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Inspiration
Clash between two points of view: 
 
 
 
 
 
 
 
 
 

The current situation in particle physics: the SM is 
structurally complete, perhaps only SM singlets are still 
needed.

The traditional “Einstein” point of view of top-down 
determination from some fundamental principle or theory 
(perhaps involving GUTs)


 

The landscape point of view: the SM originates from some 
ensemble with a distribution of physical quantities and 
anthropic constraints




The Standard Model

Quarks and leptons

Higgs Gives masses to all quark and leptons

Gauge Group
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Charge Quantization!

SU(3)⇥ SU(2)⇥ U(1)



Candidate derivations 
(and why they fail)

• Grand Unification  
Higgs doesn’t fit in SU(5) 
SU(3) x SU(2) x U(1) not uniquely selected  
Why SU(5) or SO(10)?  
Why (5*)+(10) or (16)?  
No evidence for the Susy-GUT scenario 

• Anomalies* 
Does not select gauge group  
Relies on “minimality” 
Argument fails for non-chiral matter, more than 15 Weyl fermions 

• String Theory 
Landscape!

(*) Geng, Marshak, Minahan, Ramond, Warner, Babu, Mohapatra, Foot, Joshi, Lew, Volkas 
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Aesthetics

(concerns existence of observers)

(concerns happiness of observers)



Anthropic assumptions

Sufficiently rich “atomic” physics (at least one massless 
photon and some (meta)stable charged particles) 

Hierarchy between the scale of the atomic mass scales and 
gravity 

We are not demanding carbon, stars, galaxies, nucleosynthesis, 
abundances, weak interactions(*)…. 

cf. Harnik, Kribs, Perez, “A universe without weak interactions”



The Hierarchy Problem
Renormalization of scalar masses

Renormalization of fermion masses

Computable statistical cost of about 10−34 for the observed 
hierarchy. This is the “(technical) hierarchy problem”.

Statistical cost determined by landscape distribution of λbare
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The Hierarchy Problem
If we accept the current status quo, apparently nature 
has chosen to pay the huge price of a single scalar that 
creates the hierarchy. 

It remains to be shown that is cheaper than having 
fundamental Dirac particles with small masses, or than 
solutions to the technical hierarchy problem (susy, 
compositenes, ….) but we will assume that it is. 

Then this price is going to be payed only once: there 
should be just one Higgs.



String Theory Input
We would like to enumerate all QFT’s with a gauge group and chiral matter. All 
non-chiral matter is assumed to be heavy, with the exception of at most one scalar 
field, the Higgs. We demand that after the Higgs gets a vev, and with all possible 
dynamical symmetry breakings taken into account, at least one massless photon 
survives, and all charged leptons* are massive. 

Otherwise photons will pair-produce massless charged leptons, turning the entire 
universe into an opaque lepton-antilepton plasma.  
(C. Quigg, R. Shrock, Phys.Rev. D79 (2009) 096002) 

This is very restrictive, but still has an infinite number of solutions in QFT.  

So at this point we invoke string theory. Its main rôle is to restrict the 
representations. It also provides a fundamental reason for anomaly cancellation. 

*lepton: a fermion not coupling to any non-abelian vector boson



Intersecting Brane Models
We will assume that all matter and the Higgs bosons are massless particles 
in intersecting brane models. Then the low-energy gauge groups is a 
product of U(N), O(N) and Sp(N) factors. 

The low energy gauge group is assumed to come from S stacks of branes. 
There can be additional branes that do not give rise to massless gauge 
bosons: O(1) or U(1) with a massive vector boson due to axion mixing.  

All matter (fermions as well a the Higgs) are bi-fundamentals, symmetric or 
anti-symmetric tensors, adjoints or vectors (open strings with one end on a  
neutral brane)  

We start with S = 1, and increase S until we find a solution. 



Intersecting Brane Models

Brane multiplicities are subject to tadpole cancellation 
(automatically implies absence of triangle anomalies in QFT). 

Massless vector bosons may mix with axions and acquire a mass. 

Axion



Intersecting Brane Models:  
Single Stack

Chan-Paton group can be U(N), O(N) or Sp(N), but only U(N) can be chiral. 

Matter can be symmetric or anti-symmetric tensors or vectors.  
Chiral multiplicities S, A, K; charges 2q, 2q, q. 

Anomaly cancellation:

Solutions: K=S=A=0 or q=0. In the former case, there is no chiral spectrum, in the 
latter case no electromagnetism. 

KNq3 + 1
2N(N + 1)S(2q)3 + 1

2N(N � 1)A(2q)3 = 0

KNq + 1
2N(N + 1)S(2q) + 1

2N(N � 1)A(2q) = 0

Kq + (N + 2)S(2q) + (N � 2)A(2q) = 0



Two stack models
Y = qaQa + qbQb

an anti-symmetric tensor breaks SU(N) to Sp(N) (if N is even) or Sp(N�1) (if N is
odd), or to SU(N�2) ⇥ SU(2). The only way these symmetry breakings could yield a
U(1) is if SU(2) is broken by means of a symmetric tensor to SO(2). But SU(2) has
no complex representations, and hence is not a suitable high-energy theory by itself; it
violates assumption 3. An adjoint representation breaks SU(N) to SU(p)⇥SU(q)⇥U(1),
p + q = N . This looks promising, because at least it produces a U(1). But it is easy to
see that this can never break a chiral representation to a non-chiral one. We will discuss
this in more detail for two-stack models in section 4.2.3.

