Generic predictions of plateau inflation

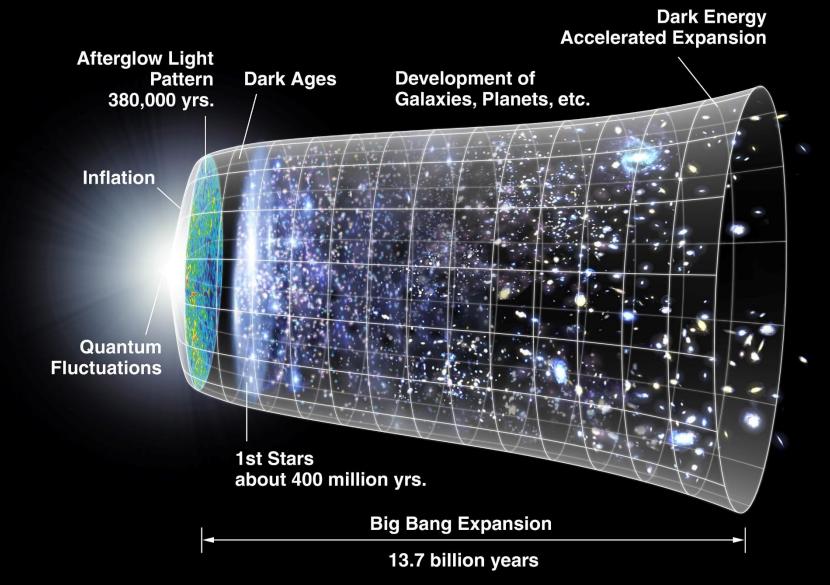
Dries Coone (Van Swinderen Institute, Groningen)

Based on work with Diederik Roest and Vincent Vennin 1507.00096 [astro-ph.CO]

Outline

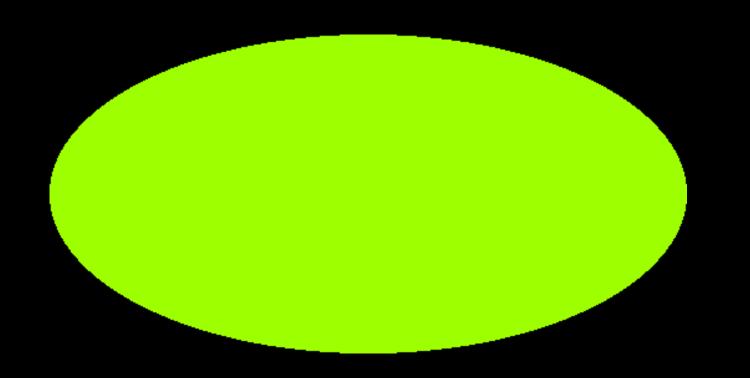
- Introduction to inflation
- Inflation as a Taylor expansion
- Inflation as a Padé approximant
- Conclusions

The universe

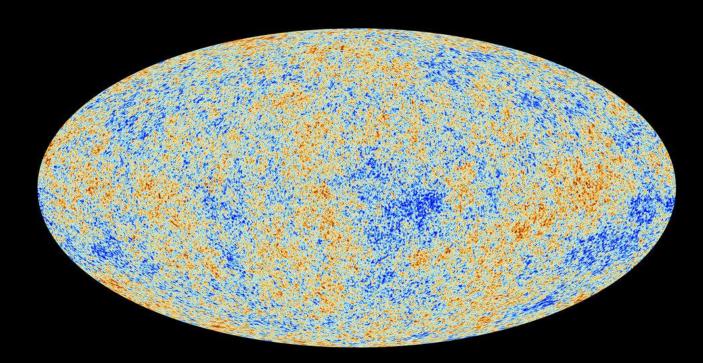


Source: wikipedia original: WMAP

The CMB universe



The CMB universe



 $\delta T\approx 10^{-4}$

Description inflation

• Ìsotropy and homogeneity gives FLRW metric: $ds^{2} = dt^{2} + a(t)^{2}(dx^{2} + dy^{2} + dz^{2})$

