Gauge groups and matter in generic F-theory models

String Pheno 2015 Madrid, Spain

June 11, 2015

Washington (Wati) Taylor, MIT

Based on work with L. Anderson, A. Grassi, T. Grimm, J. Halverson, S. Johnson, D. Morrison, J. Shaneson, and Y. Wang, particularly:

arXiv: 1201.1943, 1204.0283, 1412.6112

arXiv: 1409.8295

arXiv: 1506.nnnnn

arXiv: 150m.nnnnn

D. Morrison, WT

A. Grassi, J. Halverson, J. Shaneson, WT

J. Halverson, WT

WT, Y. Wang

Most Work:

- Consider a specific class of string constructions
- Figure out what kinds of gadgets give gauge fields, matter, etc.
- Try to "engineer" string vacua with desirable features.
- Tuning is expensive (cf. Watari talk)

This talk: top-down approach, "Follow the theory"

- Consider the full space of F-theory constructions (cf Klevers, Schäfer-Nameki, ... talks)
- Identify "generic" features
- See how SM, dark matter can arise in this framework

Result: perhaps surprising how much we might get "for free," in generic/typical F-theory vacua. Structure interesting in any case.

Most Work:

- Consider a specific class of string constructions
- Figure out what kinds of gadgets give gauge fields, matter, etc.
- Try to "engineer" string vacua with desirable features.
- Tuning is expensive (cf. Watari talk)

This talk: top-down approach, "Follow the theory"

- Consider the full space of F-theory constructions (cf Klevers, Schäfer-Nameki, . . . talks)
- Identify "generic" features
- See how SM, dark matter can arise in this framework

Result: perhaps surprising how much we might get "for free," in generic/typical F-theory vacua. Structure interesting in any case.

Most Work:

- Consider a specific class of string constructions
- Figure out what kinds of gadgets give gauge fields, matter, etc.
- Try to "engineer" string vacua with desirable features.
- Tuning is expensive (cf. Watari talk)

This talk: top-down approach, "Follow the theory"

- Consider the full space of F-theory constructions (cf Klevers, Schäfer-Nameki, ...talks)
- Identify "generic" features
- See how SM, dark matter can arise in this framework

Result: perhaps surprising how much we might get "for free," in generic/typical F-theory vacua. Structure interesting in any ca

Most Work:

- Consider a specific class of string constructions
- Figure out what kinds of gadgets give gauge fields, matter, etc.
- Try to "engineer" string vacua with desirable features.
- Tuning is expensive (cf. Watari talk)

This talk: top-down approach, "Follow the theory"

- Consider the full space of F-theory constructions (cf Klevers, Schäfer-Nameki, ...talks)
- Identify "generic" features
- See how SM, dark matter can arise in this framework

Result: perhaps surprising how much we might get "for free," in generic/typical F-theory vacua. Structure interesting in any case.

Requires an *elliptically fibered* Calabi-Yau X

$$\pi: X \to B$$
 (B curved), fiber $\pi^{-1}(p) \cong T^2$

Geometry of $B_2, B_3 \longrightarrow 6D$, 4D supergravity.

To construct an F-theory model:

- 1. Choose base B
- 2. Choose point in CS moduli space (Weierstrass model $y^2 = x^3 + fx + g$ encodes IIB $\tau = \chi + ie^{-\phi}$ as fun. on *B*.

A theme of this talk & much research over last five years: Focusing on geometry of $B \rightarrow$ simplifications and insight

Primary goals/results

- A) Classifying and enumerating elliptic Calabi-Yau threefolds and fourfolds
- B) Generic features of $\mathcal{N} = 1$ F-theory vacua in 6D and in 4D

Requires an *elliptically fibered* Calabi-Yau X

$$\pi: X \to B$$
 (*B* curved), fiber $\pi^{-1}(p) \cong T^2$

Geometry of $B_2, B_3 \longrightarrow 6D$, 4D supergravity.

To construct an F-theory model:

- 1. Choose base B
- 2. Choose point in CS moduli space (Weierstrass model $y^2 = x^3 + fx + g$ encodes IIB $\tau = \chi + ie^{-\phi}$ as fun. on *B*.

A theme of this talk & much research over last five years Focusing on geometry of $B \rightarrow$ simplifications and insight

Primary goals/results

- A) Classifying and enumerating elliptic Calabi-Yau threefolds and fourfolds
- B) Generic features of $\mathcal{N} = 1$ F-theory vacua in 6D and in 4D

Requires an *elliptically fibered* Calabi-Yau X

$$\pi: X \to B$$
 (B curved), fiber $\pi^{-1}(p) \cong T^2$

Geometry of $B_2, B_3 \longrightarrow 6D$, 4D supergravity.

To construct an F-theory model:

- 1. Choose base B
- 2. Choose point in CS moduli space (Weierstrass model $y^2 = x^3 + fx + g$ encodes IIB $\tau = \chi + ie^{-\phi}$ as fun. on *B*.

