U(1)s in F-theory: Keeping it smooth and rational

Sakura Schäfer-Nameki

Based on work in collaboration with Craig Lawrie and Jin-Mann Wong 1504.05593 and with Sven Krippendorf and Jin-Mann Wong to appear

Goal

Determine universal, distinguishing characteristics of F-theory models, with distinct phenomenological signatures.

F-theory model building based on lots of examples: local and by now also global, with semi-realistic properties.

Challenge:

Combined package of realistic spectra, flavor, susy breaking, moduli stabilization, etc all into one framework, and genericity of such features.

Strategy:

Ask questions of universal nature: find characteristics that can be comprehensively understood and constrain the phenomenology

Setup

Constraining 4d N = 1 SUSY *SU*(5) F-theory GUTs using additional symmetries: *U*(1)s and discrete.

1. Symmetries:

What continuous and discrete symmetries are both geometrically consistent within F-theory and phenomenologically sound?

2. Anomalies:

Spectra consistent with hypercharge flux (GUT breaking) induced anomalies

3. Flavor:

Realistic quark sector Yukawa textures from distribution of matter, and using Froggatt-Nielsen type mechanism

Input: what are possible U(1) symmetries in F-theory?

Summary

General characterization of global ways of realizing *U*(1) symmetries and possible matter charges in F-theory [Lawrie, SSN, Wong]

- \Rightarrow Model-independent, superset of charges for GUTs
- \Rightarrow All charged matter and GUT-Singlet U(1)-charges
- \Rightarrow Classification of possible Higgsings for *U*(1)s to discrete symmetries

Phenomenological Implications:

Combined system of F-theory *U*(1) charges, phenomenological consistency and anomaly cancellation has solutions with realistic flavor texture

⇒ Pheno: Sven Krippendorf's talk [Krippendorf, SSN, Wong]

I. Components in F-theory GUT model building

1. Uses of Symmetries

- Suppress unwanted couplings: Proton decay
- Forbid tree-level μ -term
- Flavor: *U*(1)s for Froggatt-Nielsen

Rapid Proton Decay

Protect model from Proton Decay: half-life > 10^{36} years.

• Dim 4: B/L-violating operators (R-parity violating)

$$W_{\text{dim 4}} = \lambda_{ija}^{(4)} \bar{\mathbf{5}}_i \bar{\mathbf{5}}_j \mathbf{10}_a \supset \lambda_{ija}^0 L_i L_j \bar{e}_a + \lambda_{ija}^1 \bar{d}_i L_j Q_a + \lambda_{ija}^2 \bar{d}_i \bar{d}_j \bar{u}_a$$
$$\sqrt{\lambda^1 \lambda^2} \le \left(\frac{M_{SUSY}}{\text{TeV}}\right) \mathbf{10}^{-12}$$

• Dim 5:

$$W_{\text{dim5}} = \delta_{abci}^{(5)} \mathbf{10}_{a} \mathbf{10}_{b} \mathbf{10}_{c} \mathbf{\bar{5}}_{i}$$

$$\supset \delta_{abci}^{1} Q_{a} Q_{b} Q_{c} L_{i} + \delta_{abci}^{2} \bar{u}_{a} \bar{u}_{b} \bar{e}_{c} \bar{d}_{i} + \delta_{abci}^{3} Q_{a} \bar{u}_{b} \bar{e}_{c} L_{i}$$

$$\delta_{112i}^{1} \leq 16\pi^{2} \left(\frac{M_{SUSY}}{M_{GUT}^{2}}\right) \qquad i = 1, 2$$

 \Rightarrow *U*(1)s or discrete symmetries Γ to control spectrum

2. Anomalies

*F*_Y GUT breaking^a generates chiral spectrum \Rightarrow In presence of *U*(1)s: Require $G^2_{MSSM} \times U(1)$ and $U(1)_Y \times U(1) \times U(1)'$ anomaly cancellation

[Dudas Palti], [Marsano, Saulina, SS-N], [Marsano], [Palti]