4.2 Two Stack Models

The next possibility is to obtain the U(1) from two brane stacks. In this paper we will
only consider the possibility that both are unitary, and consider a general U(M)⇥U(N)
two-stack model. The gauge group is SU(M)⇥ SU(N)⇥U(1)2, but anomalies (canceled
by a Green-Schwarz mechanism) will leave at most one linear combination of the two
U(1)’s unbroken. We will write it as Y = qaQa + qbQb where Qa and Qb are the brane
charges of the two stacks. The possibilities for chiral matter representations are then
(note that adjoints are not chiral, so we do not have to consider them)

Q (M,N, qa + qb)

U (A, 1, 2qa)

D (M, 1,�qa)

S (S, 1, 2qa)

X (M,N, qa � qb) (10)

L (1, N,�qb)

T (1, S, 2qb)

E (1, A, 2qb)

where A, S denote (anti)symmetric tensors. We have given these multiplets suggestive
names referring to the Standard Model, but of course those names can correspond to
genuine quarks and leptons only for M = 3 and N = 2. We will use variables Q,U,D, . . .,
which can be any integer, to denote the multiplicity of these representations. If a mul-
tiplicity is negative this implies a positive multiplicity for the conjugate representation.
The representations themselves will be denoted asQ,U,D, . . .. We have chosen to use the
anti-vectors for L and D, because then the Standard Model multiplicities will be positive
integers. Note however that for notational convenience we have not added superscripts
to denote anti-particles. So U and D correspond to anti-quarks in the Standard Model,
and L corresponds to anti-leptons.

4.2.1 Anomaly cancellation conditions

The integer multiplicities are subject to anomaly cancellation. We will denote anomalies
by a three-letter code, where ‘S’,‘W’ and ‘Y’ refer to SU(M), SU(N) and U(1), and ‘G’

22

SU(M)⇥ SU(N)⇥ U(1)

qa, qb determined by axion couplings

(We have only considered unitary branes so far)



Anomalies

There are six kinds of anomalies: 

SSS
WWW
YYY
SSY
WWY
GGY

SU(M)⇥ SU(N)⇥ U(1)

S     W     Y

Mixed gauge-gravity

} From tadpole cancellation: also for M, N < 3

At most one linear combination of the U(1)’s is anomaly-free 



Anomalies

to gravity. Hence we have anomalies of type SSS, SSY, WWW, WWY, YYY and GGY.
Note that the WWW anomaly is trivial in field theory for N = 2, but in a brane model
the requirement of tadpole cancellation still imposes it as if it were a non-abelian anomaly.
Hence the anomaly contributions of vectors, symmetric and anti-symmetric tensors are 1,
N + 4 and N � 4 respectively, even for N = 2 (the case N = 1 is discussed below). We
will see however that there is a linear dependence among the six anomalies, so that the
WWW anomaly is not really needed. Since we want to assume as little as possible about
the string theory origin of these gauge groups, it is useful to know that the anomalies we
use are really just the field-theoretic ones. Furthermore, we can use the linear dependence
to trade the awkward YYY anomaly for the much more manageable WWW anomaly.

The condition of anomaly cancellation constrains the parameters qa and qb as well as
the particle multiplicities. Note that in brane models, U(1)’s do not have to be anomaly
free, because their anomalies are canceled by the Green-Schwarz mechanism. But in
that case the corresponding gauge boson acquires a mass, and cannot be the one of the
Standard Model. In brane models it may also happen that a non-anomalous U(1) acquires
a mass from mixing with axions, but this is irrelevant for our purposes. There exist models
where this is not the case, and those are the only ones of interest.

The anomaly cancellation conditions can be greatly simplified and brought to the
following form

(S + U)q̃a = C1

(T + E)q̃b = �C2

(D + 8U)q̃a = (4 +M)C1 +NC2 (11)

Lq̃b +Dq̃a = 0

2Eq̃b + 2Uq̃a = C1 � C2

Here q̃a ⌘ Mqa, q̃b ⌘ Nqb, C1 = �(Q�X)q̃b and C2 = (Q +X)q̃a. The Standard model
parameter values are q̃a = �1, q̃b = 1, C1 = C2 = �3, Q = U = D = L = E = 3 and
S = T = X = 0, and of course satisfy these equations for M = 3, N = 2. For any M and
N there are just five independent equations, demonstrating that the WWW equation is
redundant even if N 6= 2.

In the derivation of these equations we used N 6= 1, M 6= 1, qa 6= 0 and qb 6= 0. If
N or M are equal to one, the SSS and WWW anomaly conditions continue to hold in a
brane model, because they follow from the requirement of tadpole cancellation. If N = 1
this leads to the strange results that the open string sector E contributes to anomaly
cancellation, even though it contains no massless states! However, the reason (11) is not
necessarily valid is that the SSY and/or WWY anomaly cancellation conditions have no
meaning anymore if M and/or N are equal to 1.

