

Backreaction of heavy fields in string-effective inflation models

Clemens Wieck, Deutsches Elektronen-Synchrotron DESY

Madrid, June 11, 2015

Based on 1506.01253 with E. Dudas

Outline

- 1. Inflation in supergravity and stabilizer fields
- 2. Non-perturbative moduli stabilization
- 3. Backreaction of heavy fields
- 4. Examples in Starobinsky-like inflation
- 5. Conclusions

1. Inflation in supergravity and stabilizer fields

Inflation?

- Why is the universe as flat as it is?
- How can the Cosmic Microwave Background (CMB) radiation be so isotropic?
- And where are all those magnetic monopoles?

 \hookrightarrow Cosmic inflation, exponential expansion of space

[Guth '81] [Linde '82]

• Single-field inflation in supergravity described by

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left(\frac{1}{2} R - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) \right)$$

• Impose slow-roll conditions

$$\epsilon = \frac{1}{2} \left(\frac{V'}{V} \right)^2 \ll 1, \qquad \eta = \left| \frac{V''}{V} \right| \ll 1.$$

CMB observables

- Observations useful to constrain supergravity models
- Measure two central quantities,
 - ratio of tensor-to-scalar fluctuations \boldsymbol{r}
 - spectral index of scalar fluctuations $n_{\rm s}$

$$ightarrow$$
 Planck: $n_{
m s} pprox 0.96$, $r < 0.1$ dust?
BICEP2: $r pprox 0.16$

Joint analysis: $r \sim 0.05$?

• However, supergravity scalar potential usually too steep,

$$V = e^{K} \left(K^{I\bar{J}} D_{I} W \overline{D_{J} W} - 3|W|^{2} \right)$$

• Possible solutions:

1. Shift symmetry

 \hookrightarrow e.g. axions in string theory

• However, supergravity scalar potential usually too steep,

$$V = e^{K} \left(K^{I\bar{J}} D_{I} W \overline{D_{J} W} - 3|W|^{2} \right)$$

- Possible solutions:
 - 1. Shift symmetry

 \hookrightarrow e.g. axions in string theory

2. No-scale symmetry

 \hookrightarrow generic in string theory

• However, supergravity scalar potential usually too steep,

$$V = e^{K} \left(K^{I\bar{J}} D_{I} W \overline{D_{J} W} - 3|W|^{2} \right)$$

- Possible solutions:
 - 1. Shift symmetry

 \hookrightarrow e.g. axions in string theory

2. No-scale symmetry

 \hookrightarrow generic in string theory

3. Stabilizer fields

 \hookrightarrow stringy origin less obvious

Chaotic inflation with "stabilizer field"

 Introduce additional chiral multiplet to make potential stable and bounded from below,

[Kawasaki et al. '00] [Kallosh et al. '10]

$$W = MSf(\Phi), \qquad K = \frac{1}{2}(\Phi + \overline{\Phi})^2 + |S|^2.$$

Inflation with "stabilizer field"

 Introduce additional chiral multiplet to make potential stable and bounded from below,

[Kawasaki et al. '00] [Kallosh et al. '10]

$$W = MSf(\Phi), \qquad K = \frac{1}{2}(\Phi + \overline{\Phi})^2 + |S|^2.$$

- Inflaton potential, with $\langle S\rangle=0$ and $\langle \operatorname{Re}\Phi\rangle=0$ stabilized,

$$V = |Mf(\operatorname{Im} \Phi)|^2$$

 \hookrightarrow well-suited for single-field slow-roll inflation

2. Non-perturbative moduli stabilization

Moduli stabilization (in type IIB)

- In 4D, all moduli flat directions at perturbative string tree-level
- First, fix complex structure (and dilaton) with RR and NS-NS flux

```
[Giddings et al. '02]
```

