

Eirik Eik Svanes (ILP, LPTHE)

based on work in collaboration with Edward Hardy and Xenia de la Ossa, arXiv:1402.1725, arXiv:1409.3347, arXiv:1506.xxxxx

June 9th 2015, IFT, Madrid

Heterotic Supergravity and Moduli - 1

|--|

General String Compactifications

Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

Introduction

Heterotic Supergravity and Moduli - 2

Introduction
Overview
General String Compactifications
Why Heterotic?
Superpotential
The Infinitesimal Moduli Space
Conclusions

Introduction
Overview
General String Compactifications
Why Heterotic?
Superpotential
The Infinitesimal Modul Space

Conclusions

Introduction	
--------------	--

Overview
General String
Compactifications
Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

This talk is concerned with heterotic supergravity at $\mathcal{O}(\alpha')$, its four-dimensional effective supergravity and moduli.

String Compactifications.

Introduction
Overview
General String Compactifications
Why Heterotic?
Superpotential
The Infinitesimal Moduli Space
Canalusiana

a design a faith and the sec

- String Compactifications.
- Gukov-Vafa-Witten superpotential and supersymmetry conditions.

l	r	1	t	r	0	d	U	С	ti	0	n	

Overview
General String
Compactifications
Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

- String Compactifications.
- Gukov-Vafa-Witten superpotential and supersymmetry conditions.
- First order deformations, holomorphic structures and moduli.

Introduction

Overview
General String
Compactifications
Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

- String Compactifications.
- Gukov-Vafa-Witten superpotential and supersymmetry conditions.
- First order deformations, holomorphic structures and moduli.
- Conclusions and outlook..

Introduction
Overview
General String Compactifications
Why Heterotic?
Superpotential
The Infinitesimal Moduli
Space
Conclusions

Introduction

Overview

General String Compactifications

Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

String theory is ten-dimensional:

$$\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\mathsf{compact}} \; ,$$

where \mathcal{M}_4 is assumed Minkowski, and X is compact.

Introduction

Overview

General String Compactifications

Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

String theory is ten-dimensional:

$$\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\mathsf{compact}}$$
,

where \mathcal{M}_4 is assumed Minkowski, and X is compact. Supersymmetry: Puts conditions on X.

Introduction

Overview

General String Compactifications

Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

String theory is ten-dimensional:

$$\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\mathsf{compact}} \; ,$$

where \mathcal{M}_4 is assumed Minkowski, and X is compact. Supersymmetry: Puts conditions on X. $\mathcal{O}(\alpha'^0) \Rightarrow X$ is Calabi-Yau (no torsion).

Introduction

Overview

General String Compactifications

Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

String theory is ten-dimensional:

$$\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}} ,$$

where \mathcal{M}_4 is assumed Minkowski, and X is compact.

Supersymmetry: Puts conditions on X. $\mathcal{O}(\alpha'^0) \Rightarrow X$ is Calabi-Yau (no torsion).

Deformations $\delta X \Rightarrow$ give rise to low-energy moduli fields.

Introduction

Overview

General String Compactifications

Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

String theory is ten-dimensional:

$$\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}} ,$$

where \mathcal{M}_4 is assumed Minkowski, and X is compact.

Supersymmetry: Puts conditions on X. $\mathcal{O}(\alpha'^0) \Rightarrow X$ is Calabi-Yau (no torsion).

Deformations $\delta X \Rightarrow$ give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).

Introduction

Overview

General String Compactifications

Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

String theory is ten-dimensional:

$$\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}} ,$$

where \mathcal{M}_4 is assumed Minkowski, and X is compact.

Supersymmetry: Puts conditions on X. $\mathcal{O}(\alpha'^0) \Rightarrow X$ is Calabi-Yau (no torsion).

Deformations $\delta X \Rightarrow$ give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).

Type II: RR-fluxes available. Used to stabilize moduli.

Introduction

Overview

General String Compactifications

Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

String theory is ten-dimensional:

$$\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}} ,$$

where \mathcal{M}_4 is assumed Minkowski, and X is compact.

Supersymmetry: Puts conditions on *X*. $\mathcal{O}(\alpha'^0) \Rightarrow X$ is Calabi-Yau (no torsion).

Deformations $\delta X \Rightarrow$ give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).

Type II: RR-fluxes available. Used to stabilize moduli.

Heterotic: Only NS-flux H.

Introduction

Overview

General String Compactifications

Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

String theory is ten-dimensional:

$$\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}} ,$$

where \mathcal{M}_4 is assumed Minkowski, and X is compact.

Supersymmetry: Puts conditions on *X*. $\mathcal{O}(\alpha'^0) \Rightarrow X$ is Calabi-Yau (no torsion).

Deformations $\delta X \Rightarrow$ give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).

Type II: RR-fluxes available. Used to stabilize moduli.

Heterotic: Only NS-flux H. Worse still: Supersymmetry + CY \Rightarrow H = 0 [Strominger 86].

Introduction

Overview

General String Compactifications

Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

String theory is ten-dimensional:

$$\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}} ,$$

where \mathcal{M}_4 is assumed Minkowski, and X is compact.

Supersymmetry: Puts conditions on *X*. $\mathcal{O}(\alpha'^0) \Rightarrow X$ is Calabi-Yau (no torsion).

