New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

E.g. : *P*⁴ [11169]

Stability of Supersymmetric Moduli in Kähler Uplifted Vacua in collaboration with A. Achúcarro and P. Ortiz

Kepa Sousa

Basque University (UPV/EHU)

kepa.sousa@ehu.eus

String Pheno, 09/06/2015

イロト イポト イヨト イヨト 三日

Outline

New Kähler Uplifted Vacua

Introduction

- Statistical Analysis
- Construction
- E.g. : *P*⁴ [11169]

- 1 The complex structure/dilaton sector
- 2 Statistical Analysis: A New Branch of Vacua
- **3** Constructing the New Vacua
- 4 Example: the Calabi-Yau $P^4_{[1,1,1,6,9]}$

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

```
E.g. : P<sup>4</sup>
[11169
```

KKLT framework: three-step approach

- The complex structure and the dilaton are stabilised by the background fluxes at a large energy scale compared to the SSB scale.
- 2 The K\u00e4hler moduli are stabilised at a lower energies by the non-perturbative effects at an AdS supersymmetric critical point.
- Supersymmetry is broken at low energies by including D3, D-terms, matter fields (F-term breaking)..., to uplift the vacuum to dS.

(Giddings et al. '02, Kachru et al. '03)

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

E.g. : *P*⁴ [11169

KKLT framework: three-step approach

- The complex structure and the dilaton are stabilised by the background fluxes at a large energy scale compared to the SSB scale.
- 2 The K\u00e4hler moduli are stabilised at a lower energies by the non-perturbative effects at an AdS supersymmetric critical point.
- Supersymmetry is broken at low energies by including D3, D-terms, matter fields (F-term breaking)..., to uplift the vacuum to dS.
 (Giddings et al. '02, Kachru et al. '03)

Metastability of the complex structure/dilaton sector

- In the KKLT framework it is guaranteed by the large hierarchy between the c.s. masses and the supersymmetry breaking scale.
- This large hierarchy requires the fine tunning of $W_0 \equiv W_{flux}|_{Z_0} \ll 1$ (Gallego et al. '10, Baumann et al. '14)

$$m_{3/2}^2 = \mathrm{e}^{K} |W_0|^2 \ll M_{\text{flux}}^2 \sim \mathcal{O}(1)$$

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

E.g. : *P*⁴ [11169

Large Volume Scenarios

Balasubramanian et al. '05, Conlon et al. '05

- The complex structure and the dilaton are stabilised by the background fluxes at a supersymmetric configuration.
- \blacksquare The Kähler moduli are stabilised by the combined effect of α' and non-perturbative corrections.
 - The volume of the internal space \mathcal{V} is exponentially large.
 - The configuration is a non-supersymmetric AdS critical point.
- Uplifting is still required to obtain a positive cosmological constant.

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

E.g. : *P*⁴ [11169

Large Volume Scenarios

Balasubramanian et al. '05, Conlon et al. '05

- The complex structure and the dilaton are stabilised by the background fluxes at a supersymmetric configuration.
- The Kähler moduli are stabilised by the combined effect of α' and non-perturbative corrections.
 - The volume of the internal space \mathcal{V} is exponentially large.
 - The configuration is a non-supersymmetric AdS critical point.
- Uplifting is still required to obtain a positive cosmological constant.

Metastability of the complex structure/dilaton sector

- The v.e.v. of the flux superpotential is not fine-tuned $W_0 \sim \mathcal{O}(1)$.
- The volume modulus has a small mass $m_{\mathcal{V}} \sim \mathcal{V}^{3/2}$,
- but there is no large mass hierarchy the c.s. sector and the rest of the Kähler moduli, $m_k \sim m_{3/2} \sim 1/\mathcal{V}$.

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

E.g. : *P*⁴ [11169

Large Volume Scenarios

Balasubramanian et al. '05, Conlon et al. '05

- The complex structure and the dilaton are stabilised by the background fluxes at a supersymmetric configuration.
- \blacksquare The Kähler moduli are stabilised by the combined effect of α' and non-perturbative corrections.
 - The volume of the internal space \mathcal{V} is exponentially large.
 - The configuration is a non-supersymmetric AdS critical point.
- Uplifting is still required to obtain a positive cosmological constant.