If we choose just one of the two brane stack multiplicities equal to one, we lose one
equation, but we still have five left. Since the original set of six equations has a redun-
dancy, one may expect to obtain exactly the same equations, and by inspection this is
indeed correct. Note that for N = 1 or M = 1 the anomaly cancellation conditions are
not just the field theoretic ones, but that there is one stringy SSS or WWW condition.
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(qa = 0 and/or qb = 0 must be treated separately)



Abelian theories

Single U(1):  Higgs must break it, no electromagnetism left 
U(1)×U(1):  No solution to anomaly cancellation for two stacks

So in two-stack models we need at least one non-abelian factor in 
the high-energy theory.



Strong Interactions
It is useful to have a non-abelian factor in the low-energy theory as well, since the 
elementary particle charge spectrum is otherwise too poor. We need some additional 
interaction to bind these particles into bound states with larger charges (hadrons and 
nuclei in our universe).  

For this to work there has to be an approximately conserved baryon number. 
This means that we need an SU(M) factor with M ≥ 3, and that this SU(M) factor 
does not become part of a larger group at the “weak” scale. 

Note that SU(2) does not have baryon number, and the weak scale is near the 
constituent mass scale. We cannot allow baryon number to be broken at that scale. 

But let’s just call this an additional assumption. 



Higgs Choice

Therefore we do not consider bi-fundamental Higgses breaking both U(M) 
and U(N). We assume that U(N) is the broken gauge factor. Then the only 
Higgs choices are L,T and E. 

This implies that at least one non-abelian factor is not broken by the Higgs. 
We take this factor to be U(M).

We will assume thatU(M) it is strongly coupled in the IR-regime and stronger 
than U(N).



SU(M)×U(1) (i.e. N=1) 

Higgs can only break U(1), but then there is no electromagnetism. 

Hence there will be a second non-abelian factor, broken by the Higgs. 



M = 3, N = 2

Higgs = L
Decompose L, E, T: chiral charged leptons avoided only if  

                                      L = E, T = 0 

Substitute in anomaly equation:

For M = 3, N = 2: S = 0

Sq̃a =

✓
5�N �M

2M

◆
C1

Therefore we get standard QCD without symmetric tensors.



M = 3, N = 2

Sq̃a =
1
2(C2 � C1). Now we substitute this into the third equation of (11), and obtain

(5�N)C1 = MC2 (12)

For N = 2 and M = 3 this result implies that C1 = C2, and hence S = 0 (note that
there is a second solution to the condition C2 = C1, namely M = 4, N = 1, and we will
see later what that implies). Hence to avoid chiral leptons for M = 3 we must set S = 0.
Since the anti-symmetric tensor of SU(3) is an anti-triplet we are now in the desirable
situation of an SU(3) gauge group with matter only in the fundamental representation.

We will present the rest of the argument without directly using the anomaly conditions
(11), because this is more insightful, and the derivation of (11) is straightforward, but
rather tedious. The quark multiplets split up in the following way

Q(3, qa) +Q(3, qa + 2qb) +X(3, qa) +X(3, qa � 2qb)� U(3,�2qa)�D(3, qa) , (13)

where we have conjugated U and D in order to have only triplets. We have to pair all
these components. The first term can be paired with a component of X and with D,
without any constraints on charges. But the second component can only be paired with
U, since qb 6= 0. Hence if Q 6= 0, we find the relation qa+2qb = �2qa, i.e. 3qa = �2qb, and
Q = U . This charge relation implies immediately that there is no partner for the second
component of X, so that X must vanish. Then the first component of Q can only pair
with D, and we get D = Q. If Q = 0, we can apply the same reasoning to X, with the
result 3qa = +2qb, and X = U = D. This is just the solution with X $ Q interchange
that exists on general grounds. If Q and X both vanish there is no solution, since qa 6= 0.

All anomalies involving SU(3) already cancel, and the quark contribution to the U(1)
trace anomaly cancels by itself. The relation between the charges qa and qb is the familiar
one from SU(5), and so we know that all particles have their familiar charges. We choose
the Standard Model normalization conventions. We get the following equations for L, T
and E

SSY 1
2Q� 1

2L+ 4T = 0

GGY �L+ 3T + E = 0

YYY �3
4Q� 1

4L+ 3T + E = 0

which imply that L = E = Q and T = 0. Note that the SU(2) anomaly 3Q�L+6T �2E
is not really needed, and follows from the others. We do not need to check that the Higgs
does indeed give mass to all quarks and leptons, because this is the Standard Model.

Triplet Higgs

The triplet Higgs can break SU(2)⇥U(1) in two ways [52], depending on the signs of two
terms in the Higgs potential. The Higgs vev can either take the form

hHi =
✓
0 0
0 v

◆
, (14)
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Quark sector

Q+X−D = 0 
Q = U  if and only if  qa+2qb  = −2qa

                    or 
X = U  if and only if  qa−2qb  = −2qa 

In both cases we get an SU(5) type charge relation, and 
hence standard charge quantization
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All anomalies involving SU(3) already cancel, and the quark contribution to the U(1)
trace anomaly cancels by itself. The relation between the charges qa and qb is the familiar
one from SU(5), and so we know that all particles have their familiar charges. We choose
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SSY 1
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which imply that L = E = Q and T = 0. Note that the SU(2) anomaly 3Q�L+6T �2E
is not really needed, and follows from the others. We do not need to check that the Higgs
does indeed give mass to all quarks and leptons, because this is the Standard Model.