Deformations $\delta X \Rightarrow$ give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).

Type II: RR-fluxes available. Used to stabilize moduli.

Heterotic: Only NS-flux H. Worse still: Supersymmetry + CY \Rightarrow H = 0 [Strominger 86]. But can use torsion and higher order α' -effects (anomaly) to stabilize (lift) moduli.

Introduction

Overview

General String Compactifications

Why Heterotic?

Superpotential

The Infinitesimal Moduli Space

Conclusions

String theory is ten-dimensional:

$$\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}} ,$$

where \mathcal{M}_4 is assumed Minkowski, and X is compact.

Supersymmetry: Puts conditions on *X*. $\mathcal{O}(\alpha'^0) \Rightarrow X$ is Calabi-Yau (no torsion).

Deformations $\delta X \Rightarrow$ give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).

Type II: RR-fluxes available. Used to stabilize moduli.

Heterotic: Only NS-flux H. Worse still: Supersymmetry + CY \Rightarrow H = 0 [Strominger 86]. But can use torsion and higher order α' -effects (anomaly) to stabilize (lift) moduli.

First need to find massless spectrum, i.e. infinitesimal moduli!

Introduction
Overview
General String Compactifications
Why Heterotic?
Superpotential
The Infinitesimal Moduli Space
Conclusions
Conclusions

Introduction
Overview
General String
Compactifications
Why Heterotic?
Superpotential
The Infinitesimal Moduli Space

Conclusions

The Low energy theory of the heterotic string is a 10d N = 1 supergravity equipped with a $E_8 \times E_8$ gauge field A.

Introduction
Overview General String Compactifications
Why Heterotic?
Superpotential

The Infinitesimal Moduli Space

Conclusions

The Low energy theory of the heterotic string is a 10d N = 1 supergravity equipped with a $E_8 \times E_8$ gauge field A.

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus and consider α' -effects (anomaly, etc).

Introduction
Overview
Overview
General String
Compactifications
Why Heterotic?
Superpotential

The Infinitesimal Moduli Space

Conclusions

The Low energy theory of the heterotic string is a 10d N = 1 supergravity equipped with a $E_8 \times E_8$ gauge field A.

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus and consider α' -effects (anomaly, etc).

Complications:

Introduction Overview General String Compactifications Why Heterotic? Superpotential The Infinitesimal Moduli Space

Conclusions

The Low energy theory of the heterotic string is a 10d N = 1 supergravity equipped with a $E_8 \times E_8$ gauge field A.

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus and consider α' -effects (anomaly, etc).

Complications:

torsional geometries not well understood, but some progress [Strominger 86, Becker et al 2003, Ivanov 2009, ..].

Introduction Overview General String Compactifications Why Heterotic? Superpotential The Infinitesimal Moduli Space

Conclusions

The Low energy theory of the heterotic string is a 10d N = 1 supergravity equipped with a $E_8 \times E_8$ gauge field A.

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus and consider α' -effects (anomaly, etc).

Complications:

- torsional geometries not well understood, but some progress [Strominger 86, Becker et al 2003, Ivanov 2009, ..].
- Complicated expressions to deal with, e.g. Bianchi Identity:

$${
m d} H=-2i\partial\overline{\partial}\omega=rac{lpha'}{4}({
m tr}\ F^2-{
m tr}\ R^2)$$
 .

Introduction Overview General String Compactifications Why Heterotic? Superpotential The Infinitesimal Moduli Space

Conclusions

The Low energy theory of the heterotic string is a 10d N = 1 supergravity equipped with a $E_8 \times E_8$ gauge field A.

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus and consider α' -effects (anomaly, etc).

Complications:

- torsional geometries not well understood, but some progress [Strominger 86, Becker et al 2003, Ivanov 2009, ..].
- Complicated expressions to deal with, e.g. Bianchi Identity:

$$\mathrm{d} H = -2i\partial\overline{\partial}\omega = rac{lpha'}{4}(\mathrm{tr}\ F^2 - \mathrm{tr}\ R^2) \; .$$

Need a nicer description to deal with moduli [Anderson et al 10, Anderson et al 14, de la Ossa EES 14, Garcia-Fernandez et al 15].

Introduction		h	Π	t	r	0	d	u	С	ti	0	r	۱
--------------	--	---	---	---	---	---	---	---	---	----	---	---	---

Superpotentia

Supersymmetry Conditions

The Infinitesimal Moduli Space

Conclusions

Superpotential and Supersymmetry

Heterotic Supergravity and Moduli - 6

Introduction
Superpotential
The Superpotential
Supersymmetry Conditions
The Infinitesimal Moduli Space
Conclusions

Introduction

Superpotential

The Superpotential

Supersymmetry Conditions

The Infinitesimal Moduli Space

Conclusions

Four-dimensional heterotic theory has GVW-superpotential [Gukov et al 99, Becker et al 03, Cardoso et al 03, Lukas et al 05, ..]

$$W = \int_X (H + i \mathrm{d}\omega) \wedge \Omega \;,$$

Heterotic Supergravity and Moduli - 7

Introduction

Superpotential

The Superpotential Supersymmetry

Conditions

The Infinitesimal Moduli Space

Conclusions

Four-dimensional heterotic theory has GVW-superpotential [Gukov et al 99, Becker et al 03, Cardoso et al 03, Lukas et al 05, ..]

