Instantons and Donaldson invariants

George Korpas

Trinity College Dublin
IFT, November 20, 2015

A problem in mathematics

A problem in mathematics

- Important probem: classify d-manifolds up to diffeomorphisms.

A problem in mathematics

- Important probem: classify d-manifolds up to diffeomorphisms.
- E.g., in $d=3$, the Poincaré conjecture [proved in 2002, Pelerman].

A problem in mathematics

- Important probem: classify d-manifolds up to diffeomorphisms.
- E.g., in $d=3$, the Poincaré conjecture [proved in 2002, Pelerman].
- The main such classification problem, still open, is in $d=4$.

A problem in mathematics

- Important probem: classify d-manifolds up to diffeomorphisms.
- E.g., in $d=3$, the Poincaré conjecture [proved in 2002, Pelerman].
- The main such classification problem, still open, is in $d=4$.
- One classification can be performed using appropriate topological invariants.

A problem in mathematics

- Important probem: classify d-manifolds up to diffeomorphisms.
- E.g., in $d=3$, the Poincaré conjecture [proved in 2002, Pelerman].
- The main such classification problem, still open, is in $d=4$.
- One classification can be performed using appropriate topological invariants.
- Freedman: any two smooth simply connected 4-manifolds $\mathcal{M}_{1}, \mathcal{M}_{2}$ are homotopy equivalent if they have the same intersection form $Q_{\mathcal{M}}$, i.e. if $Q_{\mathcal{M}_{1}}=Q_{\mathcal{M}_{2}}$.

A problem in mathematics

- Important probem: classify d-manifolds up to diffeomorphisms.
- E.g., in $d=3$, the Poincaré conjecture [proved in 2002, Pelerman].
- The main such classification problem, still open, is in $d=4$.
- One classification can be performed using appropriate topological invariants.
- Freedman: any two smooth simply connected 4-manifolds $\mathcal{M}_{1}, \mathcal{M}_{2}$ are homotopy equivalent if they have the same intersection form $Q_{\mathcal{M}}$, i.e. if $Q_{\mathcal{M}_{1}}=Q_{\mathcal{M}_{2}}$.

$$
\begin{gathered}
Q_{\mathcal{M}}: H^{2}(\mathcal{M}, \mathbb{Z}) \times H^{2}(\mathcal{M}, \mathbb{Z}) \rightarrow \mathbb{Z} \\
Q_{\mathcal{M}}(a, b)=\int_{\mathcal{M}} a \wedge b
\end{gathered}
$$

where $a, b \in H^{2}(\mathcal{M}, \mathbb{Z})$.

A problem in mathematics

- Not good enough since there exist "exotic" 4-manifolds, e.g. exotic \mathbb{R}^{4} 's homeomorphic to the standard \mathbb{R}^{4} but not diffeomorphic to it.

A problem in mathematics

- Not good enough since there exist "exotic" 4-manifolds, e.g. exotic \mathbb{R}^{4} 's homeomorphic to the standard \mathbb{R}^{4} but not diffeomorphic to it.
- We need some type of invariant able to distinguish between diffeomorphisms.

A problem in mathematics

- Not good enough since there exist "exotic" 4-manifolds, e.g. exotic \mathbb{R}^{4} 's homeomorphic to the standard \mathbb{R}^{4} but not diffeomorphic to it.
- We need some type of invariant able to distinguish between diffeomorphisms.
- Donaldson: new class of invariants studying non-abelian instantons on 4-manifolds.