Triplet Higgs

The triplet Higgs can break SU(2)⇥U(1) in two ways [52], depending on the signs of two
terms in the Higgs potential. The Higgs vev can either take the form

hHi =
✓
0 0
0 v

◆
, (14)
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M = 3, N = 2

Hence either Q = 0 or X = 0; the choice is irrelevant. 
 
Take X = 0. 
Then D = Q = U, T = 0, L = E 
Remaining anomaly conditions: L = Q 

Hence the only solution is a standard model family, occurring Q times.

The branes a and b are in principle unrelated, and can generally not 
be combined to a U(5) stack 



M = 3, N = 2

Higgs = T
The symmetric tensor can break SU(2)×U(1) in two ways, either to U(1), in the 
same way as L, or to SO(2).

No allowed Higgs couplings to give mass to the charged components of L, E and T,  
so we must require E = L = T = 0. Then there is no solution.

Breaking to U(1)  (same subgroup as L)

Breaking to SO(2)
Then SO(2) must be electromagnetism. Y-charges forbid cubic T couplings, so T = 0 
to avoid massless charged leptons. Quark charge pairing (to avoid chiral QED, broken 
by QCD) requires Q =−X. If we also require S = 0, everything vanishes.

Note: stronger dynamical assumption: S = 0



M > 3  and/or  N > 2

No solution for quark pairing for M>3  

Non-trivial solutions with quark and lepton pairing exist for 
M=3, N>2 
(This involves considering the most general Q+Λ, where 

    Q is the external U(1), and Λ a generator in the flavor  
    group, left unbroken by dynamical symmetry breaking)  

All of them satisfy standard model charge quantization, 
even though M+N ≠ 5 

But massless charged leptons can be avoided only for N=2



Conclusions

The Standard Model is the only anthropic solution within the set of two-stack 
models. 

Family structure (and hence family repetition), charge quantization, the weak 
interactions and the Higgs choice are all derived. 

Standard Model charge quantization works the same way, for any value of N, 
even if N+3 ≠ 5. 

The GUT extension offers no advantages. 

Only if all couplings converge (requires susy), GUTs offer an advantage.







Couplings

and then we get the following result for gY

g2Y = g21sin
2(✓) =

1

2

g2ag
2
b

Ng2aq
2
b +Mg2bq

2
a

(54)

For N = 2,M = 3, qa = �1
3 , qb =

1
2 this yields

g2Y = g2asin
2(✓) =

3g2ag
2
b

3g2a + 2g2b
(55)

For SU(5) (ga = gb ⌘ g) this yields the familiar result gY =
q

3
5g. The relation (55) can

be written as
1

↵Y

=
2

3

1

↵s

+
1

↵w

(56)

This agrees with [57]. Precisely the same relation was found in [58] for a class of Pati-
Salam models. In this class there is a relation between the three gauge couplings of
SU(4) ⇥ SU(2)L ⇥ SU(2)R if the two SU(2) factors have a related brane origin. More
recently, the same relation was found in a class of U(5) F-theory models with hypercharge
flux breaking [59].

Extrapolating the measured coupling constants to higher energies from their values at
100 GeV (g1 = .357, g2 = .652, g3 = 1.212) we find that relation (56) is satisfied at a scale
Mnon-susy = 1013.76 GeV, with

g1 = 0.5511, g3 = ga = 0.570 and g2 = gb = 0.5391 (57)

where we used the non-supersymmetric �-function coe�cients. With supersymmetric
�-functions and a susy breaking scale at 1 TeV we find Msusy = 1016.15 GeV, with

g1 = 0.699, g3 = ga = 0.696 and g2 = gb = 0.702 (58)

In the supersymmetric case the scale where (56) holds is of course the usual susy-GUT
scale, and there is an obvious candidate for the physics associated with that scale: GUT
unification. In the non-supersymmetric case there is no unification into a larger gauge
group, and it is less obvious what happens.

The natural guess is that at 1013.76 GeV = 5.75⇥ 1013 GeV we reach the string scale,
and that the gauge groups U(M) and U(N) are described by a Dirac-Born-Infeld action
at that scale. But there are other possibilities if one allows dimensions to decompactify
at di↵erent scales, and the result also depends on the dimension of the branes on which
the unitary groups live. We will not pursue this point further in this paper. The afore-
mentioned scale just gives a rough indication of the location of “new physics” in this class
of models.
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see also: 
Ibañez, Munos, Rigolin, 1998; 
Blumenhagen, Kors, Lüst, Stieberger, 2007 

Extrapolation this to higher energies we see that this is satisfied at 5.7×1013 GeV  (1.4×1016 GeV 
for susy). 

Proton decay by SU(5) vector bosons would be far too large, but generically we do not have 
such bosons in the spectrum. There is no SU(5) in any limit. 

But what happens at that scale? 

If it is the string scale, one would still expect quantum-gravity related proton decay, which would 
be much too large. 

But there are many ways out.  