$$W = \int_X (H + i \mathrm{d}\omega) \wedge \Omega \;,$$

where ω is the hermitian two-form (Kähler form), Ω is a complex top-form, $\Omega \in \Omega^{(3,0)}(X)$ encoding the complex structure,

Introduction

Superpotential

The Superpotential Supersymmetry

Conditions

The Infinitesimal Moduli Space

Conclusions

Four-dimensional heterotic theory has GVW-superpotential [Gukov et al 99, Becker et al 03, Cardoso et al 03, Lukas et al 05, ..]

$$W = \int_X (H + i \mathrm{d}\omega) \wedge \Omega \;,$$

where ω is the hermitian two-form (Kähler form), Ω is a complex top-form, $\Omega \in \Omega^{(3,0)}(X)$ encoding the complex structure, and

$$H = \mathrm{d}B + \frac{\alpha'}{4} \left(\omega_{CS}^A - \omega_{CS}^\nabla \right) \;,$$

Introduction

Superpotential

The Superpotential Supersymmetry

Conditions

The Infinitesimal Moduli Space

Conclusions

Four-dimensional heterotic theory has GVW-superpotential [Gukov et al 99, Becker et al 03, Cardoso et al 03, Lukas et al 05, ..]

$$W = \int_X (H + i \mathrm{d}\omega) \wedge \Omega \;,$$

where ω is the hermitian two-form (Kähler form), Ω is a complex top-form, $\Omega \in \Omega^{(3,0)}(X)$ encoding the complex structure, and

$$H = \mathrm{d}B + \frac{\alpha'}{4} \left(\omega_{CS}^A - \omega_{CS}^\nabla \right) \;,$$

and where

$$\omega^A_{CS} = \operatorname{tr}\left(A \wedge \mathrm{d}A + \frac{2}{3}A \wedge A \wedge A\right)$$

Heterotic Supergravity and Moduli - 7

Introduction
Superpotential
The Superpotential
Supersymmetry Conditions
The Infinitesimal Moduli Space
Conclusions

1	n	t	٢O	d	u	С	ti	0	n	

Superpotential

The Superpotential

Supersymmetry Conditions

The Infinitesimal Moduli Space

Conclusions

F-term conditions:

$$\delta W = W = 0 \; .$$

Introduction	•
	•
Superpotential	
The Superpotential	
Supersymmetry	•
Conditions	•
The Infinitesimal Moduli	•
Space	•

Conclusions

F-term conditions:

$$\delta W = W = 0 \; .$$

$$\Rightarrow$$
 d $\Omega = 0$ and so X is a *complex manifold*.

Superpotential
The Superpotential
Supersymmetry Conditions
The Infinitesimal Moduli Space

Conclusions

Introduction

F-term conditions:

$$\delta W = W = 0 \; .$$

 \Rightarrow d $\Omega = 0$ and so X is a *complex manifold*.

 $F^{(0,2)} = R^{(0,2)} = 0$ and so the bundles given by A and Θ are *holomorphic*.

Introduction

Superpotential

The Superpotential

Supersymmetry Conditions

The Infinitesimal Moduli Space

Conclusions

F-term conditions:

$$\delta W = W = 0 \; .$$

- \Rightarrow d $\Omega = 0$ and so X is a *complex manifold*.
- $F^{(0,2)} = R^{(0,2)} = 0$ and so the bundles given by A and Θ are *holomorphic*.
- $\bullet \quad \delta_1 \Omega = K \Omega + \chi^{(2,1)} \Rightarrow H = i(\partial \overline{\partial}) \omega \text{ [Strominger 86]}.$

- F-term conditions:

Introduction

Space

Conclusions

Superpotential

The Superpotential Supersymmetry Conditions

The Infinitesimal Moduli

$$\delta W = W = 0 \; .$$

- \Rightarrow d $\Omega = 0$ and so X is a *complex manifold*.
- $F^{(0,2)} = R^{(0,2)} = 0$ and so the bundles given by A and Θ are *holomorphic*.

•
$$\delta_1 \Omega = K\Omega + \chi^{(2,1)} \Rightarrow H = i(\partial - \overline{\partial})\omega$$
 [Strominger 86].

Note: Also D-term conditions giving rise to (poly-)stability conditions on bundles [Anderson et al 09].

F-term conditions:

Introduction

Space

Conclusions

Superpotential

The Superpotential Supersymmetry Conditions

The Infinitesimal Moduli

$$\delta W = W = 0 \; .$$

- \Rightarrow d $\Omega = 0$ and so X is a *complex manifold*.
- $F^{(0,2)} = R^{(0,2)} = 0$ and so the bundles given by A and Θ are *holomorphic*.

•
$$\delta_1 \Omega = K\Omega + \chi^{(2,1)} \Rightarrow H = i(\partial - \overline{\partial})\omega$$
 [Strominger 86].

Note: Also D-term conditions giving rise to (poly-)stability conditions on bundles [Anderson et al 09]. Similarly, X is conformally balanced.

