

Axion and Higgs Domain Walls

9th June 2015 @String Pheno 15 Madrid, Spain

Fumi Takahashi (Tohoku & IPMU)

Hamada, Oda, FT, 1408.5556, Kitajima, FT 1411.2011, 1502.03725 Daido, Kitajima, FT, 1504.07917, 1505.07670

cf. Anthropic solution to the c.c. problem.

Degenerate vacua

Axion

Shift symmetry:

$$a \rightarrow a + C$$

broken by non-perturbative effects.

$$\Lambda^4 \left(1 - \cos\left(\frac{a}{f}\right) \right)$$

· SM Higgs

The SM criticality $h_{\min} \sim M_p$ or Up-lift by new physics $h_{\min} \ll M_p$

$$-\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4\left(+\frac{h^6}{\Lambda^2}\right)$$

Axion domain walls

(Figure courtesy of Kitajima)

Axion domain walls

Domain wall formation

1.Large quantum fluctuations

$$\delta a = \frac{H_{\text{inf}}}{2\pi} \sim f_a$$

2.Hilltop initial condition

$$|a_* - \pi f_a| < \delta a$$

Axion domain walls

Domain wall formation

1.Large quantum fluctuations

$$\delta a = \frac{H_{\text{inf}}}{2\pi} \sim f_a$$

2.Hilltop initial condition

$$|a_* - \pi f_a| < \delta a$$

New!

3.Level crossing

Kitajima, FT 1411.2011, Daido, Kitajima, FT, 1505.07670

Hill, Ross, NPB 311, 253 (1988), Kitajima, FT 1411.2011

Mixings

e.g.,
$$V(a_1, a_2) = V_1(a_1, a_2) + V_2(a_1, a_2)$$
 Mixing
= $C_1 \left(1 - \cos \left(n_1 \frac{a_1}{f_1} + n_2 \frac{a_2}{f_2} \right) \right) + C_2 \left(1 - \cos \left(\frac{a_2}{f_2} \right) \right)$

Effective decay constants:

$$f = \frac{\sqrt{n_2^2 f_1^2 + n_1^2 f_2^2}}{n_1}$$
$$F = \frac{f_1 f_2}{\sqrt{n_2^2 f_1^2 + n_1^2 f_2^2}}$$

f > F if n_1 and/or n_2 large

Kim, Nilles, Peloso, `04 Ben-Dayan, Pedro, Westphal, 1404.7773 Tye, Won, 1404.6988

Hill and Ross, NPB 311, 253 (1988), Kitajima, FT 1411.2011

Mixings

e.g.,
$$V(a_1, a_2) = V_1(a_1, a_2) + V_2(a_1, a_2)$$
 Mixing
= $C_1 \left(1 - \cos \left(n_1 \frac{a_1}{f_1} + n_2 \frac{a_2}{f_2} \right) \right) + C_2 \left(1 - \cos \left(\frac{a_2}{f_2} \right) \right)$

· <u>T-dependent mass</u>

e.g., $C_1 = \Lambda_1^4$, $C_2 = m_a(T)^2 f_2^2$ *T-dependence* $m_a(T) = m_b \min \left[\left(\begin{array}{c} T \end{array} \right)^p \right]$

$$m_a(T) = m_a \min \left[\left(\frac{1}{\Lambda_2} \right) , 1 \right]$$

 $p < 0$
cf. QCD axion

During the level crossing the axion potential changes significantly.

During the level crossing the axion potential changes significantly.

 If the (lighter) axion starts to oscillate <u>around or slightly</u> <u>before</u> the time of the level crossing, it often climbs over the (lower) potential barrier.

Axion Roulette

Axion Roulette

Axion Roulette and Domain walls

•The axion roulette exhibits a chaotic behavior.

•The axion fluctuations will grow at sub-horizon scales.

Axion roulette leads to DW formation, even if $\delta a < |a_* - \pi f_a|$.