 \Rightarrow Compatibility constraints between charges and *F*_Y restriction *N*:

$$\mathbf{10}_a: \qquad \begin{cases} (\mathbf{3}, \mathbf{2})_{1/6}: & M_a \\ (\bar{\mathbf{3}}, \mathbf{1})_{-2/3}: & M_a - N_a \\ & (\mathbf{1}, \mathbf{1})_1: & M_a + N_a \end{cases} \qquad \quad \bar{\mathbf{5}}_i: \qquad \begin{cases} (\bar{\mathbf{3}}, \mathbf{1})_{1/3}: & M_i \\ (\bar{\mathbf{1}}, \mathbf{2})_{-1/2}: & M_i + N_i \end{cases}$$

For example, with q = U(1)-charges:

$$\sum_i q_i^{\alpha} \mathbf{N}_i + \sum_a q_a^{\alpha} \mathbf{N}_a = 0 \,.$$

 \Rightarrow Constraints on *M*, *N* and *U*(1) charges.

^aWilson lines generate always have chiral exotics. [Donagi, Wijnholt], [Marsano, Clemens, Pantev, Raby, Tseng]

3. Flavor and Froggatt-Nielsen

Long History of Flavor in F-theory: [Font, Ibañez, Heckman, Vafa, Dudas, Palti, Marchesano, Aparicio, Uranga, Regalado, Zoccarato, King, Leontaris, Ross, Hayashi, Kawano, Tsuchiya, Watari,]

U(1)s to generate flavor textures, Froggatt-Nielsen (FN) type. Tree-level Yukawas + subleading terms from *U*(1)-charged singlets $\epsilon = \frac{\langle S \rangle}{\Lambda}$. Consistent with *SU*(5) GUT e.g. [Dreiner, Thormeier]

$$Y_{u} \sim \begin{pmatrix} \epsilon^{8} & \epsilon^{6} & \epsilon^{4} \\ \epsilon^{6} & \epsilon^{4} & \epsilon^{2} \\ \epsilon^{4} & \epsilon^{2} & 1 \end{pmatrix}, \quad Y_{d} \sim \begin{pmatrix} \epsilon^{4} & \epsilon^{4} & \epsilon^{4} \\ \epsilon^{2} & \epsilon^{2} & \epsilon^{2} \\ 1 & 1 & 1 \end{pmatrix}$$

For local F-theory GUTs: no realistic FN models from E_8 [Dudas, Palti]. Why reconsider now? New insights and general understanding of U(1)s in F-theory.

New insights from Geometry

Idea of this Program:

1. Phenomenological constraints on Symmetries, 2. Anomalies, and 3. Realistic Flavor combined with global, geometric consistencies imply constraints on resulting 4d EFT.

F-theory/String theory input: Constraints on F-theory compactification geometries for GUTs with extra U(1)s. What type of U(1) charges can be realized? \Rightarrow This talk.

GUTs with extra U(1)s

• Toric Constructions with extra *U*(1)s.

[Morrison, Park][Braun, Grimm, Keitel][Mayrhofer, Palti, Weigand][Cvetic, Klever, Piragua], [Morrison, Taylor]...

- All toric hypersurfaces: [Klever, Pena, Piragua, Oehlmann, Reuter]
- Multiple 10 matter loci: [Mayrhofer, Palti, Weigand], [Kuentzler, SSN], [Lawrie, Sacco], [Braun, Grimm, Keitel]
- Preliminary Pheno: [Krippendorf, Pena, Oehlmann, Ruehle]
- Systematic approach: Tate-like forms, however limited by ability to factor polynomials of UFD... [Kuentzler, SSN][Lawrie, Sacco]

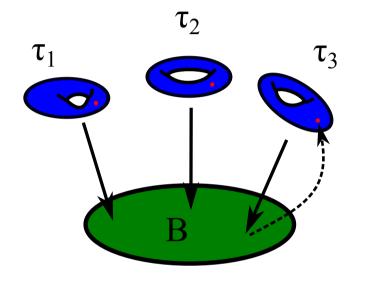
Goal: Find general way to constrain U(1)s from first principles

[Lawrie, SSN, Wong]