A theme of this talk & much research over last five years: Focusing on geometry of $B \rightarrow$ simplifications and insight

Primary goals/results

- A) Classifying and enumerating elliptic Calabi-Yau threefolds and fourfolds
- B) Generic features of $\mathcal{N} = 1$ F-theory vacua in 6D and in 4D

Requires an *elliptically fibered* Calabi-Yau X

$$\pi: X \to B$$
 (B curved), fiber $\pi^{-1}(p) \cong T^2$

Geometry of $B_2, B_3 \longrightarrow 6D$, 4D supergravity.

To construct an F-theory model:

- 1. Choose base B
- 2. Choose point in CS moduli space (Weierstrass model $y^2 = x^3 + fx + g$ encodes IIB $\tau = \chi + ie^{-\phi}$ as fun. on *B*.

A theme of this talk & much research over last five years: Focusing on geometry of $B \rightarrow$ simplifications and insight

Primary goals/results:

- A) Classifying and enumerating elliptic Calabi-Yau threefolds and fourfolds
- B) Generic features of $\mathcal{N} = 1$ F-theory vacua in 6D and in 4D

Two distinct aspects:

- I. Generic features of vacua with fixed B
- II. Features present for "most" B's
- 6D: Finite number of B's, fairly clear global picture
 - \rightarrow almost all B's have "non-Higgsable clusters," certain typical G's
- 4D: Picture emerging, *surprisingly parallel to 6D picture* but more complicated technically.

Many open questions for theory/pneno

Two distinct aspects:

I. Generic features of vacua with fixed B

i.e., features for arbitrary Weierstrass moduli ("non-Higgsable structure")

II. Features present for "most" B's

6D: Finite number of B's, fairly clear global picture

 \rightarrow almost all B's have "non-Higgsable clusters," certain typical G's

4D: Picture emerging, *surprisingly parallel to 6D picture* but more complicated technically.

Many open questions for theory/pheno

Two distinct aspects:

- I. Generic features of vacua with fixed B
- i.e., features for arbitrary Weierstrass moduli ("non-Higgsable structure")
- II. Features present for "most" B's
- 6D: Finite number of B's, fairly clear global picture
 - \rightarrow almost all B's have "non-Higgsable clusters," certain typical G's
- 4D: Picture emerging, *surprisingly parallel to 6D picture* but more complicated technically.

Many open questions for theory/pheno

Two distinct aspects:

- I. Generic features of vacua with fixed B
- i.e., features for arbitrary Weierstrass moduli ("non-Higgsable structure")
- II. Features present for "most" B's
- 6D: Finite number of B's, fairly clear global picture
 - \rightarrow almost all B's have "non-Higgsable clusters," certain typical G's
- 4D: Picture emerging, *surprisingly parallel to 6D picture* but more complicated technically.

Many open questions for theory/pheno

I. Non-Higgsable clusters in 6D

Gauge groups in F-theory:

```
7-branes on curve (divisor) S_i

\rightarrow gauge factor G_i

Singularity type: ord<sub>S<sub>i</sub></sub>f, g in Weierstras
```

For certain B_2 , G nontrivial \forall moduli

Example:

```
F-theory on \mathbb{F}_3 \leftrightarrow heterotic E_8 \times E_8 on K3 w/ (15, 9) instantons \Rightarrow SU(3) with no matter (non-Higgsable)
```

- In other cases, non-Higgsable matter (e.g. E_7 w/ $\frac{1}{2}$ 56) Can't Higgs: can't satisfy D-term constraints
- When no smooth heterotic dual, ∃ non-Higgsable product groups w/ matter =

I. Non-Higgsable clusters in 6D

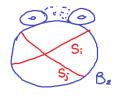
Gauge groups in F-theory:

7-branes on curve (divisor) S_i

 \rightarrow gauge factor G_i

Singularity type: $\operatorname{ord}_{S_i} f, g$ in Weierstrass

For certain B_2 , G nontrivial \forall moduli



Example

F-theory on $\mathbb{F}_3 \leftrightarrow$ heterotic $E_8 \times E_8$ on K3 w/ (15, 9) instantons $\Rightarrow SU(3)$ with no matter (non-Higgsable)

- In other cases, non-Higgsable matter (e.g. E_7 w/ $\frac{1}{2}$ 56) Can't Higgs: can't satisfy D-term constraints
- \bullet When no smooth heterotic dual, \exists non-Higgsable product groups $\underline{\underline{}} \underline{w} /$ matter $\underline{\underline{}}$

I. Non-Higgsable clusters in 6D

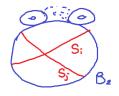
Gauge groups in F-theory:

7-branes on curve (divisor) S_i

 \rightarrow gauge factor G_i

Singularity type: $\operatorname{ord}_{S_i} f, g$ in Weierstrass

For certain B_2 , G nontrivial \forall moduli



Example:

F-theory on $\mathbb{F}_3 \leftrightarrow$ heterotic $E_8 \times E_8$ on K3 w/ (15, 9) instantons $\Rightarrow SU(3)$ with no matter (non-Higgsable)

- In other cases, non-Higgsable matter (e.g. E_7 w/ $\frac{1}{2}$ 56) Can't Higgs: can't satisfy D-term constraints
- \bullet When no smooth heterotic dual, \exists non-Higgsable product groups w/ matter $\underline{\bullet}$