A problem in mathematics

- Not good enough since there exist "exotic" 4-manifolds, e.g. exotic \mathbb{R}^{4} 's homeomorphic to the standard \mathbb{R}^{4} but not diffeomorphic to it.
- We need some type of invariant able to distinguish between diffeomorphisms.
- Donaldson: new class of invariants studying non-abelian instantons on 4-manifolds.
- Instantons: gauge field configurations satisfying the SD and ASD equations

$$
\star F= \pm F
$$

where $F=d A+A \wedge A$

A problem in mathematics

- Not good enough since there exist "exotic" 4-manifolds, e.g. exotic \mathbb{R}^{4} 's homeomorphic to the standard \mathbb{R}^{4} but not diffeomorphic to it.
- We need some type of invariant able to distinguish between diffeomorphisms.
- Donaldson: new class of invariants studying non-abelian instantons on 4-manifolds.
- Instantons: gauge field configurations satisfying the SD and ASD equations

$$
\star F= \pm F
$$

where $F=d A+A \wedge A$ and with instanton number

$$
k=-\frac{1}{8 \pi^{2}} \int_{\mathcal{M}} \operatorname{tr}\left\|F^{2}\right\|=c_{2}(\mathcal{E})
$$

A problem in mathematics

- Not good enough since there exist "exotic" 4-manifolds, e.g. exotic \mathbb{R}^{4} 's homeomorphic to the standard \mathbb{R}^{4} but not diffeomorphic to it.
- We need some type of invariant able to distinguish between diffeomorphisms.
- Donaldson: new class of invariants studying non-abelian instantons on 4-manifolds.
- Instantons: gauge field configurations satisfying the SD and ASD equations

$$
\star F= \pm F
$$

where $F=d A+A \wedge A$ and with instanton number

$$
k=-\frac{1}{8 \pi^{2}} \int_{\mathcal{M}} \operatorname{tr}\left\|F^{2}\right\|=c_{2}(\mathcal{E})
$$

\mathcal{E} is the G-bundle, and moduli space of (k-instantons)

$$
\tilde{\mathcal{M}}_{k}^{G}=\mathcal{M}_{k}^{G} \cup\left(\mathcal{M}_{k-1}^{G} \times \mathbb{R}^{4}\right) \times\left(\mathcal{M}_{k-2}^{G} \times \operatorname{Sym}^{2} \mathbb{R}^{4}\right) \times \ldots \times\left(\mathrm{Sym}^{k} \mathbb{R}^{4}\right)
$$

A problem in mathematics

- Not good enough since there exist "exotic" 4-manifolds, e.g. exotic \mathbb{R}^{4} 's homeomorphic to the standard \mathbb{R}^{4} but not diffeomorphic to it.
- We need some type of invariant able to distinguish between diffeomorphisms.
- Donaldson: new class of invariants studying non-abelian instantons on 4-manifolds.
- Instantons: gauge field configurations satisfying the SD and ASD equations

$$
\star F= \pm F
$$

where $F=d A+A \wedge A$ and with instanton number

$$
k=-\frac{1}{8 \pi^{2}} \int_{\mathcal{M}} \operatorname{tr}\left\|F^{2}\right\|=c_{2}(\mathcal{E})
$$

\mathcal{E} is the G-bundle, and moduli space of (k-instantons)
$\tilde{\mathcal{M}}_{k}^{G}=\mathcal{M}_{k}^{G} \cup\left(\mathcal{M}_{k-1}^{G} \times \mathbb{R}^{4}\right) \times\left(\mathcal{M}_{k-2}^{G} \times \operatorname{Sym}^{2} \mathbb{R}^{4}\right) \times \ldots \times\left(\mathrm{Sym}^{k} \mathbb{R}^{4}\right)$

- Donaldson invariants are polynomials on (specific) cycles of $H^{n}(\mathcal{M})$. Physically: correlation functions of operators of the corresponding gauge theory on \mathcal{M}.

A problem in physics

- One of the main objects of interest in a QFT is its partition function

$$
\mathcal{Z}[\Phi]=\int[D \Phi] e^{i S[\Phi]}
$$

A problem in physics

- One of the main objects of interest in a QFT is its partition function

$$
\mathcal{Z}[\Phi]=\int[D \Phi] e^{i S[\Phi]}
$$

- If one knows the partition function then it is possible to calculate the correlation functions of various operators of the theory.

A problem in physics

- One of the main objects of interest in a QFT is its partition function

$$
\mathcal{Z}[\Phi]=\int[D \Phi] e^{i S[\Phi]}
$$

- If one knows the partition function then it is possible to calculate the correlation functions of various operators of the theory.
- In general it is extremely hard to analytically study the partition function of a QFT.

