The present and future of the most favoured Inflationary Models

Miguel Escudero Abenza Based on arXiv:1509.05419 In collaboration with Héctor Ramirez, Olga Mena, Lotfi Boubekeur and Elena Giusarma

Motivation

Contents

- 1) Fundamentals of Inflation
- 2) CMB Theory
 - a) TT spectra
 - b) Polarization: E and B modes
- 2) CMB Observations
 - a) Foregrounds: Synchrotron and Dust
 - b) Planck, Bicep2 and COrE
- 3) Analysis and statistical methods
- 4) Results
- 5) Prospects

FLRW Universe

Background FLRW:

$$ds^2 = a^2(\tau) \left\{ -d\tau^2 + dx^i dx_i \right\}$$
$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Perturbed FLRW metric in Newtonian gauge:

$$ds^{2} = a^{2}(\tau) \left\{ -(1+2\psi)d\tau^{2} + (1-2\phi)dx^{i}dx_{i} - h_{ij}dx^{i}dx^{j} \right\}$$

$$\delta G_{\mu\nu} = \frac{8\pi G}{c^4} \delta T_{\mu\nu}$$

Exponential Expansion

Scales

Slow Roll

Inflationary Models

Chaotic scenario

 $V(\phi) \propto \phi^2$

Natural Inflation

$$V(\phi) = V_0 \left[1 - \cos(\phi/f)\right]$$

Hilltop scenarios

$$V(\phi) = V_0 \left[1 - (\phi/\mu)^p \right]$$

Non-minimally coupled Higgs-like scenario

$$V(\phi) = \frac{\lambda \left(\phi^2 - v^2\right)^2}{4 \left(1 + \xi \phi^2 / M_{\rm pl}^2\right)^2} \quad v = 0 \quad \xi \to \infty \quad R^2 \, \text{Starobinsky}$$

$$\xi \to \infty \quad V \propto \phi^4$$

Fundamentals of Inflation

Attractor solution

Final state independent of the initial conditions

Exponential acceleration

Solves the Horizon, Flatness and Monopole problems

Predictions

Perturbations seed (adiabatic/isocurvature)

Nearly scale invariant power spectrum

Stochastic background of gravitational waves

Curvature perturbation in Fourier space: $\mathcal{R}_{\vec{k}}$

$$\langle \mathcal{R}_{\vec{k}} \rangle = 0 \qquad \langle \mathcal{R}_{\vec{k}} \mathcal{R}_{\vec{p}} \rangle = (2\pi)^3 \delta^{(3)} (\vec{p} + \vec{k}) \frac{2\pi^2}{k^3} \mathcal{P}_{\mathcal{R}}(k)$$

Curvature perturbation in Fourier space: $\mathcal{R}_{\vec{k}}$

$$\langle \mathcal{R}_{\vec{k}} \rangle = 0 \qquad \langle \mathcal{R}_{\vec{k}} \mathcal{R}_{\vec{p}} \rangle = (2\pi)^3 \delta^{(3)} (\vec{p} + \vec{k}) \frac{2\pi^2}{k^3} \mathcal{P}_{\mathcal{R}}(k)$$

Nearly scale invariant power spectrum:

$$\mathcal{P}_{\mathcal{R}}(k) = A_{s} \left(\frac{k}{k_{*}}\right)^{n_{s}-1+\frac{1}{2!}\alpha_{s}\ln(k/k_{*})+\frac{1}{3!}\beta_{s}(\ln(k/k_{*}))^{2}+...} k_{*} = 0.05 \,\mathrm{Mpc}^{-1}$$
$$\mathcal{P}_{t}(k) = A_{t} \left(\frac{k}{k_{*}}\right)^{n_{t}+...} r = \frac{\mathcal{P}_{t}(k_{*})}{\mathcal{P}_{\mathcal{R}}(k_{*})}$$