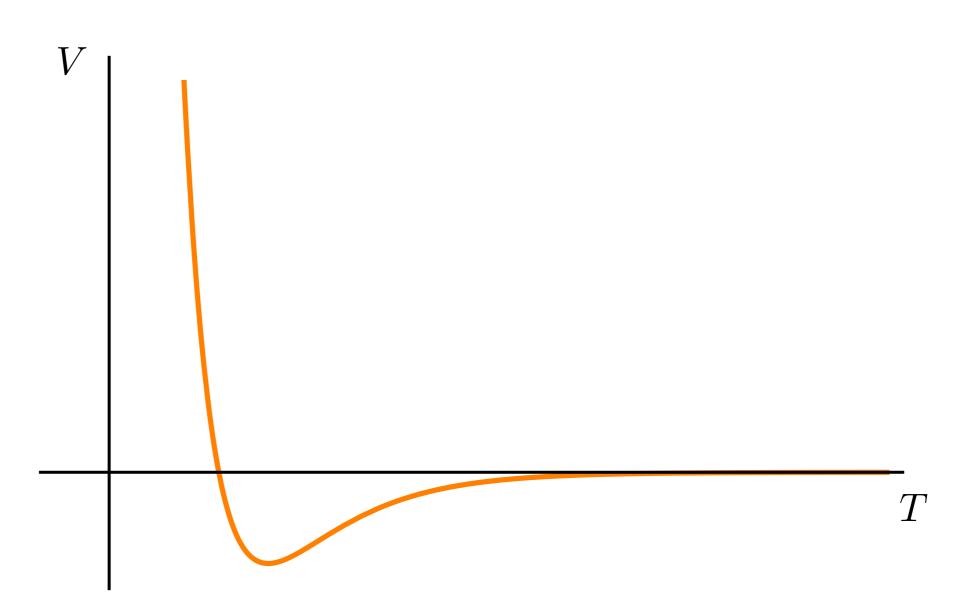
• Then, stabilize Kahler moduli using non-perturbative corrections to superpotential, e.g., [Kachru et al. '03]

$$W = W_0 + Ae^{-aT}, \qquad K = -3\ln\left(T + \overline{T}\right)$$

Here, W_0 and A fixed by fluxes, a dependent on origin of non-perturbative term

Moduli stabilization

• KKLT: Solving $D_T W = 0$ gives a supersymmetric AdS vacuum

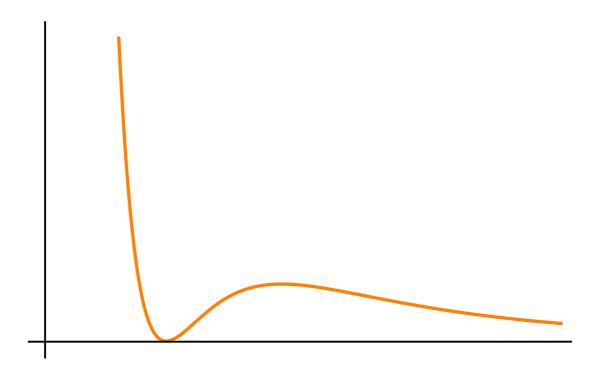


Uplift to Minkowski vacuum

 Then: uplift to non-supersymmetric Minkowski or near-dS vacuum via F-terms or D-terms, e.g., Polonyi field

$$W_{up} = fX, \qquad K_{up} = |X|^2 + \dots$$

• To cancel cosmological constant, choose $f \approx \sqrt{3}W_0$. Then,



Caveats in KKLT (and related mechanisms)

• Drawback: flux quanta generically give $W_0 \sim O(1)$

 \hookrightarrow To obtain TeV-scale gravitino mass, fine-tune W_0

• However: when coupled to inflation, require

 $m_{3/2} > H_{\text{inf}}$

for modulus to remain stabilized

[Kallosh, Linde '04]

3. Backreaction of heavy fields

Backreaction of stabilizer fields

• Once coupled to supersymmetry breaking, stabilizer field mixes with the inflaton, not stabilized at origin any longer,

 $W = MSf(\Phi) + W_{\text{SUSY}}$

$$\Rightarrow V_{\text{soft}} \sim m_{3/2} \left[\operatorname{Re} Sf_1(\varphi) + \operatorname{Im} Sf_2(\varphi) \right]$$

Backreaction of stabilizer fields

• Once coupled to supersymmetry breaking, stabilizer field mixes with the inflaton, not stabilized at origin any longer,

 $W = MSf(\Phi) + W_{\text{SUSY}}$

$$\Rightarrow V_{\text{soft}} \sim m_{3/2} \left[\operatorname{Re} Sf_1(\varphi) + \operatorname{Im} Sf_2(\varphi) \right]$$