Conditions for Axion Roulette

1.<u>The axion starts to oscillate around or slightly</u> before the level crossing.

$$\frac{H_{\rm osc}}{H_{\rm LC}} = \mathcal{O}\left(1 - 10\right) \qquad \begin{array}{l} \text{No severe tuning} \\ \text{is required.} \end{array}$$

2.<u>The initial oscillation energy is larger than the</u> potential barrier.

$$\rho_{a,\text{osc}} \sim m_{L,\text{osc}}^2 f^2 \gtrsim \Lambda_1^4 \sim m_{H,\text{osc}}^2 F^2.$$

Easily satisfied if there is a mild hierarchy, $f/F \gtrsim 10$.

The KNP mechanism helps the axion roulette to take place. (Here the decay constants are sub-Planckian, and only mild hierarchy needed.)

Conditions for Axion Roulette

1.<u>The axion starts to oscillate around or slightly</u> before the level crossing.

$$\frac{H_{\rm osc}}{H_{\rm LC}} = \mathcal{O}\left(1 - 10\right) \qquad \begin{array}{l} \text{No severe tuning} \\ \text{is required.} \end{array}$$

2.<u>The initial oscillation energy is larger than the</u> potential barrier. $\rho_{a,osc} \sim m_{L,osc}^2 f^2 \gtrsim \Lambda_1^4 \sim m_{H,osc}^2 F^2.$

Easily satisfied if there is a mild hierarchy, $f/F \gtrsim 10$.

The KNP mechanism helps the axion roulette to take place. (Here the decay constants are sub-Planckian, and only mild hierarchy needed.)

Conditions for Axion Roulette

1.<u>The axion starts to oscillate around or slightly</u> before the level crossing.

$$\frac{H_{\rm osc}}{H_{\rm LC}} = \mathcal{O}\left(1 - 10\right) \qquad \begin{array}{l} \text{No severe tuning} \\ \text{is required.} \end{array}$$

2.<u>The initial oscillation energy is larger than the</u> potential barrier. $\rho_{a,osc} \sim m_{L,osc}^2 \gtrsim \Lambda_1^4 \sim m_{H,osc}^2 F^2.$

Easily satisfied if there is a mild hierarchy, $f/F \gtrsim 10$.

The KNP mechanism helps the axion roulette to take place. (Here the decay constants are sub-Planckian, and only mild hierarchy needed.)

Resonant transition

 If the (lighter) axion starts to oscillate <u>much before</u> the level crossing, the potential changes adiabatically.

•

•

Resonant transition takes place. (cf. the MSW effect)

 $N_{\text{axion}} = a^3 n_{\text{axion}}$: adiabatic invariant.

- The final axion density suppressed by m∟/m_H.
- Isocurvature perturbations can be suppressed if the adiabaticity is weakly broken by the hilltop initial condition.

No domain wall formation.

Fate of Axion Domain Walls

Domain walls are cosmologically problematic and they must be either inflated away or unstable and decay rapidly.

• Case of $N_{DW} = 1$

DWs are cosmologically stable, as they are <u>not</u> bounded by strings. Must be inflated away.

cf. Preskill, Trivedi, Wilczek `91

Case of N_{DW} >1

The DWs are unstable and collapse if there is energy bias between the vacua.

Fate of Axion Domain Walls

Domain walls are cosmologically problematic and they must be either inflated away or unstable and decay rapidly.

 $\cdot \quad \underline{\text{Case of } N_{DW} = 1}$

DWs are cosmologically stable, as they are <u>not</u> bounded by strings. Must be inflated away.

cf. Preskill, Trivedi, Wilczek `91

Case of N_{DW} >1

The DWs are unstable and collapse if there is energy bias between the vacua.

Hiramatsu et al `10

Daido, Kitajima, FT, 1504.07917

The passage of a wall generates a non-zero chemical potential: <u>e.g.</u>

cf. spontaneous baryogenesis

Cohen and Kaplan, `87, `88 Dine et al, `91, Cohen, Kaplan, Nelson `91

(Figure courtesy of Kitajima)

 $\langle \dot{a}
angle = 0$ in the scaling regime. $\langle \dot{a}
angle
eq 0$ during the DW annihilation.