Metastability of the complex structure/dilaton sector

- The scalar potential is an exponentially small deformation, $\mathcal{O}(\xi/\mathcal{V}^3)$, of the tree-level potential.
 - The zero-order potential is positive definite, $V_{tree} = e^{K} |D_{\alpha} W_{flux}|^2 \ge 0$.
 - SUSY configurations of the c.s. sector are stable at zero-order.
- The stability is *almost* guaranteed after adding the corrections,
- but massless fields at tree-level could become tachyonic.

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

E.g. : *P*⁴ [11169

Kähler uplifted dS vacua

Balasubramanian et al. '05, Westphal '07

- The complex structure and the dilaton are stabilised by the background fluxes at a supersymmetric configuration.
- The Kähler moduli are stabilised by the combined effect of α' and non-perturbative corrections.
 - The configuration is already a dS critical point.
 - The volume of the internal space is not exponentially large: $V \sim N^{3/2}$.
- There is no need to include additional sources of SUSY breaking.

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

E.g. : *P*⁴ [11169

Kähler uplifted dS vacua

Balasubramanian et al. '05, Westphal '07

- The complex structure and the dilaton are stabilised by the background fluxes at a supersymmetric configuration.
- The Kähler moduli are stabilised by the combined effect of α' and non-perturbative corrections.
 - The configuration is already a dS critical point.
 - The volume of the internal space is not exponentially large: $V \sim N^{3/2}$.
- There is no need to include additional sources of SUSY breaking.

Metastability of the complex structure/dilaton sector

- The corrections of the tree-level potential are no longer exponentially suppressed,
- they could destabilise c.s. fields with small masses at tree-level.
- we need to characterise the tree-level mass spectrum of the c.s. moduli.

Type-IIB flux compactifications

Mass spectrum of the no-scale potential

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

Tree-level mass spectrum at a supersymmetric configuration

The hessian in the the c.s and dilaton sector takes the simple form

$$V_{tree} = \mathrm{e}^{K} \left| D_{l} W_{flux}
ight|^{2} \implies \mathcal{H}_{tree} = \mathrm{e}^{K} \Big(\left| W_{0}
ight| \cdot \mathbb{1} + \mathcal{M} \Big)^{2}$$

• \mathcal{M} is the $2(h_{2,1}+1) \times 2(h_{2,1}+1)$ fermion mass matrix

$$\mathcal{M} = \begin{pmatrix} 0 & D_I D_J W \\ D_{\overline{I}} D_{\overline{J}} \overline{W} & 0 \end{pmatrix}.$$

We can express the scalar masses in terms of the fermionic spectrum. After normalising all masses by m_{3/2}:

$$\mathcal{M}
ightarrow ext{diag}(\pm m_{\lambda}), \qquad \mu_{\pm\lambda}^2 = (1\pm m_{\lambda})^2$$

$$\begin{aligned} \mathcal{K} = &-2\log\mathcal{V} - \log[-\mathrm{i}(\tau - \bar{\tau})] - \log\mathrm{i} \int_{CY} \Omega \wedge \bar{\Omega}, \\ \mathcal{W}_{flux} = & \int_{CY} G_3 \wedge \Omega_{flux} \oplus \mathcal{K} \oplus \mathcal{K}$$

Statistical analysis Random Matrix Theory

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Constructio

E.g. : *P*⁴ [11169

$$\mathcal{M} = \begin{pmatrix} 0 & D_I D_J W \\ D_{\bar{I}} D_{\bar{J}} \overline{W} & 0 \end{pmatrix}$$

(Denef et al. '04, '05, Marsh et al. '12, Bachlechner et al. '12)

Joint probability distribution of the entries:

Components of the fermion mass matrix

$$\mathbb{E}[D_I D_J W] = 0 \qquad \mathbb{E}[D_I D_J W \cdot D_{\bar{K}} D_{\bar{L}} \overline{W}] = \frac{m_h^2 m_{3/2}^2}{4M} \left(\delta_{I\bar{K}} \delta_{J\bar{L}} + \delta_{I\bar{L}} \delta_{J\bar{K}} \right)$$

m_h measures the ratio between the typical fermion masses and $m_{3/2}$.

No higher moments are needed (universality of RMT).

Statistical analysis Random Matrix Theory

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Constructio

E.g. : *P*⁴ [11169

$$\mathcal{M} = \begin{pmatrix} 0 & D_I D_J W \\ D_{\bar{I}} D_{\bar{J}} \overline{W} & 0 \end{pmatrix}$$

(Denef et al. '04, '05, Marsh et al. '12, Bachlechner et al. '12)

Joint probability distribution of the entries:

Components of the fermion mass matrix

$$\mathbb{E}[D_I D_J W] = 0 \qquad \mathbb{E}[D_I D_J W \cdot D_{\bar{K}} D_{\bar{L}} \overline{W}] = \frac{m_h^2 m_{3/2}^2}{4M} \left(\delta_{I\bar{K}} \delta_{J\bar{L}} + \delta_{I\bar{L}} \delta_{J\bar{K}} \right)$$

m_h measures the ratio between the typical fermion masses and $m_{3/2}$.