The U(3)×U(2) structure of this class of models implies one relation among the SM couplings, 
instead of the two of SU(5)   



Complete list of solutions
Nr. M N qa qb Higgs Q U D S X L E T
1 1 2 2 �3 L 3 6 3 3 0 1 1 0
2 1 2 4 �1 L 2 1 1 0 0 2 3 1
3a 1 2 2 �1 L 3 4 1 3 �4 1 0 �1
3b 1 2 2 �1 L 2 2 1 1 �1 1 1 0
3c 1 2 2 �1 L 4 5 0 3 �4 0 1 �1
4 1 3 3 �2 L 2 3 2 1 0 1 1 0
5 1 3 3 �1 E 0 0 �2 �1 1 �2 1 0
6 1 4 4 �1 L 1 1 1 0 0 1 1 0
7 M 2 1 ⇢ T 1 �⇢ 2M⇢ �⇢ �1 2M 0 0
8 2 3 3 �2 L 1 1 1 0 0 1 1 0
9 3 2 2 �3 L 1 1 1 0 0 1 1 0

Table 1: All chiral spectra without massless charged free leptons that can be obtained for
all M and N with qa 6= 0 and qb 6= 0. In item nr. 7 the value of M is 1 or 2.

Spectrum nr. 1 can be obtained from the Standard Model by interchanging the rôle
of U and S, and replacing color by a mere multiplicity. It is built out of the combination
of Higgs multiplets 3H(12 , 1) + H(12 ,�1

2). The field U has no massless states, but its
presence cancels the “SU(1)” anomaly in the first factor. The corresponding string sector
still exists, and starts at the first excited level. The low energy spectrum is just QED with
charges proportional to ±1,±2 and ±3. Note that here and in the following we divide
all electromagnetic U(1) charges in the low energy spectrum by their largest common
denominator.

Spectrum nr. 2 can be written in terms of the Higgs multiplets H(1,�2) = T+Q+
L+E, H(12 , 3) = Q+D+E and H(12 , 1) = L+E+N, where N is a singlet. One family
is equal to H(1,�2) +H(12 , 3) +H(12 , 1). So all fermions can indeed get a mass from the
Higgs. The low energy spectrum has charges proportional to ±1 and ±2.

Spectrum nr. 3 has complete charge pairing for any solution of the anomaly can-
cellation conditions. Hence even after the pairing requirement we are left with a three
parameter family of spectra. Three independent combinations are shown in the table. All
three can be written in terms of Higgs multiplets, but this requires adding some mirror
pairs. We will omit the details. The low energy theory has charges proportional to ±1
and ±2. This is the only example we have found that does not have automatic family
repetition: di↵erent families can have a di↵erent structure.

All of these spectra have only a very limit number of possible charges, and no strong
interactions to make larger ones. So their anthropic prospects are bleak.

Spectrum nr. 4 consists entirely of SU(3) ⇥ U(1) Higgs multiplets. The Higgs rep-
resentation is L = (1, V ⇤, 2). This solution is related to solution nr. 8 in the same way
as nr 1. is related to the Standard Model. Solution nr. 8 was already described above,
and has a low energy spectrum (38); it is like the Standard Model, but with the color
triplet Higgs. To obtain spectrum nr. 4 from spectrum nr. 8 one has to replace the SU(2)
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All chiral spectra without massless charged free leptons that can be obtained for all 
M and N with qa ≠ 0 and qb ≠ 0. Here M = 1,2 and 𝜌 is a free integer parameter.



Complete list of solutions

This realizes the SU(4)×U(1) subgroup of SU(5).  
The Higgs boson breaks this to SU(3)×U(1), QCD × QED.  

But this implies SU(5)-type proton decay at the weak scale. 

A family constitutes a single, complete SU(4) Higgs multiplet.

Nr. M N qa qb Higgs Q U D S X L E T
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6 1 4 4 �1 L 1 1 1 0 0 1 1 0
7 M 2 1 ⇢ T 1 �⇢ 2M⇢ �⇢ �1 2M 0 0
8 2 3 3 �2 L 1 1 1 0 0 1 1 0
9 3 2 2 �3 L 1 1 1 0 0 1 1 0

Table 1: All chiral spectra without massless charged free leptons that can be obtained for
all M and N with qa 6= 0 and qb 6= 0. In item nr. 7 the value of M is 1 or 2.

Spectrum nr. 3 has complete charge pairing for any solution of the anomaly can-
cellation conditions. Hence even after the pairing requirement we are left with a three
parameter family of spectra. Three independent combinations are shown in the table. All
three can be written in terms of Higgs multiplets, but this requires adding some mirror
pairs. We will omit the details. The low energy theory has charges proportional to ±1
and ±2. This is the only example we have found that does not have automatic family
repetition: di↵erent families can have a di↵erent structure.

All of these spectra have only a very limit number of possible charges, and no strong
interactions to make larger ones. So their anthropic prospects are bleak.