where a is the scale factor, parameterizing the size of the universe

• Equations of motion lead to Hamilton-Jacobi equations

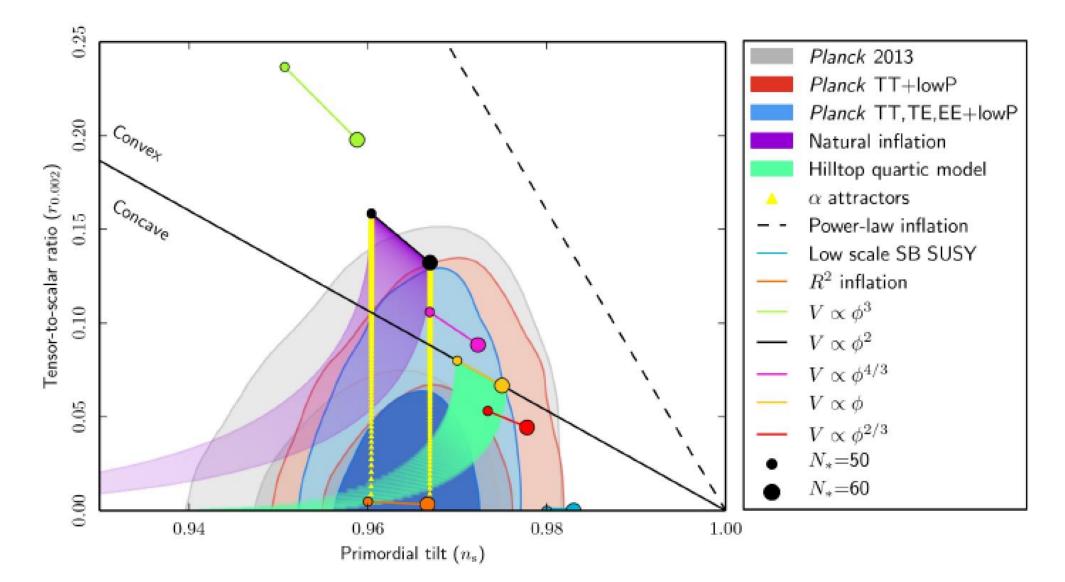
where
$$H = \frac{\dot{a}}{a}$$

 $V(\phi) = 3H(\phi)^2 - 2H'(\phi)^2$
 $\dot{\phi} = -2H'(\phi)$

• Inflation is excellerated expansion, which means $\ddot{a} > 0$.

Then
$$\epsilon \equiv 2 \left(\frac{H'(\phi)}{H(\phi)} \right)^2 < 1$$

Observables



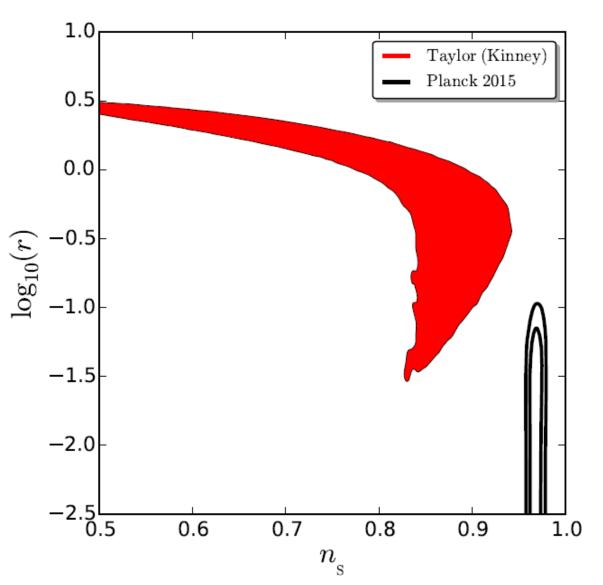
Inflation as a Taylor expansion

- Parameterize $H(\phi) = H_0(1 + \sum_{k=1}^{M} \frac{a_k}{k!} \phi^k)$
- How to proceed:
 - 1. Take random a_k such that H(0) > 0 and $0 < \epsilon(0) < 1$
 - 2. Search where $\epsilon = 1$ (end inflation)
 - 3. Search where $\epsilon = 0$ (eternal inflation)
 - 4. If flow to $\epsilon = 0$, discard model
 - 5. At point where $\Delta N = 50$, calculate n_s , r