F-term conditions:

Introduction

Space

Conclusions

Superpotential

The Superpotential Supersymmetry Conditions

The Infinitesimal Moduli

$$\delta W = W = 0 \; .$$

- \Rightarrow d $\Omega = 0$ and so X is a *complex manifold*.
- $F^{(0,2)} = R^{(0,2)} = 0$ and so the bundles given by A and Θ are *holomorphic*.

$$\delta_1 \Omega = K \Omega + \chi^{(2,1)} \Rightarrow H = i(\partial - \overline{\partial}) \omega \text{ [Strominger 86]}.$$

Note: Also D-term conditions giving rise to (poly-)stability conditions on bundles [Anderson et al 09]. Similarly, X is conformally balanced.

Ignore D-terms and conformally balanced condition for this talk, and assume stable bundles.

lr	ıtr	0	d	u	С	ti	0	n	

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli

Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

The Infinitesimal Moduli Space

Introduction
Superpotential
The Infinitesimal Moduli Space
Mass Matrix
Complex Structure Moduli
Kernels and the Atiyah Algebroid
Conditions from the Anomaly
Holomorphic Double Extension
Conclusions

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

- Complex Structure Moduli Kernels and the Atiyah Algebroid
- Conditions from the Anomaly
- Holomorphic Double Extension

Conclusions

At the supersymmetric locus, the four-dimensional mass-matrix reads

$$V_{I\overline{J}} = e^{\mathcal{K}} \partial_I \partial_K W \partial_{\overline{J}} \partial_{\overline{L}} \overline{W} \mathcal{K}^{K\overline{L}}$$

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

At the supersymmetric locus, the four-dimensional mass-matrix reads

$$V_{I\overline{J}} = e^{\mathcal{K}} \partial_I \partial_K W \partial_{\overline{J}} \partial_{\overline{L}} \overline{W} \mathcal{K}^{K\overline{L}}$$

Assume δ_2 massless, while δ_1 generic, $\delta_1 W$ generic F-term. Must then require

 $\delta_2 \delta_1 W = 0 \; .$

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

At the supersymmetric locus, the four-dimensional mass-matrix reads

$$V_{I\overline{J}} = e^{\mathcal{K}} \partial_I \partial_K W \partial_{\overline{J}} \partial_{\overline{L}} \overline{W} \mathcal{K}^{K\overline{L}}$$

Assume δ_2 massless, while δ_1 generic, $\delta_1 W$ generic F-term. Must then require

 $\delta_2 \delta_1 W = 0 \; .$

Naive assumption:

 $T\mathcal{M} =$

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli Kernels and the Atiyah

Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

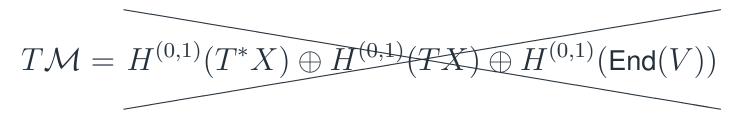
At the supersymmetric locus, the four-dimensional mass-matrix reads

$$V_{I\overline{J}} = e^{\mathcal{K}} \partial_I \partial_K W \partial_{\overline{J}} \partial_{\overline{L}} \overline{W} \mathcal{K}^{K\overline{L}}$$

Assume δ_2 massless, while δ_1 generic, $\delta_1 W$ generic F-term. Must then require

$$\delta_2 \delta_1 W = 0 \; .$$

Naive assumption:



Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

At the supersymmetric locus, the four-dimensional mass-matrix reads

$$V_{I\overline{J}} = e^{\mathcal{K}} \partial_I \partial_K W \partial_{\overline{J}} \partial_{\overline{L}} \overline{W} \mathcal{K}^{K\overline{L}}$$

Assume δ_2 massless, while δ_1 generic, $\delta_1 W$ generic F-term. Must then require

$$\delta_2 \delta_1 W = 0 \; .$$

Naive assumption:

$$T\mathcal{M} = H^{(0,1)}(T^*X) \oplus H^{(0,1)}(TX) \oplus H^{(0,1)}(\operatorname{End}(V))$$

$$\delta_{12}W|_{\delta W=0} = \int_X \frac{\alpha'}{2} \left(\operatorname{tr} \delta_1 A \wedge \delta_2(F \wedge \Omega) - \operatorname{tr} \delta_1 \Theta \wedge \delta_2(R \wedge \Omega) \right)$$

$$+ \int_X \mathrm{d}\tau_1 \wedge \delta_2 \Omega + \int_X \delta_2(H + i\mathrm{d}\omega) \wedge \delta_1 \Omega$$

$$+ \int_X (H + i\mathrm{d}\omega) \wedge \delta_2 \delta_1 \Omega .$$

Heterotic Supergravity and Moduli - 10

Introduction
Superpotential
The Infinitesimal Moduli
Space
Mass Matrix
Complex Structure Moduli
Kernels and the Atiyah
Algebroid
Conditions from the Anomaly
Holomorphic Double
Extension
Conclusions
Conclusions

It follows that

Superpotential

Introduction

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli

Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

 $\mathsf{d}\delta_2\Omega = 0 \Rightarrow \delta_2\Omega \in H^{(2,1)}(X) \Leftrightarrow \Delta_2 \in H^{(0,1)}(TX) ,$

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli

Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

It follows that

$$\mathrm{d}\delta_2\Omega=0 \ \Rightarrow \delta_2\Omega\in H^{(2,1)}(X) \Leftrightarrow \Delta_2\in H^{(0,1)}(TX) \ ,$$
 Also get

$$\delta_2(F \wedge \Omega) = 0 \quad \Leftrightarrow \quad \Delta_2^a \wedge F_{a\overline{b}} \operatorname{d}\! z^{\overline{b}} = \overline{\partial} \alpha_2 \;,$$
 where $\Delta_2 \in H^{(0,1)}(TX)$, $\alpha_2 \in \Omega^{(0,1)}(\operatorname{End}(V))$.