I. Non-Abelian Gauge Groups in F-theory

F-theory and Elliptic Fibrations

4d vacua: Elliptically fibered Calabi-Yau, $\tau = C_0 + ie^{-\phi}$ axio-dilaton of IIB:



- $\Rightarrow \mathbb{E}_{\tau} \text{ fibers} = \text{Tori } \mathbb{C}/\mathbb{Z} \oplus \tau\mathbb{Z} \text{ with marked point } O \text{ (elliptic curve, with } O = \text{origin} \text{) with complex structure } \tau$
- \Rightarrow Exists "zero section" $\sigma_0: B \to \mathbb{E}_{\tau} : b \mapsto O$
- \Rightarrow For such there is always a Weierstrass form with O = [0, 1, 1]

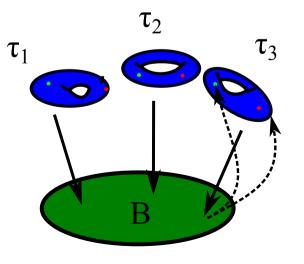
$$y^2 = x^3 + fxw^4 + gw^6$$
 $[w, x, y] \in \mathbb{P}(1, 2, 3)$

4d gauge bosons from F-theory

Reduce M-theory 3-form along (1, 1) forms $\omega^{(1,1)}$ in fiber:

 $C_3 = \omega^{(1,1)} \wedge A$

- \Rightarrow abelian gauge potentials *A*. Two types
 - 1. ω from special fibers (ADE like singularities) \Rightarrow GUT gauge bosons
 - 2. ω from rational sections \Rightarrow U(1)s [Morrison, Vafa] Mathematically: maps from base to fiber: σ : $B \rightarrow \mathbb{E}_{\tau}$: $b \mapsto P$ with P a rational solution to $y^2 = x^3 + fxw^4 + gw^6$, $P \neq O$



(1,1) Forms and Singular Fibers

[Kodaira]: \exists "Singular fibers", which are \mathbb{P}^1 s intersecting in affine ADE Dynkin diagram $\Rightarrow \omega^{(1,1)}$ from volume form of \mathbb{P}^1

- Kodaira fibers from resolutions of singular fibrations
- Elliptic curve is $y^2 = x^3 + fxw^4 + gw^6$ singular if

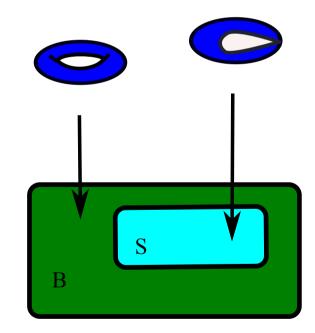
$$\Delta = 4f^3 + 27g^2 = 0$$

Here Δ depends on base:

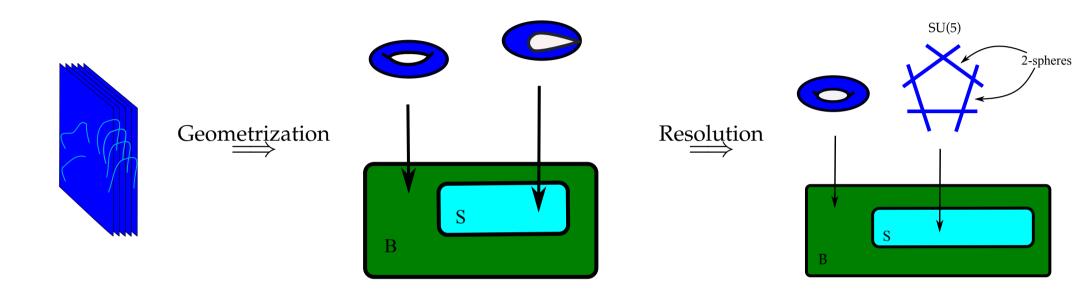
$$\Delta(z) = O(z^n) \quad \Leftrightarrow \quad z = 0 \text{ is surface } S \subset B$$

• Physics:

Syncs with 7-branes intuition in IIB, which sources F_9 and $\tau \sim \log(x - x_0)$ undergoes monodromy $SL_2\mathbb{Z}$



