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Black holes in higher dimensions

@ General Relativity in 4 dimensions admits a unique class of black
hole solutions, which are parametrized by mass, charge and angular
momentum (No-hair Theorem).

@ However in dimensions D > 4, uniqueness theorems no longer exist.

@ In D =5, black rings, with horizon topology S? x S!, were first
discovered in pure Einstein gravity [Emparan, Reall],
and later also in minimal supergravity [Elvang, Emparan, Mateos,
Reall].

@ In String/M-theory we shall consider gravitational systems in ten
and eleven dimensions and more unusual black hole solutions are
expected.

e Finding the full black hole solution is a notoriously hard. However
the problem of studying near-horizon solutions is manageable.



Near-horizon solutions

@ Examining near-horizon geometries is a useful method for
determining which types of black hole solutions can, or cannot, exist.

@ Also for asymptotically AdS black holes, one can look at the dual
CFT description of the near-horizon geometry. The isometries on
the gravity side play the role of conformal group on the gauge side.

@ The isometries can be dynamically enhanced. Often supersymmetric
near horizon solutions experience supersymmetry enhancement,
which implies symmetry enhancement.

o Lichnerowicz Theorems, together with Index Theory arguments,
represent a powerful tool to establish whether supersymmetry
enhancement occurs or not.



Lichnerowicz Theorems in Supergravity

Consider supersymmetric solutions, i.e. solutions which admit Killing
spinors €. Let us define a certain Dirac operator D.

Lichnerowicz Theorems establish the following 1:1 correspondence

e is Killing spinor = De=0.

Those types of theorems have been proven for near-horizon geometries in

@ D = 11 supergravity [Gutowski, Papadopoulos]
e type IIB [Gran, Gutowski, Papadopoulos]

e and type |IA supergravity (both massive and massless)
[Gran, Gutowski, Kayani, Papadopoulos].



Q: How general are those Lichnerowicz Theorems in supergravity?

A: We shall consider o’ corrections....

@ o corrections of D = 11, type IIA and type |IB supergravity are not
easy to deal with.

@ but they are manageable in Heterotic Supergravity !



Near-horizon geometries in Heterotic Supergravity at tree level

@ Supersymmetry enhancement

@ Near-horizon geometries in anomaly corrected Heterotic Supergravity

@ Lichnerowicz Theorem

@ Supersymmetry enhancement?

Conclusions



Heterotic Supergravity at tree level

The bosonic fileds of heterotic supergravity are the metric g, a real scalar
field (the dilaton) ®, a real 3-form H, and a non-abelian 2-form field F.

The bosonic field equations are:
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The Bianchi identity associated with the 3-form is

dH =0



We further assume that the solution is supersymmetric, i.e. there exists a
Majorana-Weyl Killing spinor € satisfying the Killing spinor equations
(KSE)
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V) is the connection with torsion H.

V is the Levi-Civita connection.



Gaussian Null Co-ordinates

Assumptions

@ spacetime contains an (extremal) Killing horizon, null hypersurface
associated with V', symmetry of the full solution.

@ there is a Killing spinor € well-defined on the horizon

Following [Friedrich, Racz, Wald], one can introduce a Gaussian null
co-ordinate system, with co-ordinates u,r,y’, such that V = a%' the
horizon is at » = 0, and the metric is

ds® = 2drdu + 27“h1dudy1 — r2Adudu + WdeIdyJ

where A, hy and 77 are u-independent scalar, 1-form and metric of the
spatial cross section of the horizon S, which we shall assume compact
and without boundary.



Then we perform the near-horizon limit [Reall et al.]
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the metric remains invariant in form, but A, h; and ~;; no longer
depend by 7, only by y.
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The near-horizon limit only exists for extremal black holes.



Moreover, we require that all bosonic fields are well-defined and regular in
the near-horizon limit.

@ The dilaton

® = 2(y)

@ The 3-form field H = dB

H=etANe  AN+ret AY +W

N,Y,W are only y-dependent 1, 2, 3-forms, constrained by dH = 0.

Now that we know explicitly the u and r dependence of all bosonic fields,
it is straightforward to integrate up the "+"” and "-" components of the
gravitino KSE for any Killing spinor.



Using some global analysis on the spinors
A=0 N=h W= alp
We split the Killing spinors in positive and negative light-cone chiralities
€E=€r +e_ TG =0 i@l =
and we have
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Ga = ffLe +r iuhif DL =

where ny+ = n+(y) do not depend on r and w.

The spinors 7+ must satisfy a number of differential and algebraic
conditions as a consequence of the spatial components of the KSE.



Supersymmetry enhancement

The reduced KSE are:
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Anomaly Corrected Heterotic Supergravity

The Green-Schwarz anomaly cancellation mechanism requires that

/
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The KSE become
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Near-horizon geometries

Gaussian null co-ordinates and the near horizon limit follow the same
construction done for the tree-level case.

All fields, both bosonic and fermionic, receive corrections O(a')

g= g[o] +a/g[l] —|—O(a’2) s 6[0] —|—ale[l] —|—0(a/2)

Since H is no longer closed, in the near-horizon limit it takes the form
H=e"Ae " AN+ret AY +W
where N, Y, W are only y dependent 1, 2, 3-forms.

The KSE can be integrated along the "+" and "-" directions.
Using some global analysis on the spinor
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The reduced KSE are:
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Lichnerowicz Theorem

Can we identify Killing spinors 7. with the zero modes of a certain
Dirac operator?

If it would work, than from the Index of the Dirac operator we could
count the number of zero modes and hence the number of
supersymmetries.

Define the modified connection with torsion
Vi=V® kA

and the modified near-horizon Dirac operator
D=T"V" 44

where k and ¢ are real numbers.



Consider the functional
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(set ¢ =75 and c = —2). If 0 < K < &, then
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Lichnerowicz Theorem does not ensure SUSY enhancement.

However it gives extra conditions

EjF”ni = O(O/) 9 dhijl”vjni = O(O/)



Supersymmetry enhancement?

Through the analysis, one has to consider separately the two cases
whether

n[,o] #0 or 77[+O] #0

o In the 17[_0] # 0 case, using local analysis
VB h = 0(a'?)

= 3 SUSY enhancement!

@ However it does not work for the 175(_)] # 0 case ...



Conclusions

Summary

o At tree level, Lichn~erowicz Theorems are not needed.
Global analysis of V2h? =  SUSY enhancement

o o corrected, V2h? analysis + Lichnerowicz are insufficient to imply
SUSY enhancement, but do imply conditions on other fields
(eg Fne=0(a))

o If 77[_0] #0 = SUSY enhancement because VO h, = O(a?)
by local analysis

Open question

Any argument to prove (or disprove) supersymmetry enhancement?
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