A problem in physics

- One of the main objects of interest in a QFT is its partition function

$$
\mathcal{Z}[\Phi]=\int[D \Phi] e^{i S[\Phi]}
$$

- If one knows the partition function then it is possible to calculate the correlation functions of various operators of the theory.
- In general it is extremely hard to analytically study the partition function of a QFT.
- Despite that, progress in $\mathcal{N}=2$ SYM theories in mid 90's (Seiberg-Witten solution) and all through the last 15 years (Nekrasov partition function, SUSY localization on S^{4} by Pestun, etc) have allowed us to explicitly calculate the exact form of \mathcal{Z} in some cases.

A problem in physics

- One of the main objects of interest in a QFT is its partition function

$$
\mathcal{Z}[\Phi]=\int[D \Phi] e^{i S[\Phi]}
$$

- If one knows the partition function then it is possible to calculate the correlation functions of various operators of the theory.
- In general it is extremely hard to analytically study the partition function of a QFT.
- Despite that, progress in $\mathcal{N}=2$ SYM theories in mid 90's (Seiberg-Witten solution) and all through the last 15 years (Nekrasov partition function, SUSY localization on S^{4} by Pestun, etc) have allowed us to explicitly calculate the exact form of \mathcal{Z} in some cases.
- Here we will show how to compute the partition function of the topologically twisted $\mathcal{N}=2$ SYM living on a toric variety.

A problem in physics

- One of the main objects of interest in a QFT is its partition function

$$
\mathcal{Z}[\Phi]=\int[D \Phi] e^{i S[\Phi]}
$$

- If one knows the partition function then it is possible to calculate the correlation functions of various operators of the theory.
- In general it is extremely hard to analytically study the partition function of a QFT.
- Despite that, progress in $\mathcal{N}=2$ SYM theories in mid 90's (Seiberg-Witten solution) and all through the last 15 years (Nekrasov partition function, SUSY localization on S^{4} by Pestun, etc) have allowed us to explicitly calculate the exact form of \mathcal{Z} in some cases.
- Here we will show how to compute the partition function of the topologically twisted $\mathcal{N}=2$ SYM living on a toric variety.
- A toric variety can be thought of, geometrically, as a generalization of the complex projective space \mathbb{P}^{n}.

The topological twist of $\mathcal{N}=2$ SYM

- Consider $\mathcal{N}=2$ SYM with gauge group \mathcal{G}

The topological twist of $\mathcal{N}=2$ SYM

- Consider $\mathcal{N}=2$ SYM with gauge group \mathcal{G}
- The Lagrangian of $\mathcal{N}=2$ SYM reads

$$
\mathcal{L}=-\frac{1}{8 g^{2}} \operatorname{tr} F \wedge \star F+\frac{\theta}{32 \pi} \operatorname{tr} F \wedge F+(\nabla \phi)^{2}+V(\phi)+\text { fermions }
$$

The topological twist of $\mathcal{N}=2$ SYM

- Consider $\mathcal{N}=2$ SYM with gauge group \mathcal{G}
- The Lagrangian of $\mathcal{N}=2$ SYM reads

$$
\mathcal{L}=-\frac{1}{8 g^{2}} \operatorname{tr} F \wedge \star F+\frac{\theta}{32 \pi} \operatorname{tr} F \wedge F+(\nabla \phi)^{2}+V(\phi)+\text { fermions }
$$

- The global symmetry group of $\mathcal{N}=2$ SYM is the following one

$$
\mathcal{H}=\underbrace{S U(2)_{+} \times S U(2)_{-}}_{\mathcal{K} \simeq \operatorname{Spin}(4)} \times \underbrace{S U(2)_{I} \times U(1)_{R}}_{\mathcal{R} \curvearrowleft \operatorname{Spin}(6)}
$$

