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This talk is concerned with heterotic supergravity at O(α′), its

four-dimensional effective supergravity and moduli.

� String Compactifications.

� Gukov-Vafa-Witten superpotential and supersymmetry

conditions.

� First order deformations, holomorphic structures and moduli.

� Conclusions and outlook..
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String theory is ten-dimensional:

M10 = M4 ×Xcompact ,

where M4 is assumed Minkowski, and X is compact.

Supersymmetry: Puts conditions on X . O(α′0)⇒X is Calabi-Yau

(no torsion).

Deformations δX ⇒ give rise to low-energy moduli fields. Not

observed and so must be lifted (moduli problem).

Type II: RR-fluxes available. Used to stabilize moduli.

Heterotic: Only NS-flux H . Worse still: Supersymmetry + CY ⇒
H = 0 [Strominger 86]. But can use torsion and higher order

α′-effects (anomaly) to stabilize (lift) moduli.

First need to find massless spectrum, i.e. infinitesimal moduli!
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The Low energy theory of the heterotic string is a 10d N = 1
supergravity equipped with a E8 × E8 gauge field A.

Good for phenomenology, but hard to stabilize moduli. Need to

leave CY-locus and consider α′-effects (anomaly, etc).

Complications:

� torsional geometries not well understood, but some progress

[Strominger 86, Becker et al 2003, Ivanov 2009, ..].

� Complicated expressions to deal with, e.g. Bianchi Identity:

dH = −2i∂∂ω =
α′

4
(tr F 2 − tr R2) .

Need a nicer description to deal with moduli [Anderson et al 10,

Anderson et al 14, de la Ossa EES 14, Garcia-Fernandez et al 15].
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Four-dimensional heterotic theory has GVW-superpotential [Gukov

et al 99, Becker et al 03, Cardoso et al 03, Lukas et al 05, ..]

W =

∫

X

(H + idω) ∧ Ω ,

where ω is the hermitian two-form (Kähler form), Ω is a complex

top-form, Ω ∈ Ω(3,0)(X) encoding the complex structure, and

H = dB +
α′

4

(

ωA
CS − ω∇

CS

)

,

and where

ωA
CS = tr

(

A ∧ dA+
2

3
A ∧ A ∧ A

)

.
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F-term conditions:

δW = W = 0 .

� ⇒ dΩ = 0 and so X is a complex manifold.

� F (0,2) = R(0,2) = 0 and so the bundles given by A and Θ are

holomorphic.

� δ1Ω = KΩ + χ(2,1) ⇒H = i(∂ − ∂)ω [Strominger 86].

Note: Also D-term conditions giving rise to (poly-)stability conditions

on bundles [Anderson et al 09]. Similarly, X is conformally

balanced.

Ignore D-terms and conformally balanced condition for this talk, and

assume stable bundles.



The Infinitesimal Moduli Space

Introduction

Superpotential

The Infinitesimal Moduli

Space

Mass Matrix

Complex Structure

Moduli

Kernels and the Atiyah

Algebroid

Conditions from the

Anomaly

Holomorphic Double

Extension

Conclusions

Heterotic Supergravity and Moduli – 9



Mass Matrix

Introduction

Superpotential

The Infinitesimal Moduli

Space

Mass Matrix

Complex Structure

Moduli

Kernels and the Atiyah

Algebroid

Conditions from the

Anomaly

Holomorphic Double

Extension

Conclusions

Heterotic Supergravity and Moduli – 10



Mass Matrix

Introduction

Superpotential

The Infinitesimal Moduli

Space

Mass Matrix

Complex Structure

Moduli

Kernels and the Atiyah

Algebroid

Conditions from the

Anomaly

Holomorphic Double

Extension

Conclusions

Heterotic Supergravity and Moduli – 10

At the supersymmetric locus, the four-dimensional mass-matrix

reads

VIJ = eK∂I∂KW∂J∂LWKKL .



Mass Matrix

Introduction

Superpotential

The Infinitesimal Moduli

Space

Mass Matrix

Complex Structure

Moduli

Kernels and the Atiyah

Algebroid

Conditions from the

Anomaly

Holomorphic Double

Extension

Conclusions

Heterotic Supergravity and Moduli – 10

At the supersymmetric locus, the four-dimensional mass-matrix

reads

VIJ = eK∂I∂KW∂J∂LWKKL .

Assume δ2 massless, while δ1 generic, δ1W generic F-term. Must

then require

δ2δ1W = 0 .



Mass Matrix

Introduction

Superpotential

The Infinitesimal Moduli

Space

Mass Matrix

Complex Structure

Moduli

Kernels and the Atiyah

Algebroid

Conditions from the

Anomaly

Holomorphic Double

Extension

Conclusions

Heterotic Supergravity and Moduli – 10

At the supersymmetric locus, the four-dimensional mass-matrix

reads

VIJ = eK∂I∂KW∂J∂LWKKL .