I. Non-Higgsable clusters in 6D

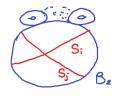
Gauge groups in F-theory:

7-branes on curve (divisor) S_i

 \rightarrow gauge factor G_i

Singularity type: $\operatorname{ord}_{S_i} f, g$ in Weierstrass

For certain B_2 , G nontrivial \forall moduli



Example:

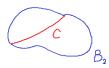
F-theory on $\mathbb{F}_3 \leftrightarrow$ heterotic $E_8 \times E_8$ on K3 w/ (15, 9) instantons $\Rightarrow SU(3)$ with no matter (non-Higgsable)

- In other cases, non-Higgsable matter (e.g. E_7 w/ $\frac{1}{2}$ **56**) Can't Higgs: can't satisfy D-term constraints
- When no smooth heterotic dual, ∃ non-Higgsable product groups w/ matter ■

Geometry of non-Higgsable groups

The base B_2 is a complex surface.

Contains complex curves C_i



For $C \cong \mathbb{P}^1 \cong S^2$, local geometry encoded by *normal bundle O(m* mencodes self-intersection of curve C

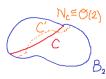
If $N_C \cong \mathcal{O}(-n)$, n > 0, C is *rigid* (no deformations)

For $\mathcal{O}(-n)$, n > 2, base space is so curved that 7-branes must pile up to preserve Calabi-Yau structure on total space \Rightarrow non-Higgsable gauge group

Geometry of non-Higgsable groups

The base B_2 is a complex surface.

Contains complex curves C_i



For $C \cong \mathbb{P}^1 \cong S^2$, local geometry encoded by *normal bundle* $\mathcal{O}(m)$

m encodes self-intersection of curve C

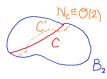
If $N_C \cong \mathcal{O}(-n), n > 0, C$ is *rigid* (no deformations)

For $\mathcal{O}(-n)$, n > 2, base space is so curved that 7-branes must pile up to preserve Calabi-Yau structure on total space \Rightarrow non-Higgsable gauge group

Geometry of non-Higgsable groups

The base B_2 is a complex surface.

Contains complex curves C_i



For $C \cong \mathbb{P}^1 \cong S^2$, local geometry encoded by *normal bundle* $\mathcal{O}(m)$

m encodes self-intersection of curve C

If $N_C \cong \mathcal{O}(-n)$, n > 0, C is *rigid* (no deformations)

For $\mathcal{O}(-n)$, n > 2, base space is so curved that 7-branes must pile up to preserve Calabi-Yau structure on total space \Rightarrow non-Higgsable gauge group

Classification of 6D "Non-Higgsable Clusters" (NHC's) [Morrison/WT]

Clusters of curves imposing generic nontrivial codimension one singularities:

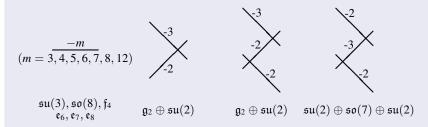
$$(m=3,\overline{4,5,6,7},8,12) \\ \mathfrak{su}(3),\mathfrak{so}(8),\mathfrak{f}_4 \\ \mathfrak{g}_6,\mathfrak{e}_7,\mathfrak{e}_8 \\ \mathfrak{g}_2\oplus\mathfrak{su}(2) \\ \mathfrak{g}_2\oplus\mathfrak{su}(2) \\ \mathfrak{su}(2)\oplus\mathfrak{so}(7)\oplus\mathfrak{su}(2)$$

- Identified using Zariski decomposition $-nK = \sum_i q_i C_i + X$
- Any other combination including -3 or below \Rightarrow (4, 6) at point/curve

NHC's useful in classification of compact (SUGRA) F-theory models (next) and 6D SCFTs [Heckman/Morrison/Vafa,+ del Zotto, Park, Rudelius,...]

Classification of 6D "Non-Higgsable Clusters" (NHC's) [Morrison/WT]

Clusters of curves imposing generic nontrivial codimension one singularities:



- Identified using *Zariski decomposition* $-nK = \sum_{i} q_i C_i + X$
- Any other combination including -3 or below \Rightarrow (4, 6) at point/curve

NHC's useful in classification of compact (SUGRA) F-theory models (next) and 6D SCFTs [Heckman/Morrison/Vafa,+ del Zotto, Park, Rudelius,...]

6D II. Classification/enumeration of elliptic Calabi-Yau threefolds

Gross: ∃ finite number of topologically distinct elliptic CY threefolds (up to birational equivalence)

Mathematical minimal model program to classify surfaces:

- 1. Given surface S, find -1 curve C ($C \cdot C = -1$), blow down $\rightarrow S'$
- 2. Repeat until done \Rightarrow minimal surface

Grassi: minimal surfaces for B_2 bases:

$$\mathbb{P}^2$$
, $\mathbb{F}_m(m \le 12)$, Enriques ($-K \sim \text{trivial}$)

Program: start with $\mathbb{P}^2, \mathbb{F}_m$, blow up to get all bases B_2 , constrained by NHC's

6D II. Classification/enumeration of elliptic Calabi-Yau threefolds

Gross: ∃ finite number of topologically distinct elliptic CY threefolds (up to birational equivalence)