The topological twist of $\mathcal{N}=2 \mathrm{SYM}$

- Consider $\mathcal{N}=2$ SYM with gauge group \mathcal{G}
- The Lagrangian of $\mathcal{N}=2$ SYM reads

$$
\mathcal{L}=-\frac{1}{8 g^{2}} \operatorname{tr} F \wedge \star F+\frac{\theta}{32 \pi} \operatorname{tr} F \wedge F+(\nabla \phi)^{2}+V(\phi)+\text { fermions }
$$

- The global symmetry group of $\mathcal{N}=2$ SYM is the following one

$$
\mathcal{H}=\underbrace{S U(2)_{+} \times S U(2)_{-}}_{\mathcal{K} \simeq \operatorname{Spin}(4)} \times \underbrace{S U(2)_{I} \times U(1)_{R}}_{\mathcal{R} \curvearrowleft \operatorname{Spin}(6)}
$$

- Twisting is interpreting the rotation group as some other subgroup of \mathcal{H} [Witten].

The topological twist of $\mathcal{N}=2 \mathrm{SYM}$

- Consider $\mathcal{N}=2$ SYM with gauge group \mathcal{G}
- The Lagrangian of $\mathcal{N}=2$ SYM reads

$$
\mathcal{L}=-\frac{1}{8 g^{2}} \operatorname{tr} F \wedge \star F+\frac{\theta}{32 \pi} \operatorname{tr} F \wedge F+(\nabla \phi)^{2}+V(\phi)+\text { fermions }
$$

- The global symmetry group of $\mathcal{N}=2$ SYM is the following one

$$
\mathcal{H}=\underbrace{S U(2)_{+} \times S U(2)_{-}}_{\mathcal{K} \simeq \operatorname{Spin}(4)} \times \underbrace{S U(2)_{I} \times U(1)_{R}}_{\mathcal{R} \curvearrowleft \operatorname{Spin}(6)}
$$

- Twisting is interpreting the rotation group as some other subgroup of \mathcal{H} [Witten].
- Why twist?

The topological twist of $\mathcal{N}=2$ SYM

- Consider $\mathcal{N}=2$ SYM with gauge group \mathcal{G}
- The Lagrangian of $\mathcal{N}=2$ SYM reads

$$
\mathcal{L}=-\frac{1}{8 g^{2}} \operatorname{tr} F \wedge \star F+\frac{\theta}{32 \pi} \operatorname{tr} F \wedge F+(\nabla \phi)^{2}+V(\phi)+\text { fermions }
$$

- The global symmetry group of $\mathcal{N}=2$ SYM is the following one

$$
\mathcal{H}=\underbrace{S U(2)_{+} \times S U(2)_{-}}_{\mathcal{K} \simeq \operatorname{Spin}(4)} \times \underbrace{S U(2)_{I} \times U(1)_{R}}_{\mathcal{R} \curvearrowleft \operatorname{Spin}(6)}
$$

- Twisting is interpreting the rotation group as some other subgroup of \mathcal{H} [Witten].
- Why twist?
- Allow susy on general 4-manifolds with arbitrary curvature.

The topological twist of $\mathcal{N}=2$ SYM

- Consider $\mathcal{N}=2$ SYM with gauge group \mathcal{G}
- The Lagrangian of $\mathcal{N}=2$ SYM reads

$$
\mathcal{L}=-\frac{1}{8 g^{2}} \operatorname{tr} F \wedge \star F+\frac{\theta}{32 \pi} \operatorname{tr} F \wedge F+(\nabla \phi)^{2}+V(\phi)+\text { fermions }
$$

- The global symmetry group of $\mathcal{N}=2$ SYM is the following one

$$
\mathcal{H}=\underbrace{S U(2)_{+} \times S U(2)_{-}}_{\mathcal{K} \simeq \operatorname{Spin}(4)} \times \underbrace{S U(2)_{I} \times U(1)_{R}}_{\mathcal{R} \curvearrowleft \operatorname{Spin}(6)}
$$

- Twisting is interpreting the rotation group as some other subgroup of \mathcal{H} [Witten].
- Why twist?
- Allow susy on general 4-manifolds with arbitrary curvature.
- Oservables of twisted theory become a subset of the ones of the original one with some nice properties.