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli

Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

It follows that

 $\mathrm{d}\delta_2\Omega=0 \ \Rightarrow \delta_2\Omega\in H^{(2,1)}(X) \Leftrightarrow \Delta_2\in H^{(0,1)}(TX) \ ,$ Also get

$$\delta_2(F \wedge \Omega) = 0 \quad \Leftrightarrow \quad \Delta_2^a \wedge F_{a\overline{b}} \,\mathrm{d} z^{\overline{b}} = \overline{\partial} \alpha_2 \;,$$
 where $\Delta_2 \in H^{(0,1)}(TX)$, $\alpha_2 \in \Omega^{(0,1)}(\mathrm{End}(V))$.

Similarly

 $\delta_2(R \wedge \Omega) = 0 \quad \Leftrightarrow \quad \Delta_2^a \wedge R_{a\overline{b}} \, \mathrm{d} z^{\overline{b}} = \overline{\partial} \kappa_2 \; .$ where $\kappa_2 \in \Omega^{(0,1)}(\mathrm{End}(V)).$

Heterotic Supergravity and Moduli - 11

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli

Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

It follows that

 $\mathrm{d}\delta_2\Omega=0 \ \Rightarrow \delta_2\Omega\in H^{(2,1)}(X) \Leftrightarrow \Delta_2\in H^{(0,1)}(TX) \ ,$ Also get

$$\delta_2(F \wedge \Omega) = 0 \quad \Leftrightarrow \quad \Delta_2^a \wedge F_{a\overline{b}} \, \mathrm{d} z^{\overline{b}} = \overline{\partial} \alpha_2 \;,$$
 where $\Delta_2 \in H^{(0,1)}(TX)$, $\alpha_2 \in \Omega^{(0,1)}(\mathrm{End}(V))$.

Similarly

 $\delta_2(R \wedge \Omega) = 0 \quad \Leftrightarrow \quad \Delta_2^a \wedge R_{a\overline{b}} \, \mathrm{d} z^{\overline{b}} = \overline{\partial} \kappa_2 \; .$ where $\kappa_2 \in \Omega^{(0,1)}(\mathrm{End}(V)).$

Note: Deformations $\delta_2 \nabla = \kappa_2$ non-physical.

Heterotic Supergravity and Moduli - 11

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli

Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

It follows that

 $\mathrm{d}\delta_2\Omega=0 \ \Rightarrow \delta_2\Omega\in H^{(2,1)}(X) \Leftrightarrow \Delta_2\in H^{(0,1)}(TX) \ ,$ Also get

$$\delta_2(F \wedge \Omega) = 0 \quad \Leftrightarrow \quad \Delta_2^a \wedge F_{a\overline{b}} \operatorname{d}\! z^{\overline{b}} = \overline{\partial} \alpha_2 \;,$$
 where $\Delta_2 \in H^{(0,1)}(TX)$, $\alpha_2 \in \Omega^{(0,1)}(\operatorname{End}(V))$.

Similarly

$$\delta_2(R \wedge \Omega) = 0 \quad \Leftrightarrow \quad \Delta_2^a \wedge R_{a\overline{b}} \, \mathrm{d} z^{\overline{b}} = \overline{\partial} \kappa_2 \; .$$
 where $\kappa_2 \in \Omega^{(0,1)}(\mathrm{End}(V)).$

Note: Deformations $\delta_2 \nabla = \kappa_2$ non-physical. Can be thought of as infinitesimal field redefinitions preserving Strominger system [de la Ossa EES 14].

Introduction
Superpotential
The Infinitesimal Moduli Space
Mass Matrix Complex Structure Moduli
Kernels and the Atiyah Algebroid
Conditions from the Anomaly
Holomorphic Double Extension
Conclusions

Introduction	•
Superpotential	D D D
The Infinitesimal Moduli Space	
Mass Matrix Complex Structure Moduli Kernels and the Atiyah Algebroid	
Conditions from the Anomaly	
Holomorphic Double Extension	
Conclusions	•

It follows that Δ_2 is in the kernel of [Anderson et al 10]

$$\mathcal{F} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(V))$$
$$\mathcal{R} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(TX)) .$$

Superpotential The Infinitesimal Moduli Space

Mass Matrix

Introduction

Complex Structure Moduli

Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

It follows that Δ_2 is in the kernel of [Anderson et al 10]

$$\mathcal{F} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(V))$$
$$\mathcal{R} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(TX)) .$$

Can equivalently be put in terms of holomorphic structure

2

$$\overline{\partial}_1 = \overline{\partial} + \mathcal{F} + \mathcal{R}$$

Introduction Superpotential The Infinitesimal Moduli Space Mass Matrix Complex Structure Moduli Kernels and the Atiyah Algebroid Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

It follows that Δ_2 is in the kernel of [Anderson et al 10]

$$\mathcal{F} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(V))$$
$$\mathcal{R} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(TX)) .$$

Can equivalently be put in terms of holomorphic structure

$$\overline{\partial}_1 = \overline{\partial} + \mathcal{F} + \mathcal{R}$$
, Binachi Identities $\Leftrightarrow \overline{\partial}_1^2 = 0$.