Mathematical minimal model program to classify surfaces:

- 1. Given surface S, find -1 curve C ($C \cdot C = -1$), blow down $\rightarrow S'$
- 2. Repeat until done \Rightarrow minimal surface

Grassi: minimal surfaces for B_2 bases: \mathbb{P}^2 , $\mathbb{F}_m(m \le 12)$, Enriques ($-K \sim \text{trivial}$)

Program: start with \mathbb{P}^2 , \mathbb{F}_m , blow up to get all bases B_2 , constrained by NHC's

6D II. Classification/enumeration of elliptic Calabi-Yau threefolds

Gross: ∃ finite number of topologically distinct elliptic CY threefolds (up to birational equivalence)

Mathematical minimal model program to classify surfaces:

- 1. Given surface S, find -1 curve C ($C \cdot C = -1$), blow down $\rightarrow S'$
- 2. Repeat until done \Rightarrow minimal surface

Grassi: minimal surfaces for B_2 bases:

$$\mathbb{P}^2$$
, $\mathbb{F}_m(m \le 12)$, Enriques ($-K \sim \text{trivial}$)

Program: start with \mathbb{P}^2 , \mathbb{F}_m , blow up to get all bases B_2 , constrained by NHC's

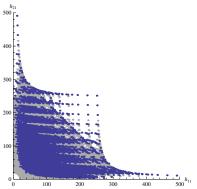


Given bases, tune Weierstrass → all elliptic CY3's, all 6D F-theory models

Found all toric B_2

Generic EF Hodge #'s

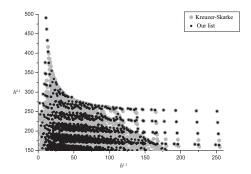
[Morrison/WT, WT]



- 61,539 toric bases (some not strictly toric: -9, -10, -11 curves)
- Reproduces large subset of Kreuzer-Skarke database of CY3 Hodge #'s Boundary of "shield" from generic elliptic fibrations over blowups of F₁₂.
- In principle: start with \mathbb{F}_m , \mathbb{P}^2 , blow up/tune $\to all$ EF CY3's

Beyond toric: approach allows construction of general (non-toric) bases

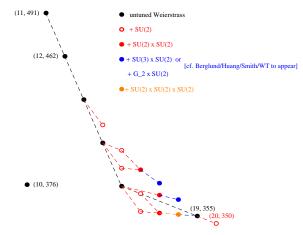
- Computed all 162, 404 "semi-toric" bases w/ 1 ℂ*-structure [Martini/WT]
- All bases for EF CY threefolds w/ $h^{2,1}(X) \ge 150$ [WT/Wang]



Technical issues at large $h^{1,1}(X)$, small $h^{2,1}(X)$: Infinite generators for cone, Multiply intersecting -1 curves

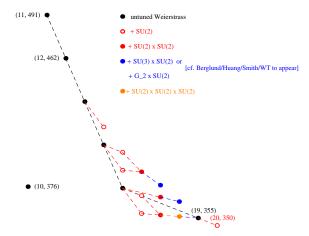
Upshot: modest expansion of possibilities beyond toric, semi-toric

EF CY3's with $h^{2,1} \ge 350$, \mathbb{F}_m + tuning \to complete classification [Johnson/WT]



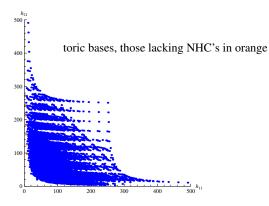
- Matches KS; non-toric + toric at (19, 355); new non-toric below 350
- Empirical data on Calabi-Yau's suggests: "most" (known) CY's are elliptic, particularly at large Hodge numbers (cf. [Gray/Haupt/Lukas])

EF CY3's with $h^{2,1} \ge 350$, \mathbb{F}_m + tuning \to complete classification [Johnson/WT]



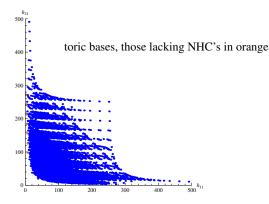
- Matches KS; non-toric + toric at (19, 355); new non-toric below 350
- Empirical data on Calabi-Yau's suggests: "most" (known) CY's are elliptic, particularly at large Hodge numbers (cf. [Gray/Haupt/Lukas])

"Most" bases B2 have NHC's



The only bases B_2 that lack NHC's are weak Fano = (generalized) del Pezzo Ten corresponding Hodge pairs $(2 + T, 272 - 29T), T = 0, \dots, 9$

"Most" bases B_2 have NHC's



The only bases B_2 that lack NHC's are weak Fano = (generalized) del Pezzo Ten corresponding Hodge pairs $(2+T,272-29T), T=0,\ldots,9$

Physics of a "typical" 6D SUSY F-theory compactification

 $T \sim 25$, rank $G \sim 35$,

$$G \sim (G_2 \times SU(2))^3 \times E_8^2 \times F_4 \times SU(3) \times SO(8)$$

Non-Higgsable gauge groups are "generic" in two senses:

- -G + matter are non-Higgsable \Rightarrow persist throughout CS moduli space
- Almost all B's have non-Higgsable G, matter.
 No tuning necessary

Physics of a "typical" 6D SUSY F-theory compactification

 $T \sim 25$, rank $G \sim 35$,

$$G \sim (G_2 \times SU(2))^3 \times E_8^2 \times F_4 \times SU(3) \times SO(8)$$

Non-Higgsable gauge groups are "generic" in two senses:

- -G + matter are non-Higgsable \Rightarrow persist throughout CS moduli space
- Almost all B's have non-Higgsable G, matter.
 No tuning necessary

Physics of a "typical" 6D SUSY F-theory compactification

 $T \sim 25$, rank $G \sim 35$,

$$G \sim (G_2 \times SU(2))^3 \times E_8^2 \times F_4 \times SU(3) \times SO(8)$$

Non-Higgsable gauge groups are "generic" in two senses:

- -G + matter are non-Higgsable \Rightarrow persist throughout CS moduli space
- Almost all B's have non-Higgsable G, matter.
 No tuning necessary

Physics of a "typical" 6D SUSY F-theory compactification

 $T \sim 25$, rank $G \sim 35$,

$$G \sim (G_2 \times SU(2))^3 \times E_8^2 \times F_4 \times SU(3) \times SO(8)$$

Non-Higgsable gauge groups are "generic" in two senses:

- -G + matter are non-Higgsable \Rightarrow persist throughout CS moduli space
- Almost all B's have non-Higgsable G, matter.
 No tuning necessary

4D F-theory compactifications

Story parallel in many ways:

- Compactify on Calabi-Yau fourfold, base B_3 = complex threefold
- Underlying moduli space of EF CY fourfolds on rational $B_3 \sim \{\text{EFCY3's}\}$

But:

- G-flux ⇒ superpotential, lifts flat directions
- Brane worldvolume DOF nontrivial ⇒ can e.g. break gauge group
- F-theory only covers part of $\mathcal{N}=1$ theory space

Today: focus on underlying fourfold geometry, geometric non-Higgsable

4D F-theory compactifications

Story parallel in many ways:

- Compactify on Calabi-Yau fourfold, base B_3 = complex threefold
- Underlying moduli space of EF CY fourfolds on rational $B_3 \sim \{\text{EFCY3's}\}\$

But:

- -G-flux \Rightarrow superpotential, lifts flat directions
- Brane worldvolume DOF nontrivial ⇒ can e.g. break gauge group
- F-theory only covers part of $\mathcal{N}=1$ theory space

Today: focus on underlying fourfold geometry, geometric non-Higgsable structure

4D F-theory compactifications

Story parallel in many ways:

- Compactify on Calabi-Yau fourfold, base B_3 = complex threefold
- Underlying moduli space of EF CY fourfolds on rational $B_3 \sim \{\text{EFCY3's}\}\$

But:

- -G-flux \Rightarrow superpotential, lifts flat directions
- Brane worldvolume DOF nontrivial ⇒ can e.g. break gauge group
- F-theory only covers part of $\mathcal{N}=1$ theory space

Today: focus on underlying fourfold geometry, geometric non-Higgsable structure

4D non-Higgsable clusters [Morrison/WT]

(see also: Anderson/WT, Grassi/Halverson/Shaneson/WT)

At level of geometry, similar to 6D but more complicated

Toric bases: straightforward to compute using dual monomials to rays v_i

$$f,g \in \operatorname{span} \{m : \langle m, v_i \rangle \ge -4, -6\}$$

Generally: 7-branes wrap divisors = surfaces S. Orders of vanishing of f, g depend on normal bundle N_S .

Expanding in coordinate $z, S = \{z = 0\},\$

$$f = f_0 + f_1 z + f_2 z^2 + \cdots$$

Up to leading non-vanishing term,

$$f_k \in \mathcal{O}(-4K_S + (4-k)N_S)$$

4D non-Higgsable clusters [Morrison/WT]

(see also: Anderson/WT, Grassi/Halverson/Shaneson/WT)

At level of geometry, similar to 6D but more complicated

Toric bases: straightforward to compute using dual monomials to rays v_i

$$f, g \in \operatorname{span} \{m : \langle m, v_i \rangle \ge -4, -6\}$$

Generally: 7-branes wrap divisors = surfaces S. Orders of vanishing of f, g depend on normal bundle N_S .

Expanding in coordinate $z, S = \{z = 0\},\$

$$f = f_0 + f_1 z + f_2 z^2 + \cdots$$

Up to leading non-vanishing term,

$$f_k \in \mathcal{O}(-4K_S + (4-k)N_S)$$

$$g_k \in \mathcal{O}(-6K_S + (6-k)N_S)$$

Can do computations using geometry of surfaces

Take
$$S = \mathbb{P}^2$$
, $-K_S = 3H$, $N = -4H \Rightarrow SU(2)$ on S

For global model, consider \mathbb{P}^1 bundle over $S = \mathbb{P}^2$, "twist" = -4HThreefold $\tilde{\mathbb{F}}_4$, 3D analogue of Hirzebruch surfaces