Non-zero asymmetry is induced <u>at the DW annihilation</u> in the presence of the baryon- or lepton-number violation.

e.g.
$$\Delta L = 2$$
 $\mathcal{L} = \frac{\ell H \ell H}{2M}$

$$\Gamma_{\Delta L=2} \sim \frac{T^3}{\pi^3} \frac{\sum m_{\nu}^2}{v_{\rm EW}^4},$$

 $T_{\rm dec} \sim 10^{13} \,{\rm GeV}$

Daido, Kitajima, FT, 1504.07917

Daido, Kitajima, FT, 1504.07917

✓ Baryonic isocurvature perturbations are generated if the axion is in the slow-roll regime. Turner, Cohen, Kaplan `89

e.g. $H_{\rm inf} \lesssim 10^{11} \, {\rm GeV}, \ T_R \gtrsim 10^{12} \, {\rm GeV}$

cf. Kusenko, Schmitz, Yanagida, 1412.2043 "Leptogenesis via axion oscillations after inflation"

✓ Isocurvature perturbations are suppressed in our scenario because of <u>the scaling behavior of DWs</u>. The tension between H_{inf} and T_R is relaxed.

The SM near-criticality

The SM vacua is at the border between stability and meta-stability. Why??

The SM near-criticality

At the border, there is another minimum at around the Planck scale, which has the same energy as the EW vacuum.

cf. "Multiple point criticality principle" Bennett, Nielsen `94 Froggatt, Nielsen `96

- There should be several degenerate vacua in energy.

See 1212.5716 for arguments based on non-locality and various apps.

Topological Higgs Inflation

Hamada, Oda, FT 1408.5556

Domain walls connecting the EW and Planck scale vacua.

Inflation occurs inside domain walls if they are sufficiently Linde `94, Vilenkin `94 thick:

$$v_{Planck} \gtrsim a \text{ few } M_P$$

The non-minimal coupling to gravity $\xi = \mathcal{O}(0.1 - 10)$ helps to satisfy this bound.

The SM criticality may be related to the topologicalHiggs inflation.N.B. Another inflation needed to generate $\delta \sim 10^{-5}$

Topological Higgs Inflation

Hamada, Oda, FT 1408.5556

Domain walls connecting the EW and Planck scale vacua.

Inflation occurs inside domain walls if they are sufficiently Linde `94, Vilenkin `94 thick:

$$v_{Planck} \gtrsim a \text{ few } M_P$$

The non-minimal coupling to gravity $\xi = \mathcal{O}(0.1 - 10)$ helps to satisfy this bound.

The SM criticality may be related to the topologicalHiggs inflation.N.B. Another inflation needed to generate $\delta \sim 10^{-5}$

Uplifting by new physics

 Negative effective potential may be lifted by new physics effects above a certain scale.

Domain walls in the Higgs potential

 Domain walls can be formed if the two vacua are (quasi)-degenerate.

Domain walls in the Higgs potential

· Unstable domain walls annihilate, generating GWs.

Domain walls in the Higgs potential

· Unstable domain walls annihilate, generating GWs.

Bias energy density

Position of the false vacuum

Summary

✓ The axion domain walls are formed during the levelcrossing phenomenon. "Axion Roulette"

 \cdot If N_{DW} = 1, stable DWs.

- ·If $N_{DW} > 1$, DWs decay if there is bias.
- -DW annihilation induces gravitational waves.
- -Axion DW can generate <u>baryon asymmetry</u>.

✓ Topological Higgs inflation may be the origin of the SM criticality.

✓ Higgs DWs can generate gravitational waves within the reach of Advanced LIGO.

Back-ups

Daido, Kitajima, FT, 1504.07917

Daido, Kitajima, FT, 1504.07917