No higher moments are needed (universality of RMT).

- With this choices *M* can be identified as an element of the Altland-Zirnbauer C*I* ensemble (*Altland* '97).
- To leading order in 1/h_{2,1} the density function of fermion masses (in units of m_{3/2}) reads

$$p(m_{\lambda})dm_{\lambda}=rac{2}{\pi m_{h}^{2}}\sqrt{m_{h}^{2}-m_{\lambda}^{2}}\ dm_{\lambda}$$

Statistical analysis

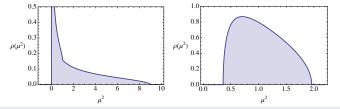
Mass spectrum of complex structure moduli

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction $F \sigma \cdot P^4$



- The plots represent the typical scalar mass spectrum of the complex structure sector at tree-level, with $m_h = 2$ (left), $m_h = 0.4$ (right).
- m_h sets the ratio between the mass scale of the truncated sector and $m_{3/2}$ (e.g.: $m_h \sim O(1)$ in LVS)

$$m_h \sim rac{|D_l D_J W_{ extsf{flux}}|}{|W_{ extsf{flux}}|} \sim \mathcal{O}(1-10)$$

- The spectrum contains no tachyons regardless of the value of m_h.
- If $m_h > 1$ typical configurations might contain arbitrarily light scalar fields.
- If m_h < 1 all fermions are lighter than the gravitino and the scalar mass spectrum develops a mass gap.

(P. Ortiz and KS '14)

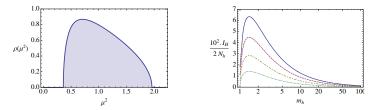
Statistical analysis New Branch of Vacua

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

E.g. : P_{11160}^4



 \blacksquare We need to characterise the effect α' and non-perturbative corrections on the mass spectrum of the c.s. sector.

$$\mu_{\pm\lambda}^2 = \mu_{\pm\lambda}^2|_{tree} + \mathcal{O}(\xi/\mathcal{V})$$

- the squared masses, (normalised by $m_{3/2}^2$), receive $\mathcal{O}(\xi/\mathcal{V})$ corrections.
- Light moduli, $\mu^2 \lesssim \xi/\mathcal{V}$, may be destabilised.

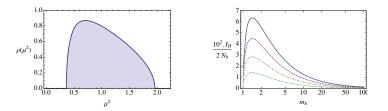
Statistical analysis New Branch of Vacua

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction E.g. : P_{falloc}^4



• We have calculated the percentage of light fields on the c.s. sector, i.e. $\mu^2 \leq \xi/\mathcal{V} \sim 10^{-2} - 10^{-4}$, (right).

There are three stability regimes:

1 For $m_h \gg 1$ a large mass hierarchy protects stability (KKLT case).

- 2 For $\xi/\mathcal{V} \ll 1$ we approach the no-scale limit (in LVS $\xi/\mathcal{V} \sim 10^{-10}$).
- **3 NEW REGIME:** For $m_h < 1$ the mass gap protects stability.

$$\mu_{\pm\lambda}^2 = (1\pm m_\lambda)^2$$

Engineering the fermion mass spectrum "Type-IIB Attractor Equations"

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

Type-IIB Attractor Equations: Denef et al. '04, Kallosh '05, Bellucci et al. '07

At any supersymmetric critical point (τ_0, z_0^i) the quantised fluxes f_a, h_a can be decomposed in terms of the period vector $\Pi_a = (Z^I, F_I)$:

$$f - au_0 h = \mathrm{i} \mathrm{e}^{\mathcal{K}_{\mathrm{cs}}} \left[a_0 \cdot \overline{\Pi}(z_0) - \overline{a}_i \cdot D_i \Pi(z_0) \right]$$

(Hodge decomposition of the fluxes)

$$f_{A,B}^{I} = \ell_{s}^{-2} \int_{A^{I},B_{I}} F_{3} \in \mathbb{Z}, \qquad Z^{I} = \int_{A^{I}} \Omega, \qquad F_{I} = \int_{B_{I}} \Omega$$