Single group clusters:
$$SU(2), SU(3), G_2, SO(7), SO(8), F_4, E_6, E_7, E_8$$

In particular, cannot have: non-Higgsable SU(5), SO(10)

Two-factor non-Higgsable group products

$$G_2 \times SU(2), \quad SO(7) \times SU(2), \quad SU(2) \times SU(2),$$

 $SU(3) \times SU(2), \quad SU(3) \times SU(3)$

Take
$$S = \mathbb{P}^2$$
, $-K_S = 3H$, $N = -4H \Rightarrow SU(2)$ on S

For global model, consider \mathbb{P}^1 bundle over $S = \mathbb{P}^2$, "twist" = -4HThreefold $\tilde{\mathbb{F}}_4$, 3D analogue of Hirzebruch surfaces

Single group clusters:
$$SU(2), SU(3), G_2, SO(7), SO(8), F_4, E_6, E_7, E_8$$

In particular, cannot have: non-Higgsable SU(5), SO(10)

Two-factor non-Higgsable group products

$$G_2 \times SU(2), \quad SO(7) \times SU(2), \quad SU(2) \times SU(2),$$

 $SU(3) \times SU(2), \quad SU(3) \times SU(3)$

Take
$$S = \mathbb{P}^2$$
, $-K_S = 3H$, $N = -4H \Rightarrow SU(2)$ on S

For global model, consider \mathbb{P}^1 bundle over $S = \mathbb{P}^2$, "twist" = -4HThreefold $\tilde{\mathbb{F}}_4$, 3D analogue of Hirzebruch surfaces

Single group clusters:
$$SU(2), SU(3), G_2, SO(7), SO(8), F_4, E_6, E_7, E_8$$

In particular, cannot have: non-Higgsable SU(5), SO(10)

Two-factor non-Higgsable group products

$$G_2 \times SU(2), \quad SO(7) \times SU(2), \quad SU(2) \times SU(2),$$

 $SU(3) \times SU(2), \quad SU(3) \times SU(3)$

Take
$$S = \mathbb{P}^2$$
, $-K_S = 3H$, $N = -4H \Rightarrow SU(2)$ on S

For global model, consider \mathbb{P}^1 bundle over $S = \mathbb{P}^2$, "twist" = -4HThreefold $\tilde{\mathbb{F}}_4$, 3D analogue of Hirzebruch surfaces

Single group clusters:
$$SU(2)$$
, $SU(3)$, G_2 , $SO(7)$, $SO(8)$, F_4 , E_6 , E_7 , E_8

In particular, cannot have: non-Higgsable SU(5), SO(10)

Two-factor non-Higgsable group products

$$G_2 \times SU(2), \quad SO(7) \times SU(2), \quad SU(2) \times SU(2),$$

 $SU(3) \times SU(2), \quad SU(3) \times SU(3)$

4D: clusters can have complicated structure

Basic issue:

On curve, all points homologous

On surface, many distinct curves

Can support independent matter

5: cix cj

Branching

Unlike in 6D, cluster structure can have branching in "quiver diagram"

e.g. (higher branchings also possible)

4D: clusters can have complicated structure

Basic issue:

On curve, all points homologous

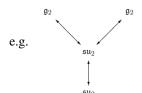
On surface, many distinct curves

Can support independent matter

5: cix cj

Branching

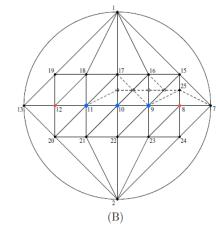
Unlike in 6D, cluster structure can have branching in "quiver diagram"



(higher branchings also possible)

Clusters can also have long chains

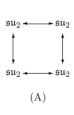
$$\mathfrak{su}_2 \longleftrightarrow \mathfrak{su}_3 \longleftrightarrow \mathfrak{su}_3 \longleftrightarrow \mathfrak{su}_3 \longleftrightarrow \mathfrak{su}_2$$
(A)

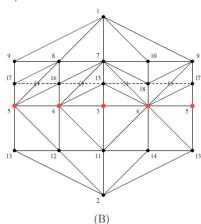


Similar for $\mathbb{F}_8: SU(2) \times SU(3)^{11} \times SU(2)$

And closed loops

Multiple blowup of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \Rightarrow$

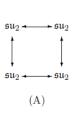


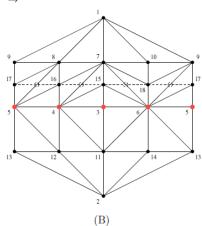


Upshot: local structure restricted (9 groups, 5 products), but global structure can be very complex

And closed loops

Multiple blowup of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \Rightarrow$





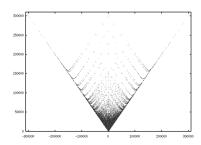
Upshot: local structure restricted (9 groups, 5 products), but global structure can be very complex

Classification of elliptic Calabi-Yau fourfolds

Harder than threefolds → Mori theory. No proofs, some exploration:

w/Halverson: \mathbb{P}^1 bundles over toric bases B_2

w/Wang: Monte Carlo exploration by blowing up/down toric bases Structure seems closely analogous to EF CY threefolds



[Lynker, Schimmrigk, Wisskirchen] Hypersurfaces in weighted \mathbb{P}^5 (1998)

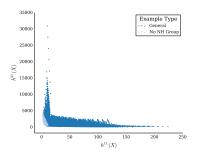
"minimal models" $\sim \mathbb{F}_m$ but more complex

Blow up curves, points: $h^{3,1} \downarrow h^{1,1} \uparrow$

Generic EF CY 4: Lots of *G*, matter at level of geometry Exploring threefold bases B_3 : \mathbb{P}^1 bundles [Halverson/WT, to appear]

Consider $B_3 = \mathbb{P}^1$ bundle over a surface S.

