Generic predictions of plateau inflation
 Dries Coone (Van Swinderen Institute, Groningen)

Based on work with Diederik Roest and Vincent Vennin 1507.00096 [astro-ph.CO]

Outline

- Introduction to inflation
- Inflation as a Taylor expansion
- Inflation as a Padé approximant
- Conclusions

The universe

Dark Energy Accelerated Expansion

Source: wikipedia original: WMAP

The CMB universe

The CMB universe

$$
\delta T \approx 10^{-4}
$$

Description inflation

- Ìsotropy and homogeneity gives FLRW metric:

$$
d s^{2}=d t^{2}+a(t)^{2}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

where a is the scale factor, parameterizing the size of the universe

- Equations of motion lead to Hamilton-Jacobi equations
where $H=\frac{\dot{a}}{a}$

$$
\begin{aligned}
& V(\phi)=3 H(\phi)^{2}-2 H^{\prime}(\phi)^{2} \\
& \dot{\phi}=-2 H^{\prime}(\phi)
\end{aligned}
$$

- Inflation is excellerated expansion, which means $\ddot{a}>0$.

Then $\epsilon \equiv 2\left(\frac{H^{\prime}(\phi)}{H(\phi)}\right)^{2}<1$

Observables

Inflation as a Taylor expansion

- Parameterize $H(\phi)=H_{0}\left(1+\sum_{k=1}^{M} \frac{a_{k}}{k!} \phi^{k}\right)$
- How to proceed:

1. Take random a_{k} such that $H(0)>0$ and $0<\epsilon(0)<1$
2. Search where $\epsilon=1$ (end inflation)
3. Search where $\epsilon=0$ (eternal inflation)
4. If flow to $\epsilon=0$, discard model
5. At point where $\Delta N=50$, calculate n_{s}, r

Ref. Hoffman \& Turner, astro-ph/0006321
Kinney, astro-ph/0206032

Inflation as a Taylor expansion

- Parameterize
$H(\phi)=1+\frac{a_{1}}{1!} \phi+\frac{a_{2}}{2!} \phi^{2}+\ldots$ With a_{i} random
- Data far from Planck contours (0.2% in Planck 2σ contour)

Inflation as a Padé approximant

- Padé approximant natural expansion around $\phi=0$ and $\phi=\infty$
- $H(\phi)=\frac{\sum_{n=0}^{N} a_{n} \phi^{n}}{1+\sum_{m=1}^{M} b_{m} \phi^{m}}$.
- For a plateau, choose $N=M$.
- 2 inflation domains:
a) Around $\phi=0$, chose a_{n}, b_{n} such that derivatives of $H(\phi)$ maximally 1 at $\phi=0$
b) Around $\phi=\infty$, chose $\left\{a_{i}, b_{i}\right\} \in[-1,1]$

Inflation as a Padé approximant

5% and 38% in Planck 2σ contour

18% and 90% in Planck 2σ contour

Conclusions

- Inflation is an appealing model to describe the early universe
- An approach using polynomial approximations is not recommended by the Planck data
- Padé approximants do much better.
- But now other parametrizations has to be studied:
- Number of efold inflation
- Generalized α attractors

Number of efold inflation