Gauge theory from Singular Fibers



• Resolution of singularities:

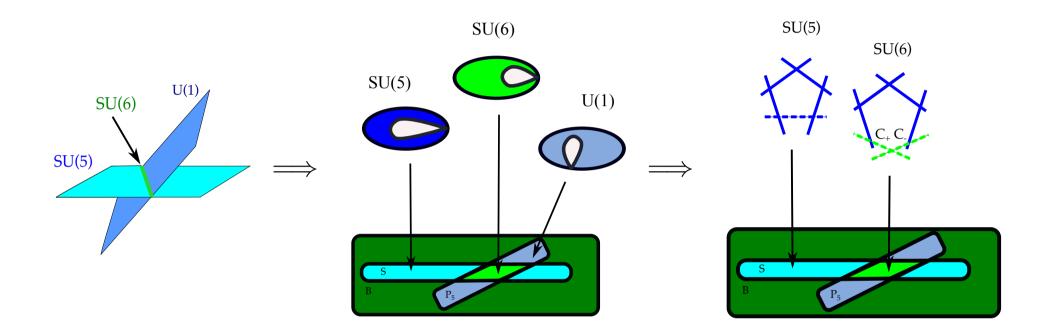
Trees of \mathbb{P}^1 s, intersecting in Affine *SU*(5) Dynkin diagram

 $\mathbb{P}^1 = S^2 = \text{curves in resolved fiber} \xleftarrow{1:1}{\longleftrightarrow} \text{ simple roots of gauge group } SU(5)$

• M/F-theory:

Gauge bosons from $C_3 = A_i \wedge \omega_i^{(1,1)}$ and wrapped M2

Matter

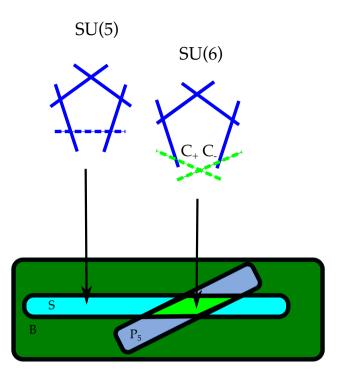


• Matter is localized along codimension 2 loci Σ : Singularity worsens

$$\Delta = P_5 z^5 + O(z^6)$$

• Matter determined by fiber type along codim 2:

 $z = P_5 = 0: SU(6) \rightarrow SU(5) \times U(1):$ $\mathbf{35} \rightarrow \mathbf{24}_0 \oplus \mathbf{1}_0 \oplus \mathbf{5}_6 \oplus \overline{\mathbf{5}}_{-6}$



Geometry:

 \mathbb{P}^1 associated to root α splits into "weights" of $\overline{\mathbf{5}}$

$$\mathbb{P}^1_{\alpha} \quad \to \quad C_+ + C_-$$

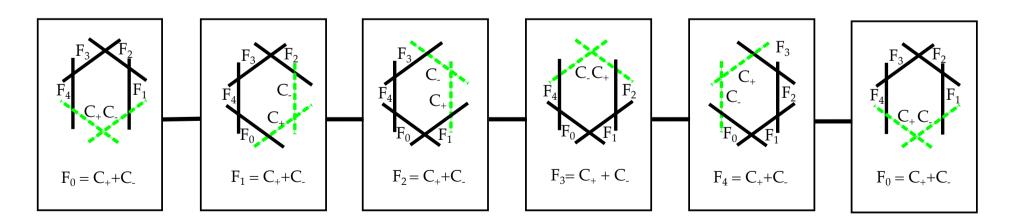
 $\frac{M/F-\text{theory picture:}}{\text{Wrapped M2-branes give matter transforming in representation of }SU(5)$ $\Rightarrow \text{Classification of posssible codim 2 fibers?}$

Classification of Singular Fibers

• Codim 1: Classic Algebraic Geometry [Kodaira][Néron]: Lie algebra g

	Singular Fiber Codim 1	\longleftrightarrow	(Decorated) affine Dynkin diagram of \mathfrak{g}
•	Codim 2: \mathbf{R} = representation of \mathfrak{g}		[Hayashi, Lawrie, Morrison, SSN]
	Singular Fiber Codim 2	\longleftrightarrow	Box Graph = Decorated rep graph of \mathbf{R}

Tool: Coulomb phases of 3d N = 2 susy gauge theories.