Spectrum nr. 4 consists entirely of SU(3) ⇥ U(1) Higgs multiplets. The Higgs rep-
resentation is L = (1, V ⇤, 2). This solution is related to solution nr. 8 in the same way
as nr 1. is related to the Standard Model. Solution nr. 8 was already described above,
and has a low energy spectrum (38); it is like the Standard Model, but with the color
triplet Higgs. To obtain spectrum nr. 4 from spectrum nr. 8 one has to replace the SU(2)
dimensions by a mere multiplicity, and let S play the rôle of U. The Higgs multiplets are
essentially the same as (37), with minor modifications:

(1,H(V ,�4)) = S+ E+ L+N; 2⇥ (1,H(V, 1)) = Q+D (40)

The low energy spectrum consists of SU(2) doublets with charges ±1 and 0, and singlets
with charges ±1,±2. A family has the form

2(3, 13) + 2(1,�1) + (1, 2) + (3, 23) + (3,�4
3) , (41)

where the unbroken gauge group is SU(3)⇥ U(1), and the particles are in the canonical
order, Q, D, S, L, E. We have omited N. After symmetry breaking this becomes

(2, 1) + (2,�1) + 2(2, 0) + 2(1, 1) + 2(1,�1) + (1, 2) + (1,�2) (42)
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Complete list of solutions

This is the same SU(3)×SU(2)×U(1) subgroup of SU(5) that 
gives rise to the Standard Model, but with a triplet Higgs 
instead of a doublet Higgs.   

At low energies, there is a non-abelian SO(4) ≈ SU(2)×SU(2) 
gauge group without conserved Baryon number. 
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(1,H(V ,�4)) = S+ E+ L+N; 2⇥ (1,H(V, 1)) = Q+D (40)

The low energy spectrum consists of SU(2) doublets with charges ±1 and 0, and singlets
with charges ±1,±2. A family has the form

2(3, 13) + 2(1,�1) + (1, 2) + (3, 23) + (3,�4
3) , (41)

where the unbroken gauge group is SU(3)⇥ U(1), and the particles are in the canonical
order, Q, D, S, L, E. We have omited N. After symmetry breaking this becomes

(2, 1) + (2,�1) + 2(2, 0) + 2(1, 1) + 2(1,�1) + (1, 2) + (1,�2) (42)
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The special case qa = 0 (all M,N)

Anomaly cancellation:

small single vector exchange potential due to all flavor gaugings, which will determine
which direction is chosen in flavor space. This potential is of the same form as the one
proposed in [56], namely

V / g2b
r
[(�c ��1 ��2] , (33)

where �c, �1 and �2 are the quadratic Casimirs of the condensate and the quark and
anti-quark it is made of. The most attractive channel is the one that minimizes V , i.e. the
smallest Casimir in the product V ⌦V . For orthogonal and symplectic groups this tensor
product always contains a singlet, which of course has the smallest �c. This suggests
that these groups are not broken at all, and in particular that no electromagnetic U(1) is
produced.

Hence we conclude that all of these possibilities are ruled out if we assume S = 0. If
S 6= 0 there is no obvious solution for the strong interaction spectrum, and it is possible
that the strong interaction group SU(M) itself has to be broken. We regard this case as
undecided. The low energy spectrum is obviously chiral, so this violates condition 5b.

5.2 qa = 0

If qa = 0 the solution of the anomaly conditions (11) is X = Q, L = T = E = 0, with
U, S,D,Q and X subject to the SU(M) anomaly cancellation condition. The resulting
unbroken SU(M)⇥ SU(N)⇥ U(1)Y spectrum is

Q[(V, V, 1) + (V, V ,�1)] + flavor-neutral U, D, S matter ,

with the flavor-neutral matter canceling the SU(M) anomaly. Since only SU(M) vectors
(and no anti-vectors) couple to the flavor gauge group, there is no combination of an
SU(N�1) generator and the U(1) that is non-chiral with respect to SU(M). Hence for
M � 3 the most plausible assumption is therefore that there will not be electromagnetism.
There are solutions with Q = 0, but then one only gets an SU(M) gauge group, and no
electromagnetism. For M = 1 and M = 2 the entire spectrum is non-chiral before
symmetry breaking, so that assumption 3 is violated.

5.3 qb = 0

If qb = 0, the anomaly cancellation conditions imply that Q = �X and U = S = D = 0.
Then the matter representation before symmetry breaking is

Q[(V, V, 1) + (V , V,�1)] + Y -neutral L, E, T matter

For N = 1 and N = 2 this case can be discarded since the high energy theory is non-chiral.
For N � 3 it is chiral. Since we are assuming throughout this paper that SU(M) remains
unbroken, the only candidate Higgses are uncharged, and cannot break Y . Furthermore Y
is non-chiral with respect to SU(M), so there is no reason why it should break dynamically.
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small single vector exchange potential due to all flavor gaugings, which will determine
which direction is chosen in flavor space. This potential is of the same form as the one
proposed in [56], namely

V / g2b
r
[(�c ��1 ��2] , (33)

where �c, �1 and �2 are the quadratic Casimirs of the condensate and the quark and
anti-quark it is made of. The most attractive channel is the one that minimizes V , i.e. the
smallest Casimir in the product V ⌦V . For orthogonal and symplectic groups this tensor
product always contains a singlet, which of course has the smallest �c. This suggests
that these groups are not broken at all, and in particular that no electromagnetic U(1) is
produced.