<ロト <回ト < 回ト < 回ト = 三日

Engineering the fermion mass spectrum

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

Type-IIB Attractor Equations: Denef et al. '04, Kallosh '05, Bellucci et al. '07

At any supersymmetric critical point (τ_0, z_0^i) the quantised fluxes f_a, h_a can be decomposed in terms of the period vector $\Pi_a = (Z^I, F_I)$:

$$f - au_0 h = \mathrm{i} \, \mathrm{e}^{\mathcal{K}_{\mathrm{cs}}} \left[a_0 \cdot \overline{\Pi}(z_0) - \overline{a}_i \cdot D_i \Pi(z_0) \right]$$

(Hodge decomposition of the fluxes)

- Given a particular compactification, (i.e. a period vector Π_a),
- the fluxes obtained by the above formula ensure that (τ₀, z₀ⁱ) is supersymmetric with:

$$a_0 = W|_{ au_0, z_0}, \qquad a_i = D_{ au} D_i W|_{ au_0, z_0} \qquad D_i D_j W|_{ au_0, z_0} = f_{ijk} a_k$$

<ロト <回ト < 回ト < 回ト = 三日

Engineering the fermion mass spectrum "Type-IIB Attractor Equations"

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

E.g. : *P*⁴ [11169

Type-IIB Attractor Equations: Denef et al. '04, Kallosh '05, Bellucci et al. '07

At any supersymmetric critical point (τ_0, z_0^i) the quantised fluxes f_a, h_a can be decomposed in terms of the period vector $\Pi_a = (Z^I, F_I)$:

$$f - \tau_0 h = \mathrm{i} \mathrm{e}^{K_{\mathrm{cs}}} \left[a_0 \cdot \overline{\Pi}(z_0) - \overline{a}_i \cdot D_i \Pi(z_0) \right]$$

(Hodge decomposition of the fluxes)

- Given a particular compactification, (i.e. a period vector Π_a),
- the fluxes obtained by the above formula ensure that (τ_0, z_0^i) is supersymmetric with:

$$a_0 = W|_{\tau_0, z_0}, \qquad a_i = D_{\tau} D_i W|_{\tau_0, z_0} \qquad D_i D_j W|_{\tau_0, z_0} = f_{ijk} a_k$$

We have some control over the properties of the fermion mass spectrum

- in order to have a large mass hierarchy between the c.s. sector and the SUSY breaking scale $(m_{\lambda} \gg 1)$ we choose $|a_0|^2 \ll |a_i|^2$.
- Conversely, if $|a_0|^2 \gg |a_i|^2$ the fermion masses will be small compared to the gravitino mass $(m_\lambda \ll 1)$.

Engineering the fermion mass spectrum

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

E.g. : P⁴[11169]

Given a CY compactification:

- **1** Choose a tentative field configuration $(\tilde{\tau}_0, \tilde{z}_0)$
- **2** and the expectation value of the superpotential $a_0 = W_0$.
- 3 Solve for the fluxes

$$\tilde{f} - \tilde{\tau}_0 \tilde{h} = \mathrm{i} \mathrm{e}^{K_{cs}} a_0 \cdot \overline{\Pi}(\tilde{z}_0)$$

- with this fluxes $(\tilde{\tau}_0, \tilde{z}_0)$ is a supersymmetric critical point,
- **and all fermions in the c.s. secto have zero mass** $\mathcal{M} = 0$.
- However $(\tilde{f}_a, \tilde{h}_a)$ will not be integers in general.

Engineering the fermion mass spectrum

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

E.g. : *P*⁴ [11169]

Given a CY compactification:

- **1** Choose a tentative field configuration $(\tilde{\tau}_0, \tilde{z}_0)$
- **2** and the expectation value of the superpotential $a_0 = W_0$.
- 3 Solve for the fluxes

$$\tilde{f} - \tilde{\tau}_0 \tilde{h} = \mathrm{i} \mathrm{e}^{K_{cs}} a_0 \cdot \overline{\Pi}(\tilde{z}_0)$$

- with this fluxes $(\tilde{\tau}_0, \tilde{z}_0)$ is a supersymmetric critical point,
- **and all fermions in the c.s. secto have zero mass** $\mathcal{M} = 0$.
- However $(\tilde{f}_a, \tilde{h}_a)$ will not be integers in general.
- Find the closest quantised flux configuration $(\tilde{f}_a, \tilde{h}_a) \rightarrow (f_a, h_a)$.
- With these fluxes solve the SUSY critical point equations for the moduli (τ, zⁱ)

$$D_{\tau}W|_{\tau_0,z_0}=0, \qquad D_iW|_{\tau_0,z_0}=0$$

- The resulting supersymmetric configuration (τ_0, z_0^i) has a light fermion mass spectrum $m_\lambda \lesssim 1$,
- and thus, the tree-level mass spectrum of the c.s. sector will have mass gap of order $\mathcal{O}(m_{3/2})$.