NB: known also now for other matter and higher rank

II. Abelian Gauge Groups in F-theory

Mordell-Weil group and U(1)s

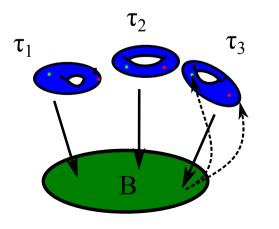
U(1)s arise from additional (1, 1)-forms in fibration

$$C_3 = A \wedge \omega^{(1,1)}$$

(1,1)-forms in elliptic fibration:

- Kodaira singular fiber (\Rightarrow GUT gauge bosons)
- Rational sections of fibration ("rational solutions to the elliptic curve equation" or "marked points")

 $U(1)s \leftrightarrow rational sections$



Math fun facts:

- Elliptic curves have group laws: can add points on curves $p \boxplus q$
- The rational points on an elliptic curve form a free abelian group

Mordell-Weil group $\cong \mathbb{Z}^n \oplus \Gamma$

• Rational points:

$$y^2 = x^3 + fxw^4 + gw^6$$
 $\sigma_0: w = 0, x = y = 1$

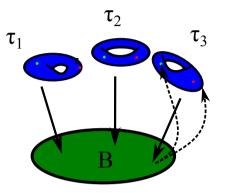
⇒ Recall: Weierstrass generically has only one marked point "origin"

$$y(y+bx^2) = wP(x,y,w)$$

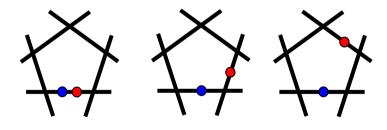
 $\begin{cases} \sigma_0: & w = 0, \ y = 0 \\ \sigma_1: & w = 0, \ y = -bx^2 \end{cases}$

 $\Rightarrow \sigma_0$ is the origin and σ_1 generates Mordell-Weil= \mathbb{Z}

Elliptic fibrations with rational sections



<u>Codim 1</u>: *SU*(5) singular fiber with σ_0 and σ_1 intersecting one of the \mathbb{P}^1 s:

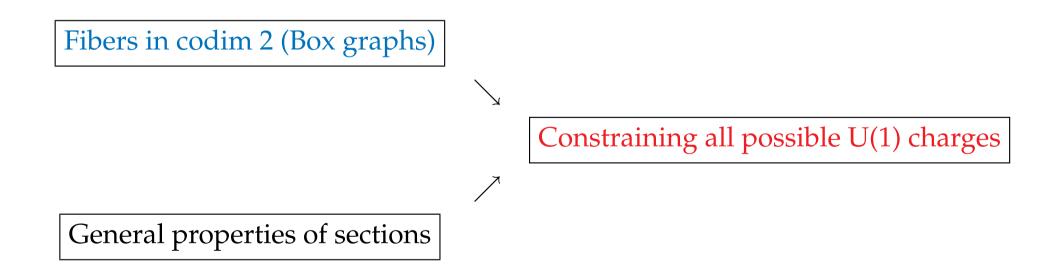


<u>Codim 2:</u>

- $\mathbb{P}^1 \to C^+ + C^-$ with C^{\pm} weights of matter representation.
- U(1) charge: σ_1 intersected with C^{\pm}
- Question: what can σ_0 and σ_1 do in codim 2? \Rightarrow Universal characterization of U(1)s in F-theory

Strategy

[Lawrie, SSN, Wong]



Constraining rational sections in codim 2: CY3 and CY4

[Lawrie, SSN, Wong]