Characterized by "twist" $T = \text{normal bundle of section } \cong S$.



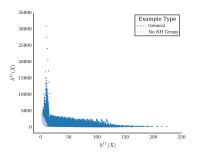
- Enumerated $\sim 100,000$ distinct B_3 for toric B_2
- Each represents distinct divisor S + N geometry
 - → Exploration of generic fourfolds and of local geometry

Smooth heterotic dual when S = generalized del Pezzo [Anderson/WT]

Exploring threefold bases B_3 : \mathbb{P}^1 bundles [Halverson/WT, to appear]

Consider $B_3 = \mathbb{P}^1$ bundle over a surface S.

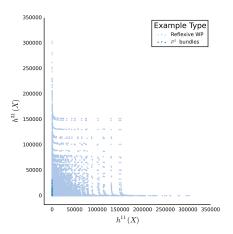
Characterized by "twist" $T = \text{normal bundle of section } \cong S$.



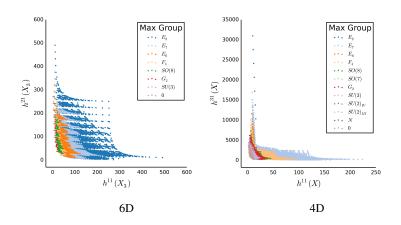
- Enumerated $\sim 100,000$ distinct B_3 for toric B_2
- Each represents distinct divisor S + N geometry
 - → Exploration of generic fourfolds and of local geometry

Smooth heterotic dual when S = generalized del Pezzo [Anderson/WT]

Fits into set of known fourfolds



Similar pattern of non-Higgsable groups to 6D

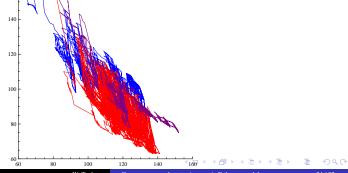


Note: dropped bundles in 4D with E_8 and bad curves, kept in 6D

Exploring threefold bases B_3 : Monte Carlo [Wang/WT, to appear]

Start with e.g. $B_3 = \mathbb{P}^3$, blow up and down randomly (Random walk on graph: samples vertices proportional to incident edges)

Note: does not connect to all bases, need singular intermediaries but expect as in 6D, may give decent sampling of bulk Average rank of NHC $\sim50\,$



Some statistics

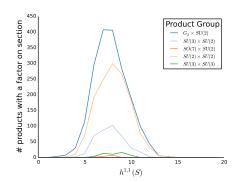
	\mathbb{P}^1 bundles	\mathbb{P}^1 bdl. S_{\pm}	Monte Carlo
SU(2)	0.44	0.35	0.47
G_2	0.23	0.18	0.31
F_4	0.16	0.17	0.09
SU(3)	0.005	0.04	0.11
<i>SO</i> (8)	0.008	0.04	0.01
E_7	0.10	0.11	0.01

Frequency of single non-Higgsable factors

Statistics are very rough. Systematic issues with each, only covering subsets

Statistics on two-group product factors

Statistics of products in \mathbb{P}^1 -bundles, using section



Monte Carlo frequency of two-group product factors:

$$G_2 \times SU(2) : 54\%$$
 $SU(2) \times SU(2) : 30\%$
 $SU(3) \times SU(2) : 8\%$ $SU(3) \times SU(3) : 7\%$

Realizing the standard model in F-theory

Ignoring the outstanding issues of G-flux and seven-brane DOF, what are the options for realizing $G = SU(3) \times SU(2) \times U(1)$?

- 1. Tune the whole thing but not on divisors with NHC's (F-theory GUT e.g. [Donagi/Wijnholt, Beasley/Heckman/Vafa]
- 2. Tune part of G, get part from NHC; e.g. NH SU(3), tune $SU(2) \times U(1)$
- 3. Get all of G from non-Higgsable structure

$$NHC \Rightarrow SU(3) \times SU(2)$$
 reasonably common, $\sim 8\%$ of $G_1 \times G_2$ in MC study

 $NHC \Rightarrow U(1)$ open question (some NH U(1)'s in 6D [Martini/WT])

 $SU(3) \times SU(2)$ spectrum matches SM well, given U(1), no anomalies [U(1): cf. Schäfer-Nameki, Klevers talks]

Unification

- SU(5), SO(10) cannot appear as NHC's. Can't enhance NHC $\rightarrow SU(5)$
- E_6, \ldots possible for NHC's, could break e.g. from fluxes on branes $\rightarrow \leftarrow$

Realizing the standard model in F-theory

Ignoring the outstanding issues of G-flux and seven-brane DOF, what are the options for realizing $G = SU(3) \times SU(2) \times U(1)$?