Hence we conclude that all of these possibilities are ruled out if we assume S = 0. If
S 6= 0 there is no obvious solution for the strong interaction spectrum, and it is possible
that the strong interaction group SU(M) itself has to be broken. We regard this case as
undecided. The low energy spectrum is obviously chiral, so this violates condition 5b.

5.2 qa = 0

If qa = 0 the solution of the anomaly conditions (11) is X = Q, L = T = E = 0, with
U, S,D,Q and X subject to the SU(M) anomaly cancellation condition. The resulting
unbroken SU(M)⇥ SU(N)⇥ U(1)Y spectrum is

Q[(V, V, 1) + (V, V ,�1)] + flavor-neutral U, D, S matter ,

with the flavor-neutral matter canceling the SU(M) anomaly. Since only SU(M) vectors
(and no anti-vectors) couple to the flavor gauge group, there is no combination of an
SU(N�1) generator and the U(1) that is non-chiral with respect to SU(M). Hence for
M � 3 the most plausible assumption is therefore that there will not be electromagnetism.
There are solutions with Q = 0, but then one only gets an SU(M) gauge group, and no
electromagnetism. For M = 1 and M = 2 the entire spectrum is non-chiral before
symmetry breaking, so that assumption 3 is violated.

5.3 qb = 0

If qb = 0, the anomaly cancellation conditions imply that Q = �X and U = S = D = 0.
Then the matter representation before symmetry breaking is

Q[(V, V, 1) + (V , V,�1)] + Y -neutral L, E, T matter

For N = 1 and N = 2 this case can be discarded since the high energy theory is non-chiral.
For N � 3 it is chiral. Since we are assuming throughout this paper that SU(M) remains
unbroken, the only candidate Higgses are uncharged, and cannot break Y . Furthermore Y
is non-chiral with respect to SU(M), so there is no reason why it should break dynamically.
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For M = 1,2  this is vectorlike (hence massive) 
For M > 3 there is no U(1) in the flavor group that is non-chiral with respect to 
SU(M), hence no electromagnetism.

Note: we treat Higgs and dynamical breaking on equal footing



The special case qb = 0  (all M,N)

Anomaly cancellation:

small single vector exchange potential due to all flavor gaugings, which will determine
which direction is chosen in flavor space. This potential is of the same form as the one
proposed in [56], namely

V / g2b
r
[(�c ��1 ��2] , (33)

where �c, �1 and �2 are the quadratic Casimirs of the condensate and the quark and
anti-quark it is made of. The most attractive channel is the one that minimizes V , i.e. the
smallest Casimir in the product V ⌦V . For orthogonal and symplectic groups this tensor
product always contains a singlet, which of course has the smallest �c. This suggests
that these groups are not broken at all, and in particular that no electromagnetic U(1) is
produced.

Hence we conclude that all of these possibilities are ruled out if we assume S = 0. If
S 6= 0 there is no obvious solution for the strong interaction spectrum, and it is possible
that the strong interaction group SU(M) itself has to be broken. We regard this case as
undecided. The low energy spectrum is obviously chiral, so this violates condition 5b.

5.2 qa = 0

If qa = 0 the solution of the anomaly conditions (11) is X = Q, L = T = E = 0, with
U, S,D,Q and X subject to the SU(M) anomaly cancellation condition. The resulting
unbroken SU(M)⇥ SU(N)⇥ U(1)Y spectrum is

Q[(V, V, 1) + (V, V ,�1)] + flavor-neutral U, D, S matter ,

with the flavor-neutral matter canceling the SU(M) anomaly. Since only SU(M) vectors
(and no anti-vectors) couple to the flavor gauge group, there is no combination of an
SU(N�1) generator and the U(1) that is non-chiral with respect to SU(M). Hence for
M � 3 the most plausible assumption is therefore that there will not be electromagnetism.
There are solutions with Q = 0, but then one only gets an SU(M) gauge group, and no
electromagnetism. For M = 1 and M = 2 the entire spectrum is non-chiral before
symmetry breaking, so that assumption 3 is violated.

5.3 qb = 0

If qb = 0, the anomaly cancellation conditions imply that Q = �X and U = S = D = 0.
Then the matter representation before symmetry breaking is

Q[(V, V, 1) + (V , V,�1)] + Y -neutral L, E, T matter

For N = 1 and N = 2 this case can be discarded since the high energy theory is non-chiral.
For N � 3 it is chiral. Since we are assuming throughout this paper that SU(M) remains
unbroken, the only candidate Higgses are uncharged, and cannot break Y . Furthermore Y
is non-chiral with respect to SU(M), so there is no reason why it should break dynamically.
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small single vector exchange potential due to all flavor gaugings, which will determine
which direction is chosen in flavor space. This potential is of the same form as the one
proposed in [56], namely

V / g2b
r
[(�c ��1 ��2] , (33)

where �c, �1 and �2 are the quadratic Casimirs of the condensate and the quark and
anti-quark it is made of. The most attractive channel is the one that minimizes V , i.e. the
smallest Casimir in the product V ⌦V . For orthogonal and symplectic groups this tensor
product always contains a singlet, which of course has the smallest �c. This suggests
that these groups are not broken at all, and in particular that no electromagnetic U(1) is
produced.