Example: dS vacuum in the $P_{[1,1,1,6,9]}^4$ model

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Constructio

 $E.g. : P_{[11169]}^4$

Candelas et al. '94, Denef Douglas and Florea '04

The moduli space contains $h_{1,1} = 2$ Kähler and $h_{2,1} = 276$ c.s. moduli.

$$\mathcal{V} = \frac{1}{36} \left(\left(T_1 + T_1 \right)^{3/2} - \left(T_2 + T_2 \right)^{3/2} \right)$$

- We consider the dynamics of the only two c.s. moduli $\{z^1, z^2\}$ invariant under the symmetry $\Gamma = \mathbb{Z}_6 \times \mathbb{Z}_{18}$.
 - The c.s. and flux configurations were constructed as described before.
 - the stabilisation of the Kähler sector following the method in *Rummel* et al. '11, Louis et al. '12 for "swiss-cheese" Calabi-Yau's.

Example: dS vacuum in the $P_{[1,1,1,6,9]}^4$ model

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

Candelas et al. '94, Denef Douglas and Florea '04

The moduli space contains $h_{1,1} = 2$ Kähler and $h_{2,1} = 276$ c.s. moduli.

$$\mathcal{V} = rac{1}{36} \left(\left(T_1 + T_1
ight)^{3/2} - \left(T_2 + T_2
ight)^{3/2}
ight)$$

- We consider the dynamics of the only two c.s. moduli {z¹, z²} invariant under the symmetry Γ = Z₆ × Z₁₈.
 - The c.s. and flux configurations were constructed as described before.
 - the stabilisation of the Kähler sector following the method in *Rummel* et al. '11, Louis et al. '12 for "swiss-cheese" Calabi-Yau's.

$C_0 + \mathrm{i}g_s^{-1}$	$< z^{1} >$	$< z^{2} >$	$< \mathcal{V} >$	$W_0 = m_{3/2} \mathcal{V}$	< V >
-0.057 + i1.7	$0.35 + \mathrm{i}1.9$	$0.31 + \mathrm{i}1.5$	376.1	6.7	$8.7 imes 10^{-9}$

	m_{λ}	$\mu^2_{+\lambda}$	$\mu^2_{-\lambda}$	$\mu_{t_1}^2$	$\mu_{t_2}^2$	$m_{3/2}^2$	$\xi/(2\mathcal{V})$
	0.33	1.8	0.43	0.013	47.5	$3.2 imes 10^{-4}$	$1.9 imes10^{-3}$
ſ	0.21	1.9	0.60	0.0028	42.4		
	0.071	1.1	0.89				

• The masses are in units of $m_{3/2}$ and \mathcal{V} in units of ℓ_s .

Conclusions

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

- We have discussed the perturbative stability of *complex structure moduli* at Kähler uplifted dS vacua.
- Using tools from RMT we have characterised the tree-level mass spectrum of the complex structure moduli sector.
 - when $W_0 \sim 1$ the tree-level mass spectrum typically contains a large fraction of light fields,
 - \blacksquare which can be destabilised by the α' and non-pertubative corrections.

Conclusions

New Kähler Uplifted Vacua

Introduction

Statistical Analysis

Construction

- We have discussed the perturbative stability of *complex structure moduli* at Kähler uplifted dS vacua.
- Using tools from RMT we have characterised the tree-level mass spectrum of the complex structure moduli sector.
 - when $W_0 \sim 1$ the tree-level mass spectrum typically contains a large fraction of light fields,
 - \blacksquare which can be destabilised by the α' and non-pertubative corrections.

• We have presented a new class of metastable configurations where

- the chiral fermions in the c.s. sector are lighter than the gravitino.
- The mass spectrum of the c.s. sector presents a mass gap,
- which ensures metastability after adding corrections to the tree-level potential.
- It does not require a large mass hierarchy
- or the exponential suppression of the non-separable corrections.
- We have provided a systematic way to construct these vacua,
- and presented an example in the Calabi-Yau $P_{[11169]}$.