The topological twist of $\mathcal{N}=2$ SYM

- The twist of the $\mathcal{N}=2$ susy algebra consists of considering our rotation group as different subgroup of \mathcal{H}, namely

The topological twist of $\mathcal{N}=2$ SYM

- The twist of the $\mathcal{N}=2$ susy algebra consists of considering our rotation group as different subgroup of \mathcal{H}, namely

$$
\mathcal{K}^{\prime}=S U(2)_{+}^{\prime} \times S U(2)_{-}
$$

where $S U(2)_{+}^{\prime}=\operatorname{diag}\left(S U(2)_{+} \times S U(2)_{I}\right)$.

The topological twist of $\mathcal{N}=2$ SYM

- The twist of the $\mathcal{N}=2$ susy algebra consists of considering our rotation group as different subgroup of \mathcal{H}, namely

$$
\mathcal{K}^{\prime}=S U(2)_{+}^{\prime} \times S U(2)_{-}
$$

where $S U(2)_{+}^{\prime}=\operatorname{diag}\left(S U(2)_{+} \times S U(2)_{I}\right)$.

- Under $\mathcal{H}^{\prime}=\mathcal{K}^{\prime} \times U(1)_{R}$ one of the susy generators becomes a scalar one, \mathcal{Q}, while the overall procedure makes the theory a TQFT.

The topological twist of $\mathcal{N}=2 \mathrm{SYM}$

- The twist of the $\mathcal{N}=2$ susy algebra consists of considering our rotation group as different subgroup of \mathcal{H}, namely

$$
\mathcal{K}^{\prime}=S U(2)_{+}^{\prime} \times S U(2)_{-}
$$

where $S U(2)_{+}^{\prime}=\operatorname{diag}\left(S U(2)_{+} \times S U(2)_{I}\right)$.

- Under $\mathcal{H}^{\prime}=\mathcal{K}^{\prime} \times U(1)_{R}$ one of the susy generators becomes a scalar one, \mathcal{Q}, while the overall procedure makes the theory a TQFT.
- The theory is topological for the simple reason that certains correlators are invariant under variation of the metric. This means that the energy-momentum tensor is \mathcal{Q}-exact.

The topological twist of $\mathcal{N}=2 \mathrm{SYM}$

- The twist of the $\mathcal{N}=2$ susy algebra consists of considering our rotation group as different subgroup of \mathcal{H}, namely

$$
\mathcal{K}^{\prime}=S U(2)_{+}^{\prime} \times S U(2)_{-}
$$

where $S U(2)_{+}^{\prime}=\operatorname{diag}\left(S U(2)_{+} \times S U(2)_{I}\right)$.

- Under $\mathcal{H}^{\prime}=\mathcal{K}^{\prime} \times U(1)_{R}$ one of the susy generators becomes a scalar one, \mathcal{Q}, while the overall procedure makes the theory a TQFT.
- The theory is topological for the simple reason that certains correlators are invariant under variation of the metric. This means that the energy-momentum tensor is \mathcal{Q}-exact.
- Actually one gets the cohomology ring

$$
\mathcal{H}=\frac{\text { Kernel } \mathcal{Q}}{\text { Image } \mathcal{Q}}
$$

and the various observables are elements of the cohomology groups.

Donaldson-Witten theory

- The topologically twisted $\mathcal{N}=2$ theory is called Donaldson-Witten theory.

Donaldson-Witten theory

- The topologically twisted $\mathcal{N}=2$ theory is called Donaldson-Witten theory.
- The field content is slightly different than the original $\mathcal{N}=2$ SYM theory $\left(\Phi, A, \Psi, \eta, \chi^{+}, B^{+}\right)$

Donaldson-Witten theory

- The topologically twisted $\mathcal{N}=2$ theory is called Donaldson-Witten theory.
- The field content is slightly different than the original $\mathcal{N}=2 \mathrm{SYM}$ theory $\left(\Phi, A, \Psi, \eta, \chi^{+}, B^{+}\right)$
- For bundles with non-vanishing first Chern class, c_{1}, we have

$$
c_{1}=\frac{1}{2 \pi} \int_{\mathcal{M}} \operatorname{tr} F \in H^{2}(\mathcal{M})
$$

in order to be able to sum over all possible vacua of our theory and to allow any kind of fluxes.