Assume δ2 massless, while δ1 generic, δ1W generic F-term. Must

then require

δ2δ1W = 0 .
Naive assumption:

TM =



Mass Matrix

Introduction

Superpotential

The Infinitesimal Moduli

Space

Mass Matrix

Complex Structure

Moduli

Kernels and the Atiyah

Algebroid

Conditions from the

Anomaly

Holomorphic Double

Extension

Conclusions

Heterotic Supergravity and Moduli – 10

At the supersymmetric locus, the four-dimensional mass-matrix

reads

VIJ = eK∂I∂KW∂J∂LWKKL .

Assume δ2 massless, while δ1 generic, δ1W generic F-term. Must

then require

δ2δ1W = 0 .
Naive assumption:

TM =
✭
✭
✭
✭
✭
✭
✭
✭

✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭✭❤

❤
❤
❤
❤
❤
❤
❤

❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤❤

H(0,1)(T ∗X)⊕H(0,1)(TX)⊕H(0,1)(End(V ))



Mass Matrix

Introduction

Superpotential

The Infinitesimal Moduli

Space

Mass Matrix

Complex Structure

Moduli

Kernels and the Atiyah

Algebroid

Conditions from the

Anomaly

Holomorphic Double

Extension

Conclusions

Heterotic Supergravity and Moduli – 10

At the supersymmetric locus, the four-dimensional mass-matrix

reads

VIJ = eK∂I∂KW∂J∂LWKKL .

Assume δ2 massless, while δ1 generic, δ1W generic F-term. Must

then require

δ2δ1W = 0 .
Naive assumption:

TM =
✭
✭
✭
✭
✭
✭
✭
✭

✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭✭❤

❤
❤
❤
❤
❤
❤
❤

❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤❤

H(0,1)(T ∗X)⊕H(0,1)(TX)⊕H(0,1)(End(V ))

δ12W |δW=0 =

∫

X

α′

2

(

tr δ1A ∧ δ2(F ∧ Ω)− tr δ1Θ ∧ δ2(R ∧ Ω)
)

+

∫

X

dτ1 ∧ δ2Ω +

∫

X

δ2(H + idω) ∧ δ1Ω

+

∫

X

(H + idω) ∧ δ2δ1Ω .
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It follows that

dδ2Ω = 0 ⇒ δ2Ω ∈ H(2,1)(X) ⇔ ∆2 ∈ H(0,1)(TX) ,

Also get

δ2(F ∧ Ω) = 0 ⇔ ∆a
2 ∧ Fab dzb = ∂α2 ,

where ∆2 ∈ H(0,1)(TX), α2 ∈ Ω(0,1)(End(V )).

Similarly

δ2(R ∧ Ω) = 0 ⇔ ∆a
2 ∧Rab dzb = ∂κ2 .

where κ2 ∈ Ω(0,1)(End(V )).

Note: Deformations δ2∇ = κ2 non-physical.
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It follows that

dδ2Ω = 0 ⇒ δ2Ω ∈ H(2,1)(X) ⇔ ∆2 ∈ H(0,1)(TX) ,

Also get

δ2(F ∧ Ω) = 0 ⇔ ∆a
2 ∧ Fab dzb = ∂α2 ,

where ∆2 ∈ H(0,1)(TX), α2 ∈ Ω(0,1)(End(V )).

Similarly

δ2(R ∧ Ω) = 0 ⇔ ∆a
2 ∧Rab dzb = ∂κ2 .

where κ2 ∈ Ω(0,1)(End(V )).

Note: Deformations δ2∇ = κ2 non-physical. Can be thought of as

infinitesimal field redefinitions preserving Strominger system [de la

Ossa EES 14].
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It follows that ∆2 is in the kernel of [Anderson et al 10]

F : H(0,1)(TX) → H(0,1)(End(V ))

R : H(0,1)(TX) → H(0,1)(End(TX)) .
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It follows that ∆2 is in the kernel of [Anderson et al 10]

F : H(0,1)(TX) → H(0,1)(End(V ))

R : H(0,1)(TX) → H(0,1)(End(TX)) .

Can equivalently be put in terms of holomorphic structure

∂1 = ∂ + F +R , Binachi Identities ⇔ ∂
2

1 = 0 .

∂1 defines an Atiyah algebroid [Atiyah 57]

0 → End(V )⊕ End(TX) → Q1 → TX → 0 .
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It follows that ∆2 is in the kernel of [Anderson et al 10]

F : H(0,1)(TX) → H(0,1)(End(V ))

R : H(0,1)(TX) → H(0,1)(End(TX)) .

Can equivalently be put in terms of holomorphic structure

∂1 = ∂ + F +R , Binachi Identities ⇔ ∂
2

1 = 0 .