Ref. Hoffman & Turner, astro-ph/0006321 Kinney, astro-ph/0206032

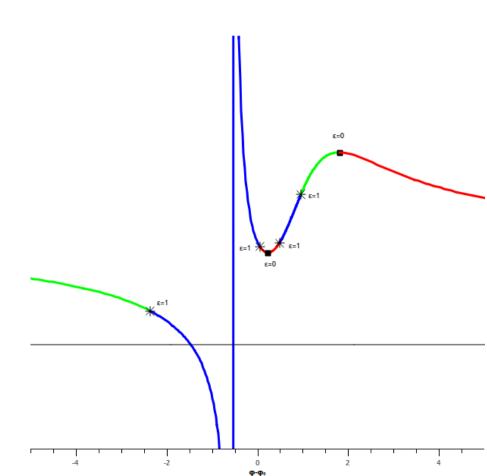
Inflation as a Taylor expansion

- Parameterize $H(\phi) = 1 + \frac{a_1}{1!}\phi + \frac{a_2}{2!}\phi^2 + \dots$ With a_i random
- Data far from Planck contours (0.2% in Planck 2σ contour)



Inflation as a Padé approximant

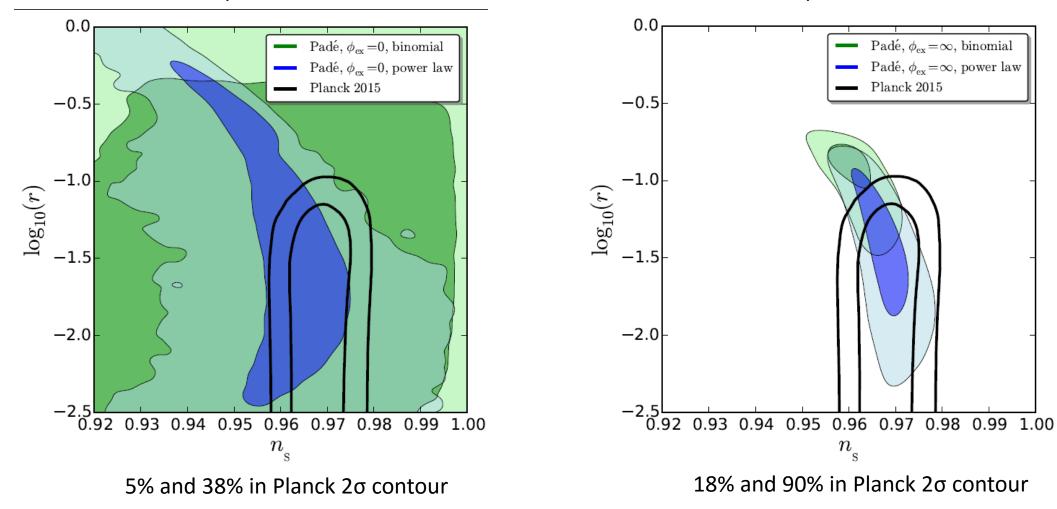
- Padé approximant natural expansion around $\phi=0$ and $\phi=\infty$
- $H(\phi) = \frac{\sum_{n=0}^{N} a_n \phi^n}{1 + \sum_{m=1}^{M} b_m \phi^m}.$
- For a plateau, choose N = M.
- 2 inflation domains:
 - a) Around $\phi = 0$, chose a_n , b_n such that derivatives of $H(\phi)$ maximally 1 at $\phi = 0$
 - b) Around $\phi = \infty$, chose $\{a_i, b_i\} \in [-1, 1]$



Inflation as a Padé approximant

 $\phi \approx \infty$

 $\phi \approx 0$



Conclusions

- Inflation is an appealing model to describe the early universe
- An approach using polynomial approximations is not recommended by the Planck data
- Padé approximants do much better.
- But now other parametrizations has to be studied:
 - Number of efold inflation
 - Generalized α attractors

Number of efold inflation