Curvature perturbation in Fourier space: $\mathcal{R}_{\vec{k}}$

$$\langle \mathcal{R}_{\vec{k}} \rangle = 0 \qquad \langle \mathcal{R}_{\vec{k}} \mathcal{R}_{\vec{p}} \rangle = (2\pi)^3 \delta^{(3)} (\vec{p} + \vec{k}) \frac{2\pi^2}{k^3} \mathcal{P}_{\mathcal{R}}(k)$$

Nearly scale invariant power spectrum:

$$\mathcal{P}_{\mathcal{R}}(k) = A_{\rm s} \left(\frac{k}{k_{*}}\right)^{n_{\rm s}-1+\frac{1}{2!}\alpha_{\rm s}\ln(k/k_{*})+\frac{1}{3!}\beta_{\rm s}(\ln(k/k_{*}))^{2}+\dots} k_{*} = 0.05\,{\rm Mpc}^{-1}$$
$$\mathcal{P}_{\rm t}(k) = A_{\rm t} \left(\frac{k}{k_{*}}\right)^{n_{\rm t}+\dots} r = \frac{\mathcal{P}_{\rm t}(k_{*})}{\mathcal{P}_{\mathcal{R}}(k_{*})}$$

Predictions for single field slow-roll Inflation:

$$r: \{10^{-4} \to 0.1\} \qquad n_s: \{0.94 \to 0.98\} \\ n_t: \{-0.02 \to 0\} \qquad \beta_s: \{-10^{-3} \to -10^{-4}\} \\ \beta_s: \{-10^{-4} \to -10^{-5}\} \end{cases}$$

CMB Anisotropies

Intensity, $I \Rightarrow T$ Polarization, Q, U

 $\mathcal{A}, \mathcal{B} = T, E, B$ $\theta = 180^{\circ}/\ell$

$$\Delta \mathcal{A}(\theta, \phi) = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m}^{\mathcal{A}} Y_{\ell m}(\theta, \phi)$$

$$C_{\ell}^{\mathcal{A},\mathcal{B}} = \langle \Delta \mathcal{A} \Delta \mathcal{B} \rangle = \frac{\ell(\ell+1)}{2\pi} \sum_{m=-\ell}^{\ell} \frac{a_{\ell m}^{\mathcal{A}} * a_{\ell m}^{\mathcal{B}}}{2\ell+1}$$

CMB Anisotropies

$$C_{\ell}^{\mathcal{AB},s} = \int_{0}^{\infty} \frac{\mathrm{d}k}{k} \, \Delta_{\ell,\mathcal{A}}^{s}(k) \, \Delta_{\ell,\mathcal{B}}^{s}(k) \, \mathcal{P}_{\mathcal{R}}(k)$$
$$C_{\ell}^{\mathcal{AB},t} = \int_{0}^{\infty} \frac{\mathrm{d}k}{k} \, \Delta_{\ell,\mathcal{A}}^{t}(k) \, \Delta_{\ell,\mathcal{B}}^{t}(k) \, \mathcal{P}_{t}(k)$$
$$C_{\ell}^{\mathcal{AB},tot} = C_{\ell}^{\mathcal{AB},s} + C_{\ell}^{\mathcal{AB},t}$$

 $\mathcal{A}, \mathcal{B} = T, E, B$

CMB anisotropies

Perturbations and Thompson Scattering: Kosowski 96'

Hu (background.uchicago.edu/)

CMB anisotropies

Perturbations and Thompson Scattering: Kosowski 96'

Hu (background.uchicago.edu/)