• Integrate out S and find corrected effective inflaton potential,

$$V(\varphi) = |Mf(\varphi)|^2 - m_{3/2}^2 \frac{f_1^2(\varphi) + f_2^2(\varphi)}{M_S^2}$$

 \hookrightarrow backreaction destructive for some threshold value of $m_{3/2}$

Backreaction of heavy moduli

Procedure similar: coupling induces inflaton-dependence of modulus vacuum, integrate out to compute backreaction

$$W = W_{\inf}(\Phi) + W_{\text{mod}}(T_{\alpha}), \qquad K = K_0(T_{\alpha}, \overline{T}_{\overline{\alpha}}) + \frac{1}{2}(\Phi + \overline{\Phi})^2 K_1$$
[Buchmüller et al. '14, Buchmüller et al. '15, [Dudas et al. '15]

• If moduli break supersymmetry, backreaction reintroduces dangerous $-3|W|^2$ term and other non-decoupling effects

4. Examples in Starobinsky-like inflation

 $K = -2\log(\Phi + \overline{\Phi}) + k_1(|S|^2)$ $W = MS(\Phi - \Phi^2)$ $f(\Phi)$

$$K = -2\log(\Phi + \overline{\Phi}) + k_1(|S|^2)$$
$$W = MS(\Phi - \Phi^2)$$
$$f(\Phi)$$

$$\Rightarrow V_{\text{inf}} \sim M^2 (1 - e^{-\varphi})^2$$

 \hookrightarrow exponentially flat plateau for canonically normalized inflaton

 $K = -2\log(\Phi + \overline{\Phi}) + k_1(|S|^2) + k_2(|X|^2)$ $W = MS(\Phi - \Phi^2) + fX + W_0$ Polonyi field

$$\begin{split} K &= -2\log\left(\Phi + \overline{\Phi}\right) + k_1(|S|^2) + k_2(|X|^2) \\ W &= MS(\Phi - \Phi^2) + fX + W_0 \\ \overbrace{\text{Polonyi field}} \\ &\Rightarrow V(\varphi) = V_{\text{inf}}(\varphi) - \frac{M^2 W_0^2 (2 - e^{\varphi})^2}{M_S^2} \end{split}$$

 \hookrightarrow backreaction destroys plateau for large W_0 and large φ

 $\Rightarrow 50-60~e\text{-folds}$ impossible when $m_{3/2}\gtrsim 10^{10}~{\rm GeV}$

- Implication: model incompatible with moduli stabilization a la KKLT, LVS, ...
- Similar results for many other string-effective Starobinsky-like models, Cecotti model, Goncharov-Linde model, ...

 \hookrightarrow next: try no-scale symmetry

$$K = -3\log\left(T + \overline{T} - \frac{1}{3}|\Phi^2|\right),$$
$$W = M(\Phi^2 + b\Phi^3)$$

[Ellis et al. '13, '14, '15]

$$K = -3\log(T + \overline{T} - \frac{1}{3}|\Phi^{2}|),$$

$$W = M(\Phi^{2} + b\Phi^{3})$$

[Ellis et al. '13, '14, '15]

• Fine-tune b, assume T stabilized at some $T_0 \gg 1$

$$V_{\rm inf}(\varphi) \sim M^2 (1 - e^{-\varphi})^2$$

• How can T be stabilized consistently?

$$K = -3\log\left(T + \overline{T} - \frac{1}{3}|\Phi^2|\right),$$
$$W = M(\Phi^2 + b\Phi^3) + W_{\text{mod}}(T)$$

$$K = -3\log\left(T + \overline{T} - \frac{1}{3}|\Phi^2|\right),$$
$$W = M(\Phi^2 + b\Phi^3) + W_{\text{mod}}(T)$$

- Backreaction of ${\cal T}$ sources steep terms which make inflation impossible

5. Conclusions

Conclusions

- Backreaction of heavy fields on inflation important even for $M \gg H$ if supersymmetry is broken

 \hookrightarrow generic concern in most string-effective models

- Stabilizer fields do not like high-scale supersymmetry
- Starobinsky-like models particularly constrained by stabilizer field or stabilized moduli
- Natural inflation generically less constrained due to periodicity of potential & backreaction terms