- 1. Tune the whole thing but not on divisors with NHC's (F-theory GUT e.g. [Donagi/Wijnholt, Beasley/Heckman/Vafa])
- 2. Tune part of G, get part from NHC; e.g. NH SU(3), tune $SU(2) \times U(1)$
- 3. Get all of G from non-Higgsable structure

$$NHC \Rightarrow SU(3) \times SU(2)$$
 reasonably common, $\sim 8\%$ of $G_1 \times G_2$ in MC study

 $NHC \Rightarrow U(1)$ open question (some NH U(1)'s in 6D [Martini/WT])

 $SU(3) \times SU(2)$ spectrum matches SM well, given U(1), no anomalies [U(1): cf. Schäfer-Nameki, Klevers talks]

Unification

- SU(5), SO(10) cannot appear as NHC's. Can't enhance NHC $\rightarrow SU(5)$
- E_6, \ldots possible for NHC's, could break e.g. from fluxes on branes \longrightarrow \longrightarrow \longrightarrow

Realizing the standard model in F-theory

Ignoring the outstanding issues of G-flux and seven-brane DOF, what are the options for realizing $G = SU(3) \times SU(2) \times U(1)$?

- 1. Tune the whole thing but not on divisors with NHC's (F-theory GUT e.g. [Donagi/Wijnholt, Beasley/Heckman/Vafa])
- 2. Tune part of G, get part from NHC; e.g. NH SU(3), tune $SU(2) \times U(1)$
- 3. Get all of *G* from non-Higgsable structure

$$NHC \Rightarrow SU(3) \times SU(2)$$
 reasonably common, $\sim 8\%$ of $G_1 \times G_2$ in MC study

 $NHC \Rightarrow U(1)$ open question (some NH U(1)'s in 6D [Martini/WT])

 $SU(3) \times SU(2)$ spectrum matches SM well, given U(1), no anomalies [U(1): cf. Schäfer-Nameki, Klevers talks]

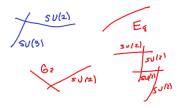
Unification

- SU(5), SO(10) cannot appear as NHC's. Can't enhance NHC $\rightarrow SU(5)$
- E_6, \ldots possible for NHC's, could break e.g. from fluxes on branes.

Dark matter candidates

Two possibilities:

I) "hidden sector" dark matter, e.g. from a disconnected cluster



II) WIMP dark matter (from $SU(2) \times G$, G = SU(2), SU(3), SO(7), SO(8))

Higgsing the non-Higgsable SU(2)?

If SU(2) is in an NHC, non-Higgsable in SUSY theory

Just means stabilized by some mechanism in UV SUSY vacuum

Negative quadratic term can be induced by radiative corrections

Example of how this may occur

SU(2) on divisor S

Matter curve C could support ϕ, H_u, H_d

Superpotential term $W = \phi \epsilon_{ij} H_u^i H_d^j$

F-terms combine with D-terms to stabilize H_u , H_d at quartic order

Higgsing the non-Higgsable SU(2)?

If SU(2) is in an NHC, non-Higgsable in SUSY theory

Just means stabilized by some mechanism in UV SUSY vacuum

Negative quadratic term can be induced by radiative corrections

Example of how this may occur

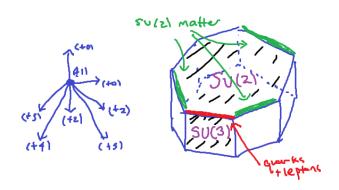
SU(2) on divisor S

Matter curve C could support ϕ , H_u , H_d

Superpotential term $W = \phi \epsilon_{ij} H_u^i H_d^j$

F-terms combine with D-terms to stabilize H_u , H_d at quartic order

Example



Conclusions

- 6D: good control of elliptic CY threefolds, NHC's ubiquitous
- -4D: distribution of NHC's seems similar: bigger groups at larger $h^{1,1}$
- $-SU(3) \times SU(2)$ is one of five two-factor products less frequent than $G_2 \times SU(2)$, but reasonably prevalent
- Scenarios for dark matter, Higgs sector

Generic appearance of gauge groups and matter leads to new physics questions

Can we realize natural phenomenological scenarios with generic gauge/matter?

Natural mechanisms to produce U(1)?

Signals of non-Higgsable dark matter?

How does G-flux and the superpotential interact with non-Higgsable clusters?

Conclusions

- 6D: good control of elliptic CY threefolds, NHC's ubiquitous
- -4D: distribution of NHC's seems similar: bigger groups at larger $h^{1,1}$
- $-SU(3) \times SU(2)$ is one of five two-factor products less frequent than $G_2 \times SU(2)$, but reasonably prevalent
- Scenarios for dark matter, Higgs sector

Generic appearance of gauge groups and matter leads to new physics questions

Can we realize natural phenomenological scenarios with generic gauge/matter?

Natural mechanisms to produce U(1)?

Signals of non-Higgsable dark matter?

How does G-flux and the superpotential interact with non-Higgsable clusters?

Muchas gracias!!