∂1 defines an Atiyah algebroid [Atiyah 57]

0 → End(V )⊕ End(TX) → Q1 → TX → 0 .

TM1 = H(0,1)(Q1)

= H(0,1)(End(V ))⊕H(0,1)(End(TX))⊕ ker(F +R) .
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δ2(H + idω) ∧ δ1Ω +

∫

X

(H + idω) ∧ δ2δ1Ω ∈ δ12W |δW=0
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We also have the terms

∫

X

δ2(H + idω) ∧ δ1Ω +

∫

X

(H + idω) ∧ δ2δ1Ω ∈ δ12W |δW=0

Algebra: ⇒ arrive at the following conditions

∂τ
(0,2)
2 = 0

2∆a
2 ∧ i∂[aωb]cdz

bc −
α′

2
(tr α2 ∧ F − tr κ2 ∧R)

= ∂τ
(0,2)
2 + ∂τ

(1,1)
2 .

Technicality: Assume H(0,1)(X) = 0⇒ ∂τ
(0,2)
2 is ∂-exact.
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We also have the terms

∫

X

δ2(H + idω) ∧ δ1Ω +

∫

X

(H + idω) ∧ δ2δ1Ω ∈ δ12W |δW=0

Algebra: ⇒ arrive at the following conditions

∂τ
(0,2)
2 = 0

2∆a
2 ∧ i∂[aωb]cdz

bc −
α′

2
(tr α2 ∧ F − tr κ2 ∧R)

= ∂τ
(0,2)
2 + ∂τ

(1,1)
2 .

Technicality: Assume H(0,1)(X) = 0⇒ ∂τ
(0,2)
2 is ∂-exact.

It follows that x = (∆, α, κ) ∈ H(0,1)(Q1) is in the kernel of

H : H(0,1)(Q1) → H(0,2)(T ∗X) .
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The map H defines the holomorphic double extension

0 → T ∗X → Q2 → Q1 → 0 ,

with corresponding holomorphic structure

∂2 = ∂1 +H , Heterotic Bianchi Indentity ⇔ ∂
2

2 = 0 .
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The map H defines the holomorphic double extension

0 → T ∗X → Q2 → Q1 → 0 ,

with corresponding holomorphic structure

∂2 = ∂1 +H , Heterotic Bianchi Indentity ⇔ ∂
2

2 = 0 .

Note: Q2 as a holomorphic bundle is self-dual.



Holomorphic Double Extension

Introduction

Superpotential

The Infinitesimal Moduli

Space

Mass Matrix

Complex Structure

Moduli

Kernels and the Atiyah

Algebroid

Conditions from the

Anomaly

Holomorphic Double

Extension

Conclusions

Heterotic Supergravity and Moduli – 14

The map H defines the holomorphic double extension

0 → T ∗X → Q2 → Q1 → 0 ,

with corresponding holomorphic structure

∂2 = ∂1 +H , Heterotic Bianchi Indentity ⇔ ∂
2

2 = 0 .

Note: Q2 as a holomorphic bundle is self-dual.

Infinitesimal moduli [Anderson et al 14, de la Ossa EES 14]

TM2 = H(0,1)(Q2) = H(0,1)(T ∗X)⊕ ker(H) .
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The map H defines the holomorphic double extension

0 → T ∗X → Q2 → Q1 → 0 ,

with corresponding holomorphic structure

∂2 = ∂1 +H , Heterotic Bianchi Indentity ⇔ ∂
2

2 = 0 .

Note: Q2 as a holomorphic bundle is self-dual.

Infinitesimal moduli [Anderson et al 14, de la Ossa EES 14]

TM2 = H(0,1)(Q2) = H(0,1)(T ∗X)⊕ ker(H) .

Get same kernel structure.
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Conclusions:

� Heterotic string is a nice playground for phenomenology, but the

moduli problem is hard.

� From the heterotic superpotential, we derived the massless

moduli space, and saw that it agrees with the 10d computation

of [Anderson et al 14, de la Ossa EES 14] for the infinitesimal

moduli space of solutions to the Strominger system.

� We note that the heterotic anomaly condition may lead to lifting

extra moduli, even in Calabi-Yau compactifications.
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Outlook, and work in progress:

� So far mostly a mathematical investigation into the structure of

∂2. Interesting to look for more phenomenological examples.

� Further investigation into higher order deformations and

obstructions corresponding to Yukawa couplings.

� Need Kähler potential to investigate the 4d theory outside of

Minkowski vacua. Holomorphic structures usually come with

natural Kähler metric (Weil-Peterson metric, etc). Clue for what

Kähler metric is?

� What about non-perturbative effects? E.g. NS5-branes correct

the Bianchi Identity

dH +WNS5 =
α′

4
(tr F 2 − tr R2) .

⇒ Spoils holomorphic structure ∂2.
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Thank you for your attention!
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