊕ 10 ⊕ 56 ⊕ 5−6



SU(5)

SU(6)

S

B P5

C+ C-

Geometry:

P
1 associated to root α splits into ”weights” of 5̄

P
1
α → C+ + C−

M/F-theory picture:

Wrapped M2-branes give matter transforming in representation of SU(5)

⇒ Classification of posssible codim 2 fibers?



Classification of Singular Fibers

• Codim 1: Classic Algebraic Geometry [Kodaira][Néron]: Lie algebra g

Singular Fiber Codim 1 ←→ (Decorated) affine Dynkin diagram of g

• Codim 2: R= representation of g [Hayashi, Lawrie, Morrison, SSN]

Singular Fiber Codim 2 ←→ Box Graph = Decorated rep graph of R

Tool: Coulomb phases of 3d N = 2 susy gauge theories.

C-C+

F1

F2F3

F4

F0 = C++C-

C+

C-

F0 F1

F3

F2

F4 = C++C-

C+

C-

F0

F2F3

F4

F1 = C++C-

C+

C-

F0 F1

F3

F4

F2 = C++C-

C+C-

F0 F1

F2F4

F3= C+ + C-

C-C+

F1

F2F3

F4

F0 = C++C-

NB: known also now for other matter and higher rank



II. Abelian Gauge Groups in F-theory



Mordell-Weil group and U(1)s

U(1)s arise from additional (1,1)-forms in fibration

C3 = A∧ ω(1,1)

(1,1)-forms in elliptic fibration:

• Kodaira singular fiber (⇒ GUT gauge bosons)

• Rational sections of fibration (”rational solutions to the elliptic curve

equation” or ”marked points”)

U(1)s↔ rational sections

τ1 τ3

τ2

B



Math fun facts:

• Elliptic curves have group laws: can add points on curves p ⊞ q

• The rational points on an elliptic curve form a free abelian group

Mordell-Weil group ∼= Z
n ⊕ Γ

• Rational points:

y2
= x3

+ f xw4
+ gw6 σ0 : w = 0, x = y = 1

⇒ Recall: Weierstrass generically has only one marked point ”origin”

y
(

y + bx2
)

= wP(x, y, w)

{

σ0 : w = 0, y = 0

σ1 : w = 0, y = −bx2

⇒ σ0 is the origin and σ1 generates Mordell-Weil=Z



Elliptic fibrations with rational sections

τ1 τ3

τ2

B

Codim 1: SU(5) singular fiber with σ0 and σ1 intersecting one of the P
1s:

Codim 2:

• P
1→ C+

+ C− with C± weights of matter representation.

• U(1) charge: σ1 intersected with C±

• Question: what can σ0 and σ1 do in codim 2?

⇒ Universal characterization of U(1)s in F-theory



Strategy

[Lawrie, SSN, Wong]

Fibers in codim 2 (Box graphs)

ց
Constraining all possible U(1) charges

ր
General properties of sections



Constraining rational sections in codim 2: CY3 and CY4

[Lawrie, SSN, Wong]

• Compatibility codim 1 and codim 2: σ · F = 1 etc.

• New effect: sections can contain P
1s of fiber⇒ ”wrapping”

1. Constraints on normal bundle of rational curves C: If C ⊂ σ ⊂ Y,

and σ and Y smooth, with σ divisor:

0→ NC/σ → NC/Y → Nσ/Y|C → 0

2. Connecting normal bundle to charge:

σ ·Y C = −2− degNC/σ

3. Know NC/Y from codim 2 fibers/box graphs

⇒ determine all possible embeddings of NC/σ

Key assumption: σ is smooth.



Codim 2 Fibers: SU(5)→ SU(6)

F2 = C++C-

F2 F3 

F1 

F0 

F4 

F1 = C++C-

F1

F2F3

F4

F0

C+

C-

σ.C+= -1

σ.C- =+1

σ.C+= 0

σ.C- = 0

σ.C+=+1

σ.C- = -1

-1

-1-2

-2

-2

σ.C+= -1

σ.C- =+1

σ.C+= 0

σ.C- = 0

σ.C+=+1

σ.C- = -1

-3-2

-2

-2

-2

-2

-3-2

-3

-2

-2

-1

-3-2

-1

-2

-2

-3

σ1.C+= 0

σ1.C- =+1

σ1.C+=+1

σ1.C- = 0

σ1.C+= -1

σ1.C- =+2

σ1.C+=+2

σ1.C- = -1

-2

-2

-2

-2

-1

-1

-2-2

-2

-2

-2

σ1.C+= 0

σ1.C- =+1

σ1.C+=+1

σ1.C- = 0

σ1.C+= -1

σ1.C- =+2

σ1.C+=+2

σ1.C- = -1

-3-2

-2

-2

-2

-2

-4-2

-2

-2

-2

-1

-1-2

-2

-2

-2

-4

-3

-2

-2

-2

-2

-2



U(1) charges

The U(1) charge obtained from intersecting with (Shioda)

S = 5σ1 − 5σ0 + S f ,

S f ensures that roots of SU(5) remain uncharged under U(1).

-1

-2

-2 -2

-2

-1

-2

-2 -2

-2

-1

-2 -2

-2

-1
S.C+=-14

S.C-=+14



Complete set of charges

CY three- AND four-fold charges with smooth rational sections are

constrained to be as follows:

I(01)
5 , I

(0|1)
5 , I

(0||1)
5 :

5̄ U(1) charges:

I(01)
5 : {−15,−10,−5,0,+5,+10,+15}

I
(0|1)
5 : {−14,−9,−4,+1,+6,+11}

I
(0||1)
5 : {−13,−8,−3,+2,+7,+12} .

Similar analysis for I∗1 yields all possible charges for 10 matter.

10 U(1) charges:

I(01)
5 : {∓15,∓10,∓5,0,±5,±10,±15}

I
(0|1)
5 : {∓13,∓8,∓3,±2,±7,±12}

I
(0||1)
5 : {∓11,∓6,∓1,±4,±9} .



U(1) charges of GUT-singlets

Similar analysis for U(1)-charged GUT singlets: key to break to discrete

symmetries Γ ⊂ U(1).

Realizes all the KK-charges σ0 ·C for these singlets as well⇒ all elements

of Tate-Shafarevich, see also [Mayrhofer, Palti, Till, Weigand], [Cvetic, Donagi,

Klever, Piragua, Poretschkin] for charge 2 and 3.

For singlets for CY3: exists criterion for contractibility of rational curves

[Reid, Laufer] NC/Y has degree (0,−2), (1,1), (−3,1) (For CY4, we

determine all possibilities, but don’t impose contractability)

[Lawrie, SSN, Wong]

U(1) charges of GUT singlets in



















I(01)
5 ∈ {0,±5,±10,±15,±20,±25,±30}

I
(0|1)
5 ∈ {0,±5,±10,±15,±20,±25}

I
(0||1)
5 ∈ {0,±5,±10,±15,±20,±25} .



Discussion

We determined the most general U(1)n charges for SU(5) models with 5̄

and 10 matter.

1. Physics: [Krippendorf, SSN, Wong]

Combine with 1. Phenomenological constraints on Symmetries,

2. Anomalies and 3. Realistic Flavor

Spoiler alert: gives realistic flavor ⇒ Sven Krippendorf’s talk

2. Validity: Smooth versus singular sections

Singular divisors also contribute to (1,1) forms. Normal bundle exact

sequence does not hold. What replaces it, and what are constraints?

3. Global Patching:

What are the global compatibility conditions between the fibers?

4. Geometric Construction:

Algebraic realization of the new fibers, with higher charges and

section wrapping?
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