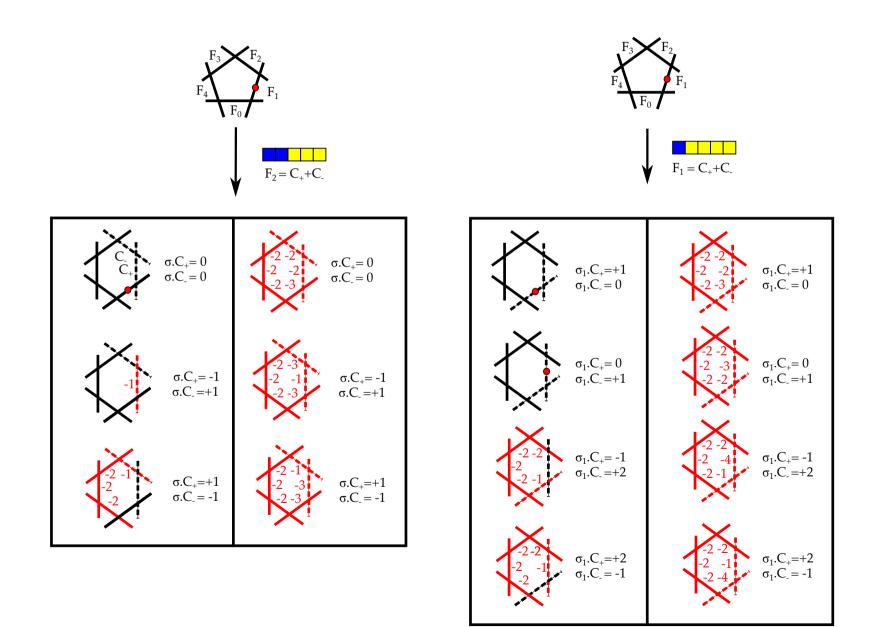
- Compatibility codim 1 and codim 2: $\sigma \cdot F = 1$ etc.
- New effect: sections can contain \mathbb{P}^1 s of fiber \Rightarrow "wrapping"
 - 1. Constraints on normal bundle of rational curves *C*: If $C \subset \sigma \subset Y$, and σ and Y smooth, with σ divisor:

$$0 \to N_{C/\sigma} \to N_{C/Y} \to N_{\sigma/Y}|_C \to 0$$

2. Connecting normal bundle to charge:

$$\sigma \cdot_Y C = -2 - \deg N_{C/\sigma}$$

3. Know $N_{C/Y}$ from codim 2 fibers/box graphs \Rightarrow determine all possible embeddings of $N_{C/\sigma}$ Key assumption: σ is smooth. Codim 2 Fibers: $SU(5) \rightarrow SU(6)$

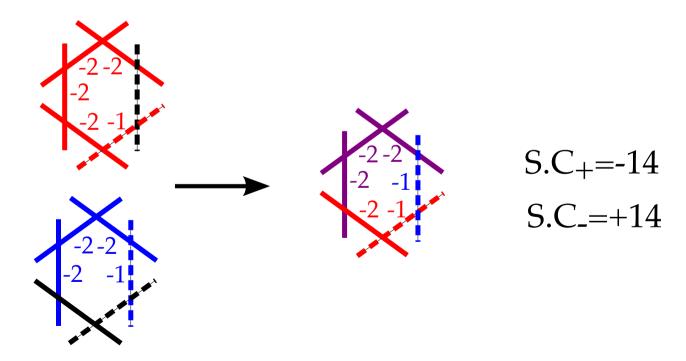


U(1) charges

The U(1) charge obtained from intersecting with (Shioda)

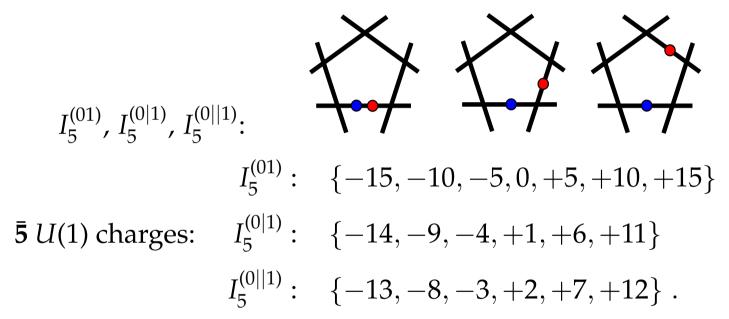
$$S = 5\sigma_1 - 5\sigma_0 + S_f \,,$$

 S_f ensures that roots of SU(5) remain uncharged under U(1).