CMB Spectra

The sky in radio

Planck 2015 I

Foreground Contamination

Planck 2013 I

Foreground Contamination

Planck 2013 I

Foreground Contamination

Planck 2014 XXX

Experiments Specifications

Mission	Channel	FWHM	ΔT	ΔP
	(GHz)	(arcmin)	$(\mu K_{\rm CMB} \cdot \operatorname{arcmin})$	$(\mu K_{\rm CMB} \cdot \operatorname{arcmin})$
Planck	30	32.7	203.2	287.4
	44	27.9	239.6	338.9
	70	13.0	221.2	298.7
	100	9.9	31.3	44.2
	143	7.2	20.1	33.3
	217	4.9	28.5	49.4
	353	4.7	107.0	185.3
	535	4.7	1100	-
	857	4.4	8300	-
CORE	45	23.3	5.25	9.07
	75	14.0	2.73	4.72
	105	10.0	2.68	4.63
	135	7.8	2.63	4.55
	165	6.4	2.67	4.61
	195	5.4	2.63	4.54
	225	4.7	2.64	4.57
	255	4.1	6.08	10.5
	285	3.7	10.1	17.4
	315	3.3	26.9	46.6
	375	2.8	68.6	119
	435	2.4	149	258
	555	1.9	227	626
	675	1.6	1320	3640
	795	1.3	8070	22200

CMB likelihood

$$-2 \ln \mathcal{L}^{\text{CMB}} = \sum_{\ell} (2\ell+1) f_{sky} \left[\ln \left(\frac{C_{\ell}^{BB}}{\hat{C}_{\ell}^{BB}} \right) - \frac{\hat{C}_{\ell}^{BB}}{C_{\ell}^{BB}} - \frac{3}{\text{Verde et al. '06}} \right]$$

$$+\ln\left(\frac{C_{\ell}^{TT}C_{\ell}^{EE} - (C_{\ell}^{TE})^{2}}{\hat{C}_{\ell}^{TT}\hat{C}_{\ell}^{EE} - (\hat{C}_{\ell}^{TE})^{2}}\right) - \frac{\hat{C}_{\ell}^{TT}C_{\ell}^{EE} + C_{\ell}^{TT}\hat{C}_{\ell}^{EE} - 2C_{\ell}^{TE}\hat{C}_{\ell}^{TE}}{C_{\ell}^{TT}C_{\ell}^{EE} - (C_{\ell}^{TE})^{2}}\right]$$
$$C_{\ell} = C_{\ell}^{th} + N_{\ell} + R_{\ell}^{F} \qquad C_{\ell}^{\mathcal{AB}} = \text{Measured}$$
$$\hat{C}_{\ell}^{\mathcal{AB}} = \text{Theoretical}$$

 $R_{\ell}^{T} = \sigma_{F} C_{\ell}^{T}$ $\sigma_{F} \leq 0.1 \, Planck$ $\sigma_{F} \simeq 0.01 \, COrE$

Foreground Spectra

Synchrotron:

$$C_{\ell}^{S} = A_{S} \left(\frac{\ell}{\ell_{S}}\right)^{\alpha_{S}} \left(\frac{\nu}{\nu_{S}}\right)^{2\beta_{S}}$$

 $\nu_S = 0.408 \,\text{GHz}$ $\ell_S = 100$ $\alpha_S = -2.5 \pm 0.02$ $\beta_S = -3.00 \pm 0.05$

Foreground Spectra

Synchrotron:

$$C_{\ell}^{S} = A_{S} \left(\frac{\ell}{\ell_{S}}\right)^{\alpha_{S}} \left(\frac{\nu}{\nu_{S}}\right)^{2\beta_{S}}$$
$$\nu_{S} = 0.408 \,\text{GHz} \qquad \ell_{S} = 100 \qquad \alpha_{S} = -2.5 \pm 0.02 \qquad \beta_{S} = -3.00 \pm 0.05$$

Dust:

$$C_{\ell}^{D} = A_{D} \left(\frac{\ell}{\ell_{D}}\right)^{\alpha_{D}} \left(\frac{\nu}{\nu_{D}}\right)^{2\beta_{D}-4} \left(\frac{B_{\nu}(T_{D})}{B_{\nu_{D}}(T_{D})}\right)^{2}$$

