Minkowski 3-forms (in flux compactifications)

S. Bielleman

November 19, 2015

Based on hep-th 1507.06793 SB, L. Ibañez, I. Valenzuela + () + () + ()

Why 3-forms are special

 C_3 usually not considered seperatly in QFT since:

$$\mathcal{L} \supset F_4 \wedge F_0 \Rightarrow \partial_\mu F_0 = 0 \Rightarrow F_0 = q$$

 \Rightarrow C₃ has no propagating degrees of freedom

Why 3-forms are special

 C_3 usually not considered separatly in QFT since:

$$\mathcal{L} \supset F_4 \wedge F_0 \Rightarrow \partial_\mu F_0 = 0 \Rightarrow F_0 = q$$

 \Rightarrow C₃ has no propagating degrees of freedom

Contribution to the cc

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2}R - \frac{1}{48}F_4^2 - \Lambda_{bare} \right)$$

Putting the 4-form on shell we are left with an effective cc:

$$\Lambda = \Lambda_{bare} + \frac{1}{48}q^2$$

Coupling of F_4 to a single scalar ϕ

In general the 4-form will have couplings to other fields.

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2}R - \frac{1}{2}(\partial \phi)^2 - \frac{1}{48}F_4^2 + m\phi \star F_4 \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Coupling of F_4 to a single scalar ϕ

In general the 4-form will have couplings to other fields.

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2}R - \frac{1}{2}(\partial \phi)^2 - \frac{1}{48}F_4^2 + m\phi \star F_4 \right)$$

This leads to interesting physics after integrating out the 4-form

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2}R - \frac{1}{2}(\partial\phi)^2 - \frac{1}{2}(q + m\phi)^2\right)$$

There is a potential for ϕ that respects the shift symmetry!

$$\phi
ightarrow \phi + n \qquad q
ightarrow q - mn$$

Inflation in effective field theory

In models of large field inflation:

•
$$V(\phi) < M_{pl}$$

•
$$\Delta \phi > M_{pl}$$

Problems in a theory with other degrees of freedom.

Integrating out leads to higher order terms such as

$$\mathcal{L}_{corr} = rac{a_i}{M^{2i}}\phi^{4+2i} + rac{b_i}{M^{2i}}(\partial\phi)^2\phi^{2i}$$

Kaloper Sorbo mechanism

Interpret $\boldsymbol{\phi}$ as the inflaton with potential

۱

$$V_0 = rac{1}{2}(oldsymbol{q} + oldsymbol{m}\phi)^2$$

That respects the shift symmetry

$$\phi
ightarrow \phi + n \qquad q
ightarrow q - mn$$

Kaloper Sorbo mechanism

Interpret $\boldsymbol{\phi}$ as the inflaton with potential

$$V_0 = rac{1}{2}(oldsymbol{q} + oldsymbol{m}\phi)^2$$

That respects the shift symmetry

$$\phi \rightarrow \phi + n \qquad q \rightarrow q - mn$$

- Subplanckian energy densities
- Shift symmetry \Rightarrow quantum corrections under control
- Higher order terms go as powers of V_0 due to shift symmetry

IIA field content in the democratic formalism:

- ▶ NSNS field B₂ with field strength H
- RR fields C_p with p = 1, 3, 5, 7, 9
- ▶ Field strengths: $G_{p+1} = F_{p+1} H \land C_{p-2} + Fe^B$

Bergshoeff, Kallosh, Ortin, Roest and Van Proeyen '01 \bigcirc \land \bigcirc \land \bigcirc \land \bigcirc \land \bigcirc \land \bigcirc \land \bigcirc

IIA field content in the democratic formalism:

- NSNS field B₂ with field strength H
- RR fields C_p with p = 1, 3, 5, 7, 9
- ▶ Field strengths: $G_{p+1} = F_{p+1} H \land C_{p-2} + Fe^B$

We expand the field strengths on internal harmonics:

$$F_{0} = -m , \quad F_{2} = \sum_{i} q_{i}\omega_{i} , \quad F_{4} = F_{4}^{0} + \sum_{i} e_{i}\tilde{\omega}_{i}$$
$$F_{6} = \sum_{i} F_{4}^{i}\omega_{i} + e_{0}dvol_{6} , \quad F_{8} = \sum_{a} F_{4}^{a}\tilde{\omega}_{a} , \quad F_{10} = F_{4}^{m}dvol_{6}$$