Complete set of charges

CY three- AND four-fold charges with smooth rational sections are constrained to be as follows:



Similar analysis for I_1^* yields all possible charges for **10** matter.

$$I_{5}^{(01)}: \{ \mp 15, \mp 10, \mp 5, 0, \pm 5, \pm 10, \pm 15 \}$$

10 *U*(1) charges: $I_{5}^{(0|1)}: \{ \mp 13, \mp 8, \mp 3, \pm 2, \pm 7, \pm 12 \}$
 $I_{5}^{(0||1)}: \{ \mp 11, \mp 6, \mp 1, \pm 4, \pm 9 \}$.

U(1) charges of GUT-singlets

Similar analysis for U(1)-charged GUT singlets: key to break to discrete symmetries $\Gamma \subset U(1)$.

Realizes all the KK-charges $\sigma_0 \cdot C$ for these singlets as well \Rightarrow all elements of Tate-Shafarevich, see also [Mayrhofer, Palti, Till, Weigand], [Cvetic, Donagi, Klever, Piragua, Poretschkin] for charge 2 and 3.

For singlets for CY3: exists criterion for contractibility of rational curves [Reid, Laufer] $N_{C/Y}$ has degree (0, -2), (1, 1), (-3, 1) (For CY4, we determine all possibilities, but don't impose contractability)

[Lawrie, SSN, Wong]

U(1) charges of GUT singlets in

$$\begin{cases} I_5^{(01)} \in \{0, \pm 5, \pm 10, \pm 15, \pm 20, \pm 25, \pm 30\} \\ I_5^{(0|1)} \in \{0, \pm 5, \pm 10, \pm 15, \pm 20, \pm 25\} \\ I_5^{(0||1)} \in \{0, \pm 5, \pm 10, \pm 15, \pm 20, \pm 25\} . \end{cases}$$

Discussion

We determined the most general $U(1)^n$ charges for SU(5) models with $\overline{5}$ and **10** matter.

- 1. Physics:[Krippendorf, SSN, Wong]Combine with 1. Phenomenological constraints on Symmetries,2. Anomalies and 3. Realistic FlavorSpoiler alert: gives realistic flavor \Rightarrow Sven Krippendorf's talk
- 2. Validity: Smooth versus singular sections

Singular divisors also contribute to (1, 1) forms. Normal bundle exact sequence does not hold. What replaces it, and what are constraints?

3. Global Patching:

What are the global compatibility conditions between the fibers?

4. Geometric Construction:

Algebraic realization of the new fibers, with higher charges and section wrapping?

School and Workshop GGI Florence, October 19-23 & 26-30, 2015

Organizers:

Riccardo Argurio (ULB) Marcus Berg (Karlstad) Matteo Bertolini (SISSA) Gabriele Honecker (Mainz) Enrico Pajer (Utrecht) Diederik Roest (Groningen) Sakura Schafer-Nameki (KCL) Lecturers at the "School for Methods in String Theory and Applications in Particle Physics and Cosmology".

- Cosmology: Daniel Baumann (DAMTP), Enrico Pajer (Utrecht)
 Phenomenology:
- David Shih (Rutgers), Florian Staub (CERN)
 Geometry:
- David Morrison (UCSB), Andreas Braun (Oxford)
 Effective Actions:
- Mariana Grana (Saclay), Hagen Triendl (CERN)

Details and Registration: http://www.mth.kcl.ac.uk/~ss299/GGI Speakers at the Workshops include:

Steve Abel (Durham) Paolo Creminelli (ICTP) Raphael Flauger (Carnegie Mellon) Jim Halverson (KITP) Liam McAllister (Cornell) Hiranya Peiris (UCL) Fernando Quevedo (ICTP/DAMTP) Matt Reece (Harvard) Roberto Valandro (ICTP) Irene Valenzuela (Madrid) Giovanni Villadoro (ICTP) Timo Weigand (Heidelberg)