 $\nu_D = 353 \,\text{GHz}$ $\ell_D = 100$ $\alpha_D = -2.4 \pm 0.02$ $\beta_D = 1.51 \pm 0.01$

Noise Spectrum

$$N_{\ell}^{\mathcal{AB}} = \sigma^{\mathcal{A}} \sigma^{\mathcal{B}} \delta_{\mathcal{AB}} \exp\left(\ell \left(\ell + 1\right) \frac{\theta_{\rm FWHM}^2}{8 \ln 2}\right)$$

Recall, $\theta = 180^{\circ}/\ell$

Forecast: Fisher matrix formalism

$$F_{ij} \equiv -\frac{\partial^2 \mathcal{L}}{\partial \theta_i \partial \theta_j} |_{\theta = \theta_{fid}}$$

Cramér-Rao

 $\sigma_{\theta_i} \ge F_{ii}^{-1}$

 $C_{ij} = F_{ij}^{-1}$

Consistency check

Curvature perturbation in Fourier space: $\mathcal{R}_{\vec{k}}$

$$\langle \mathcal{R}_{\vec{k}} \rangle = 0 \qquad \langle \mathcal{R}_{\vec{k}} \mathcal{R}_{\vec{p}} \rangle = (2\pi)^3 \delta^{(3)} (\vec{p} + \vec{k}) \frac{2\pi^2}{k^3} \mathcal{P}_{\mathcal{R}}(k)$$

Curvature perturbation in Fourier space: $\mathcal{R}_{\vec{k}}$

$$\langle \mathcal{R}_{\vec{k}} \rangle = 0 \qquad \langle \mathcal{R}_{\vec{k}} \mathcal{R}_{\vec{p}} \rangle = (2\pi)^3 \delta^{(3)} (\vec{p} + \vec{k}) \frac{2\pi^2}{k^3} \mathcal{P}_{\mathcal{R}}(k)$$

Nearly scale invariant power spectrum:

$$\mathcal{P}_{\mathcal{R}}(k) = A_{s} \left(\frac{k}{k_{*}}\right)^{n_{s}-1+\frac{1}{2!}\alpha_{s}\ln(k/k_{*})+\frac{1}{3!}\beta_{s}(\ln(k/k_{*}))^{2}+...} k_{*} = 0.05 \,\mathrm{Mpc}^{-1}$$
$$\mathcal{P}_{t}(k) = A_{t} \left(\frac{k}{k_{*}}\right)^{n_{t}+...} r = \frac{\mathcal{P}_{t}(k_{*})}{\mathcal{P}_{\mathcal{R}}(k_{*})}$$

Results (r, n_s)

Results (α_s, n_s)

Results (r, n_t)

Conclusions

- 1) CMB anisotropies:
 - Powerful tool
 - **Observational limitations**
- 2) Results:

 n_s r β_s n_t α_s 3) Prospects: a) Study the anomaly: Dark Energy, non-standard scenarios?

b) Large Photometric Survey? Basse et al. '15

CMB Likelihood: CMB Forecast: Galaxy Survey: Future Mission: COrE Satellite; arXiv:1102.2181 Foregrounds: Inflation:

CMB Polarization: Kosowski; Annals Phys. 246 (1996) 49-85; arXiv:9501045 Jaffe et al. AIP Conf. Proc. 476, 249 (1999); arXiv:0306506 Verde et al. JCAP 0601, 019 (2006); arXiv:0506036 Basse et al. JCAP 1506 06, 042 (2015); arXiv:0506036 Planck intermediate results. XXX; arXiv:1409.5738 Planck 2015 XX "Constraints on Inflation"; arXiv:1502.02114

BICEP2: Dust Confusion

ž0 20 60 3 57 90 .90 $1.0 \log_{10}(r_d)$ -2.0

Planck 2014 XXX

r = 1

Planck Data

Planck 2013 I