Hence we conclude that all of these possibilities are ruled out if we assume S = 0. If
S 6= 0 there is no obvious solution for the strong interaction spectrum, and it is possible
that the strong interaction group SU(M) itself has to be broken. We regard this case as
undecided. The low energy spectrum is obviously chiral, so this violates condition 5b.

5.2 qa = 0

If qa = 0 the solution of the anomaly conditions (11) is X = Q, L = T = E = 0, with
U, S,D,Q and X subject to the SU(M) anomaly cancellation condition. The resulting
unbroken SU(M)⇥ SU(N)⇥ U(1)Y spectrum is

Q[(V, V, 1) + (V, V ,�1)] + flavor-neutral U, D, S matter ,

with the flavor-neutral matter canceling the SU(M) anomaly. Since only SU(M) vectors
(and no anti-vectors) couple to the flavor gauge group, there is no combination of an
SU(N�1) generator and the U(1) that is non-chiral with respect to SU(M). Hence for
M � 3 the most plausible assumption is therefore that there will not be electromagnetism.
There are solutions with Q = 0, but then one only gets an SU(M) gauge group, and no
electromagnetism. For M = 1 and M = 2 the entire spectrum is non-chiral before
symmetry breaking, so that assumption 3 is violated.

5.3 qb = 0

If qb = 0, the anomaly cancellation conditions imply that Q = �X and U = S = D = 0.
Then the matter representation before symmetry breaking is

Q[(V, V, 1) + (V , V,�1)] + Y -neutral L, E, T matter

For N = 1 and N = 2 this case can be discarded since the high energy theory is non-chiral.
For N � 3 it is chiral. Since we are assuming throughout this paper that SU(M) remains
unbroken, the only candidate Higgses are uncharged, and cannot break Y . Furthermore Y
is non-chiral with respect to SU(M), so there is no reason why it should break dynamically.
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For N = 1,2 this is vector-like, and hence massive 
For N ≥ 3 the candidate Higgses do not break U(1)Y 

Hence the Higgs just has to break SU(N) to a real group, and this is 
indeed possible, for example Higgs = T, breaking SU(N) to SO(N)

The three Higgs choices L, T and E break SU(N) to some group G. If G has only real
representations, then we have found a solution to our conditions. This happens if H = L
or H = T and N = 3 (with SU(3) breaking to SU(2)), if H = T for all N if we choose the
breaking to SO(N), and H = E for N = 4 (breaking SU(4) to SU(2) ⇥ SU(2)) and for
all N if we choose the breaking to Sp(N) or Sp(N � 1). We do not have to worry about
massless charged free leptons, because there are no charged free leptons at all. Hence
this case provides a solution to all our conditions, in the form 5a or 5b, for all M and all
N � 3.

Since the presence of free leptons was not part of our requirements we do not discard
these cases. To get some sort of atomic physics, strong interaction bound states with
opposite charges must somehow make atoms. The strong interactions will in general break
the gauge group, and one can make a plausible guess about how it is broken. Obviously,
G (which from now on can be any of the non-abelian factors obtained from the Higgs
mechanism, or SU(N) itself) must break to a subgroup that has real representations. Is
it possible that this subgroup contains an additional U(1) factor, so that the fermions L,
T and E could produce charge free leptons after all?

Once again we can use the MAC hypothesis explained above. This suggests that
orthogonal and symplectic groups are not broken at all. For SU(N), N > 2, the most
attractive channel is the anti-symmetric tensor. This may break SU(N) to a symplectic
group or SU(N � 2) ⇥ SU(2), but in neither case there is an additional U(1) factor. In
fact, the only way one might have obtained an additional U(1) is from the breaking of
SO(N) or Sp(N) by rank-2 tensors (for example SO(2N) ! SU(N) ⇥ U(1)), but we
have just seen that the rank two tensors are a less attractive channel than the singlet.
Therefore it is not likely that there will be an additional U(1), and U(1)Y will have to
play the rôle of electromagnetism.

Condition 5c can also be satisfied in some cases, so that all fermions can get a mass
from the Higgs mechanism. We will only discuss the case H = T to demonstrate this.
This Higgs has couplings H⇤QX and HLL that can give mass to all components of Q, X
and L. The fermionic fields T and E are not needed to cancel the SU(N) anomaly, only
L is needed. Its multiplicity must then be L = 2MQ. Then we end up with a low energy
SU(M)⇥ SO(N)⇥ U(1) spectrum

Q[(V, V, 1) + (V , V,�1) + 2M(1, V, 0)] (34)

This is a solution to all our conditions in the form 5a, 5b and 5c. It is chiral at high
energies, and the Higgs renders it non-chiral and gives mass to all fundamental fermions.

However, there is an obvious problem. Let us assume that M is odd, because for M
even there would be no fermions in the spectrum at all, and the prospects look worse.
Quarks have positive electric charges, anti-quarks negative ones. This means that baryo-
genesis, starting from zero baryon number and zero charge cannot work because of electric
charge conservation. Furthermore, even if one could somehow make an asymmetric uni-
verse, for example by starting with an asymmetric initial state and not having inflation,
then all charged particles have positive charges. There would be no negative charges and
no atomic physics.
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No charged leptons; Baryon number is gauged, so baryogenesis would be problematic.