Bergshoeff, Kallosh, Ortin, Roest and Van Proeyen '01 🗇 🗸 🛓 🔬 🛓 🔗 🤉

Scalar fields appear in expanding the 10d fields:

$$B_2 = \sum_i \frac{\mathbf{b}_i \omega_i}{\mathbf{b}_i \omega_i}, \quad C_3 = \sum_i \frac{\mathbf{c}_3' \alpha_i}{\mathbf{c}_3 \omega_i}$$

Scalar fields appear in expanding the 10d fields:

$$B_2 = \sum_i \frac{\mathbf{b}_i \omega_i}{\mathbf{b}_i \omega_i}, \quad C_3 = \sum_i \frac{\mathbf{c}_3' \alpha_i}{\mathbf{c}_3 \omega_i}$$

The 10d action contains terms:

$$G_2 \wedge G_8 \supset F_2 \wedge F_8 + F_0 \wedge B \wedge F_8$$

Which will lead to a contribution to the 4d scalar potential:

$$F_4^a(q_a - mb_a)$$

Which has a shift symmetry:

$$b_i \rightarrow b_i + n_i$$
 , $q_a \rightarrow q_a + n_a m$

After the dust settles we are left with the following scalar potential coming from the RR forms:

$$V_{RR} = -\frac{1}{2} \left[F_4^0 \left(e_0 + b^i e_i + \frac{1}{2} k_{ijk} b^j b^j q_k - \frac{1}{6} k_{ijk} m b^i b^j b^k \right) + F_4^i \left(e_i + k_{ijk} b^j q_k - \frac{1}{2} k_{ijk} m b^j b^k \right) + F_4^a (q_a - mb_a) - km F_4^m \right]$$

After integrating out F this potential is equivalent to the axionic potential found in Louis and Micu '02

Symmetries

The potential is invariant under the shift:

 $b_i \rightarrow b_i + n_i$

if it is combined with:

 $m \rightarrow m$ $q_a \rightarrow q_a + n_a m$ $e_i \rightarrow e_i - k_{ijk} q^j n^k - \frac{1}{2} k_{ijk} n^j n^k m$ $e_0 \rightarrow e_0 - e_i n_i + \frac{1}{2} k_{ijk} q^i n^j n^k + \frac{1}{6} k_{ijk} n^i n^j n^k m$

Which leaves each 4-form invariant!

Symmetries

T-duality relates different string theories under transformations of the internal space.

▶ We find that V_{RR} is invariant under two T-dualities if the 4-forms transform into eachother

$$V_{RR} \propto |F_4^0|^2 + g_{ij}F_4^iF_4^j + g_{ab}F_4^aF_4^b + |F_4^m|^2$$

 This result comes from known transformations of RR fields under T-duality

Recap

We have found

- All axion dependence in the potential comes through 4-forms
- Each 4-form is invariant under shifts as in KS
- Different 4-forms related through T-dualities

 \Rightarrow As in KS, corrections to the potential should go as powers of the potential

 \Rightarrow Models of large field inflation should be reasonably protected in this setting

Eg. Marchesano, Shiu and Urange '14; Ibañez, Marchesano and Valenzuela '14

Thank you.

Type IIB

Type IIB is in principle simpler because we only have to consider:

$$G_3 = F_3 - iSH_3$$

Which after integrating over the internal space leads to couplings

 $G_4^a D^a W_{GVW}$

Which will lead to the standard no scale potential

 $V\propto |D_AW|^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Application to the cosmological constant problem

Contribution to the cc

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2}R - \frac{1}{48}F_4{}^2 - \Lambda_{bare} \right)$$

Putting the 4-form on shell we are left with an effective cc:

$$\Lambda = \Lambda_{bare} + \frac{1}{48} q^2$$

If Λ_{bare} is negative or small enough then we can tune q such that $\Lambda={\Lambda_{obs}}^6$

⁶Brown and Teitelboim '87...

Application to the cosmological constant problem

This is not the whole story!⁷

• In general, q is quantized \Rightarrow problems with fine tuning

Did we just move the fune tuning problem to a new parameter?

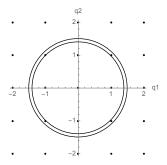
⁷Bousso and Polchinski '00 ...

Application to the cosmological constant problem

This is not the whole story!⁷

- In general, q is quantized \Rightarrow problems with fine tuning
- Did we just move the fune tuning problem to a new parameter?

- q is dynamical and will stabilize at a small value using membrame nucleation
- The more 4-forms the easier to get a value of the fluxes such that Λ = Λ_{obs}



⁷Bousso and Polchinski '00 ...