Donaldson-Witten theory

- The topologically twisted $\mathcal{N}=2$ theory is called Donaldson-Witten theory.
- The field content is slightly different than the original $\mathcal{N}=2 \mathrm{SYM}$ theory $\left(\Phi, A, \Psi, \eta, \chi^{+}, B^{+}\right)$
- For bundles with non-vanishing first Chern class, c_{1}, we have

$$
c_{1}=\frac{1}{2 \pi} \int_{\mathcal{M}} \operatorname{tr} F \in H^{2}(\mathcal{M})
$$

in order to be able to sum over all possible vacua of our theory and to allow any kind of fluxes.

- Under the twist the Lagrangian reads

$$
\mathcal{L}=\frac{i \tau}{4 \pi} \operatorname{tr} F \wedge F+\omega \wedge \operatorname{tr} F+\mathcal{Q} \mathcal{V}
$$

Donaldson-Witten theory

- The topologically twisted $\mathcal{N}=2$ theory is called Donaldson-Witten theory.
- The field content is slightly different than the original $\mathcal{N}=2 \mathrm{SYM}$ theory $\left(\Phi, A, \Psi, \eta, \chi^{+}, B^{+}\right)$
- For bundles with non-vanishing first Chern class, c_{1}, we have

$$
c_{1}=\frac{1}{2 \pi} \int_{\mathcal{M}} \operatorname{tr} F \in H^{2}(\mathcal{M})
$$

in order to be able to sum over all possible vacua of our theory and to allow any kind of fluxes.

- Under the twist the Lagrangian reads

$$
\mathcal{L}=\frac{i \tau}{4 \pi} \operatorname{tr} F \wedge F+\omega \wedge \operatorname{tr} F+\mathcal{Q} \mathcal{V}
$$

where $\omega \in H^{2}(\mathcal{M}, \mathbb{R})$ and \mathcal{V} is a standard \mathcal{Q}-exact term that makes localization possible.

$$
\tau=\frac{i}{g^{2}}+\frac{\theta}{2 \pi}
$$

Supersymmetric localization

- Idea: apply something called equivariant localization techniques to reduce the path integral to its susy fixed points.

Supersymmetric localization

- Idea: apply something called equivariant localization techniques to reduce the path integral to its susy fixed points.
- Consider for example \mathbb{C}^{2}.

Supersymmetric localization

- Idea: apply something called equivariant localization techniques to reduce the path integral to its susy fixed points.
- Consider for example \mathbb{C}^{2}.
- Coordinates of \mathbb{C}^{2} by z_{1} and z_{2} and allow

$$
z_{1} \rightarrow e^{\epsilon_{1}} z_{1} \quad z_{2} \rightarrow e^{\epsilon_{2}} z_{2}
$$

This is the famous Ω-background of Nekrasov (think about it as a \mathbb{C}^{2} bundle over S^{1}).

Supersymmetric localization

- Idea: apply something called equivariant localization techniques to reduce the path integral to its susy fixed points.
- Consider for example \mathbb{C}^{2}.
- Coordinates of \mathbb{C}^{2} by z_{1} and z_{2} and allow

$$
z_{1} \rightarrow e^{\epsilon_{1}} z_{1} \quad z_{2} \rightarrow e^{\epsilon_{2}} z_{2}
$$

This is the famous Ω-background of Nekrasov (think about it as a \mathbb{C}^{2} bundle over S^{1})

- Path integral, for our twisted theory in Ω-background receivesonly a finite contribution from point-like instantons (for the non-perturbative part).
- How it works?