Introduction Superpotential The Infinitesimal Moduli Space Mass Matrix Complex Structure Moduli Kernels and the Atiyah Algebroid Conditions from the Anomaly Holomorphic Double Extension

Conclusions

It follows that Δ_2 is in the kernel of [Anderson et al 10]

$$\mathcal{F} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(V))$$
$$\mathcal{R} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(TX)) .$$

Can equivalently be put in terms of holomorphic structure

$$\overline{\partial}_1 = \overline{\partial} + \mathcal{F} + \mathcal{R}$$
, Binachi Identities $\Leftrightarrow \overline{\partial}_1^2 = 0$.

 $\overline{\partial}_1$ defines an Atiyah algebroid [Atiyah 57]

 $0 \to \operatorname{End}(V) \oplus \operatorname{End}(TX) \to \mathcal{Q}_1 \to TX \to 0$.

Introduction Superpotential The Infinitesimal Moduli Space Mass Matrix Complex Structure Moduli Kernels and the Atiyah Algebroid Conditions from the Anomaly Holomorphic Double

Conclusions

Extension

```
It follows that \Delta_2 is in the kernel of [Anderson et al 10]
```

$$\mathcal{F} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(V))$$
$$\mathcal{R} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(TX)) .$$

Can equivalently be put in terms of holomorphic structure

$$\overline{\partial}_1 = \overline{\partial} + \mathcal{F} + \mathcal{R}$$
, Binachi Identities $\Leftrightarrow \overline{\partial}_1^2 = 0$.

 $\overline{\partial}_1$ defines an Atiyah algebroid [Atiyah 57]

 $0 \to \operatorname{End}(V) \oplus \operatorname{End}(TX) \to \mathcal{Q}_1 \to TX \to 0 .$ $T\mathcal{M}_1 = H^{(0,1)}(\mathcal{Q}_1)$ $= H^{(0,1)}(\operatorname{End}(V)) \oplus H^{(0,1)}(\operatorname{End}(TX)) \oplus \ker(\mathcal{F} + \mathcal{R}) .$

Introduction
Superpotential
The Infinitesimal Moduli Space
Mass Matrix
Complex Structure Moduli
Kernels and the Atiyah Algebroid
Conditions from the Anomaly
Holomorphic Double Extension
Conclusions

We also have the terms

Superpotential

Introduction

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli

Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

 $\int_{V} \delta_2(H + i \mathrm{d}\omega) \wedge \delta_1 \Omega + \int_{X} (H + i \mathrm{d}\omega) \wedge \delta_2 \delta_1 \Omega \in \delta_{12} W|_{\delta W = 0}$

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli

Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

$\int_X \delta_2(H + i \mathrm{d}\omega) \wedge \delta_1 \Omega + \int_X (H + i \mathrm{d}\omega) \wedge \delta_2 \delta_1 \Omega \in \delta_{12} W|_{\delta W = 0}$

Algebra: \Rightarrow arrive at the following conditions

We also have the terms

 $\begin{aligned} \overline{\partial}\tau_2^{(0,2)} &= 0\\ 2\Delta_2^a \wedge i\partial_{[a}\omega_{b]\overline{c}} \mathsf{d}z^{b\overline{c}} - \frac{\alpha'}{2} (\operatorname{tr} \alpha_2 \wedge F - \operatorname{tr} \kappa_2 \wedge R)\\ &= \partial\tau_2^{(0,2)} + \overline{\partial}\tau_2^{(1,1)} . \end{aligned}$

Technicality: Assume $H^{(0,1)}(X) = 0 \Rightarrow \partial \tau_2^{(0,2)}$ is $\overline{\partial}$ -exact.

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix

Complex Structure Moduli

Kernels and the Atiyah Algebroid

Conditions from the Anomaly

Holomorphic Double Extension

Conclusions

$\int_X \delta_2(H + i \mathrm{d}\omega) \wedge \delta_1 \Omega + \int_X (H + i \mathrm{d}\omega) \wedge \delta_2 \delta_1 \Omega \in \delta_{12} W|_{\delta W = 0}$

Algebra: \Rightarrow arrive at the following conditions

We also have the terms

$$\begin{split} \overline{\partial}\tau_2^{(0,2)} &= 0\\ 2\Delta_2^a \wedge i\partial_{[a}\omega_{b]\overline{c}} \mathrm{d}z^{b\overline{c}} - \frac{\alpha'}{2}(\mathrm{tr}\;\alpha_2 \wedge F - \mathrm{tr}\;\kappa_2 \wedge R)\\ &= \partial\tau_2^{(0,2)} + \overline{\partial}\tau_2^{(1,1)}\;.\\ \end{split}$$
Technicality: Assume $H^{(0,1)}(X) = 0 \Rightarrow \partial\tau_2^{(0,2)}$ is $\overline{\partial}$ -exact.

It follows that $x = (\Delta, \alpha, \kappa) \in H^{(0,1)}(\mathcal{Q}_1)$ is in the kernel of $\mathcal{H} : H^{(0,1)}(\mathcal{Q}_1) \to H^{(0,2)}(T^*X)$.

Introduction
Superpotential
The Infinitesimal Moduli
Space
Mass Matrix
Complex Structure
Moduli
Kernels and the Atiyah
Algebroid
Conditions from the
Anomaly
Holomorphic Double
Extension

Conclusions

The map ${\mathcal H}$ defines the holomorphic double extension

$$0 \to T^*X \to \mathcal{Q}_2 \to \mathcal{Q}_1 \to 0 ,$$

with corresponding holomorphic structure

$$\overline{\partial}_2 = \overline{\partial}_1 + \mathcal{H}$$
, Heterotic Bianchi Indentity $\Leftrightarrow \overline{\partial}_2^2 = 0$.

Introduction TI Superpotential The Infinitesimal Moduli Space Mass Matrix Complex Structure Moduli Kernels and the Atiyah Algebroid Conditions from the Anomaly Holomorphic Double Extension

The map ${\mathcal H}$ defines the holomorphic double extension

$$0 \to T^*X \to Q_2 \to Q_1 \to 0$$
,

with corresponding holomorphic structure

(

 $\overline{\partial}_2 = \overline{\partial}_1 + \mathcal{H}$, Heterotic Bianchi Indentity $\Leftrightarrow \overline{\partial}_2^2 = 0$.

Note: Q_2 as a holomorphic bundle is *self-dual*.

Introduction
Superpotential
The Infinitesimal Moduli
Space
Mass Matrix
Complex Structure
Moduli
Kernels and the Atiyah
Algebroid
Conditions from the
Anomaly
Holomorphic Double
Extension
Conclusions

The map ${\mathcal H}$ defines the holomorphic double extension

$$0 \to T^*X \to Q_2 \to Q_1 \to 0$$
,

with corresponding holomorphic structure

(

 $\overline{\partial}_2 = \overline{\partial}_1 + \mathcal{H}$, Heterotic Bianchi Indentity $\Leftrightarrow \quad \overline{\partial}_2^2 = 0$.

Note: Q_2 as a holomorphic bundle is *self-dual*.

Infinitesimal moduli [Anderson et al 14, de la Ossa EES 14]

$$T\mathcal{M}_2 = H^{(0,1)}(\mathcal{Q}_2) = H^{(0,1)}(T^*X) \oplus \ker(\mathcal{H})$$

Introduction
Superpotential
The Infinitesimal Moduli
Space
Mass Matrix
Complex Structure
Moduli
Kernels and the Atiyah
Algebroid
Conditions from the
Anomaly
Holomorphic Double
Extension
Conclusions

The map ${\mathcal H}$ defines the holomorphic double extension

$$0 \to T^*X \to Q_2 \to Q_1 \to 0$$
,

with corresponding holomorphic structure

l

$$\overline{\partial}_2 = \overline{\partial}_1 + \mathcal{H}$$
, Heterotic Bianchi Indentity $\Leftrightarrow \quad \overline{\partial}_2^2 = 0$.

Note: Q_2 as a holomorphic bundle is *self-dual*.

Infinitesimal moduli [Anderson et al 14, de la Ossa EES 14]

$$T\mathcal{M}_2 = H^{(0,1)}(\mathcal{Q}_2) = H^{(0,1)}(T^*X) \oplus \ker(\mathcal{H})$$

Get same kernel structure.

Heterotic Supergravity and Moduli - 14

In	+r	~	4		41	~	n	
11	u	0	u	uc	u	U	П	

Superpotential

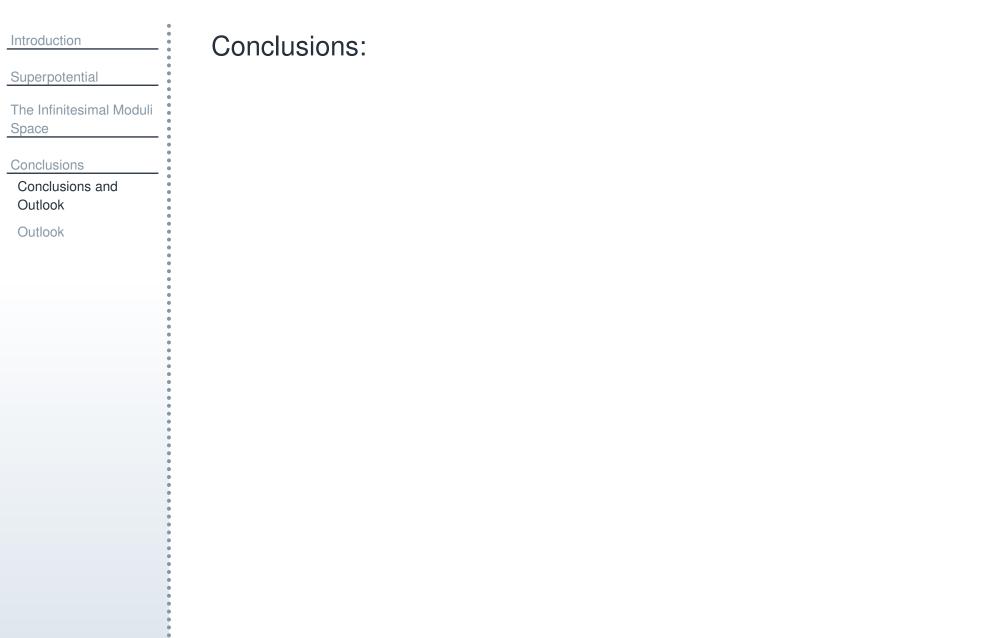
The Infinitesimal Moduli Space

Conclusions

Outlook

Conclusions and Outlook

Conclusions



Introduction Conclusions: Superpotential Heterotic string is a nice playground for phenomenology, but the moduli problem is hard. Conclusions and Outlook Outlook Outlook Outlook

Introduction Superpotential The Infinitesimal Moduli Space Conclusions Conclusions and

Conclusions and Outlook

- Conclusions:
 - Heterotic string is a nice playground for phenomenology, but the moduli problem is hard.
 - From the heterotic superpotential, we derived the massless moduli space, and saw that it agrees with the 10d computation of [Anderson et al 14, de la Ossa EES 14] for the infinitesimal moduli space of solutions to the Strominger system.

Introduction Superpotential The Infinitesimal Moduli Space Conclusions

Conclusions and Outlook

Outlook

Conclusions:

- Heterotic string is a nice playground for phenomenology, but the moduli problem is hard.
- From the heterotic superpotential, we derived the massless moduli space, and saw that it agrees with the 10d computation of [Anderson et al 14, de la Ossa EES 14] for the infinitesimal moduli space of solutions to the Strominger system.
- We note that the heterotic anomaly condition may lead to lifting extra moduli, even in Calabi-Yau compactifications.

Introduction Superpotential The Infinitesimal Moduli Space Conclusions Conclusions and

Outlook Outlook Outlook, and work in progress:

So far mostly a mathematical investigation into the structure of $\overline{\partial}_2$. Interesting to look for more phenomenological examples.

Introduction
Superpotential
Superpotential
The Infinitesimal Moduli Space
Conclusions
Conclusions and
Outlook
Outlook

- So far mostly a mathematical investigation into the structure of $\overline{\partial}_2$. Interesting to look for more phenomenological examples.
- Further investigation into higher order deformations and obstructions corresponding to Yukawa couplings.

Introduction Superpotential The Infinitesimal Moduli Space Conclusions Conclusions and Outlook Outlook

- So far mostly a mathematical investigation into the structure of $\overline{\partial}_2$. Interesting to look for more phenomenological examples.
- Further investigation into higher order deformations and obstructions corresponding to Yukawa couplings.
- Need Kähler potential to investigate the 4d theory outside of Minkowski vacua. Holomorphic structures usually come with natural Kähler metric (Weil-Peterson metric, etc). Clue for what Kähler metric is?

Introduction Superpotential The Infinitesimal Moduli Space Conclusions Conclusions and Outlook Outlook

- So far mostly a mathematical investigation into the structure of $\overline{\partial}_2$. Interesting to look for more phenomenological examples.
- Further investigation into higher order deformations and obstructions corresponding to Yukawa couplings.
- Need Kähler potential to investigate the 4d theory outside of Minkowski vacua. Holomorphic structures usually come with natural Kähler metric (Weil-Peterson metric, etc). Clue for what Kähler metric is?
- What about non-perturbative effects? E.g. NS5-branes correct the Bianchi Identity

Introduction Superpotential The Infinitesimal Moduli Space Conclusions Conclusions and Outlook Outlook Outlook, and work in progress:

- So far mostly a mathematical investigation into the structure of $\overline{\partial}_2$. Interesting to look for more phenomenological examples.
- Further investigation into higher order deformations and obstructions corresponding to Yukawa couplings.
- Need Kähler potential to investigate the 4d theory outside of Minkowski vacua. Holomorphic structures usually come with natural Kähler metric (Weil-Peterson metric, etc). Clue for what Kähler metric is?
- What about non-perturbative effects? E.g. NS5-branes correct the Bianchi Identity

$$dH + W_{NS5} = \frac{\alpha'}{4} (tr F^2 - tr R^2).$$

Heterotic Supergravity and Moduli - 17

Introduction Superpotential The Infinitesimal Moduli Space Conclusions Conclusions and Outlook Outlook Outlook, and work in progress:

- So far mostly a mathematical investigation into the structure of $\overline{\partial}_2$. Interesting to look for more phenomenological examples.
- Further investigation into higher order deformations and obstructions corresponding to Yukawa couplings.
- Need Kähler potential to investigate the 4d theory outside of Minkowski vacua. Holomorphic structures usually come with natural Kähler metric (Weil-Peterson metric, etc). Clue for what Kähler metric is?
- What about non-perturbative effects? E.g. NS5-branes correct the Bianchi Identity

$$dH + W_{NS5} = \frac{\alpha'}{4} (\operatorname{tr} F^2 - \operatorname{tr} R^2).$$

 \Rightarrow Spoils holomorphic structure $\overline{\partial}_2$

Heterotic Supergravity and Moduli - 17

Thank you!

Introduction
Superpotential
The Infinitesimal Moduli Space
Conclusions

Conclusions and Outlook

Outlook

Thank you for your attention!