Supersymmetric localization

- Idea: apply something called equivariant localization techniques to reduce the path integral to its susy fixed points.
- Consider for example \mathbb{C}^{2}.
- Coordinates of \mathbb{C}^{2} by z_{1} and z_{2} and allow

$$
z_{1} \rightarrow e^{\epsilon_{1}} z_{1} \quad z_{2} \rightarrow e^{\epsilon_{2}} z_{2}
$$

This is the famous Ω-background of Nekrasov (think about it as a \mathbb{C}^{2} bundle over S^{1}).

- Path integral, for our twisted theory in Ω-background receivesonly a finite contribution from point-like instantons (for the non-perturbative part).
- How it works? The \mathcal{Q}-exactness of the \mathcal{V} term requires we set the fermions to zero.

Supersymmetric localization

- Idea: apply something called equivariant localization techniques to reduce the path integral to its susy fixed points.
- Consider for example \mathbb{C}^{2}.
- Coordinates of \mathbb{C}^{2} by z_{1} and z_{2} and allow

$$
z_{1} \rightarrow e^{\epsilon_{1}} z_{1} \quad z_{2} \rightarrow e^{\epsilon_{2}} z_{2}
$$

This is the famous Ω-background of Nekrasov (think about it as a \mathbb{C}^{2} bundle over S^{1}).

- Path integral, for our twisted theory in Ω-background receivesonly a finite contribution from point-like instantons (for the non-perturbative part).
- How it works? The \mathcal{Q}-exactness of the \mathcal{V} term requires we set the fermions to zero.
- Then the instanton partition function only receives contributions from point-like instantons of the fixed points of \mathbb{C}^{2} [Nekrasov] and $\mathcal{Z}_{\text {inst }}^{\mathbb{C}^{2}}$ can be calculated exactly.

The torus action on \mathbb{P}^{2}

The torus action on \mathbb{P}^{2}

- We will consider the case of $\mathbb{P}^{2}=\left(\mathbb{C}^{3} \backslash\{0\}\right) /\left(\mathbb{C}^{*}\right)$

The torus action on \mathbb{P}^{2}

- We will consider the case of $\mathbb{P}^{2}=\left(\mathbb{C}^{3} \backslash\{0\}\right) /\left(\mathbb{C}^{*}\right)$
- Homogeneous coordinates of \mathbb{P}^{2} are $\left[z_{0}: z_{1}: z_{2}\right]$ we can get three patches that locally look like \mathbb{C}^{2}, i.e. we have three fixed points of the torus action.

The torus action on \mathbb{P}^{2}

- We will consider the case of $\mathbb{P}^{2}=\left(\mathbb{C}^{3} \backslash\{0\}\right) /\left(\mathbb{C}^{*}\right)$
- Homogeneous coordinates of \mathbb{P}^{2} are $\left[z_{0}: z_{1}: z_{2}\right]$ we can get three patches that locally look like \mathbb{C}^{2}, i.e. we have three fixed points of the torus action.
- The torus action itself is generated on each patch $l=0,1,2$ by a vector field $V\left(\epsilon_{1}^{(l)}, \epsilon_{2}^{(l)}\right)$.

The torus action on \mathbb{P}^{2}

- We will consider the case of $\mathbb{P}^{2}=\left(\mathbb{C}^{3} \backslash\{0\}\right) /\left(\mathbb{C}^{*}\right)$
- Homogeneous coordinates of \mathbb{P}^{2} are $\left[z_{0}: z_{1}: z_{2}\right]$ we can get three patches that locally look like \mathbb{C}^{2}, i.e. we have three fixed points of the torus action.
- The torus action itself is generated on each patch $l=0,1,2$ by a vector field $V\left(\epsilon_{1}^{(l)}, \epsilon_{2}^{(l)}\right)$.
- Susy is equivariant with respect to the maximal torus $U(1)^{N+2}$ acting on \mathbb{P}^{2}. The $U(1)^{2}$ factor is due to the vector field V.

The torus action on \mathbb{P}^{2}

- We will consider the case of $\mathbb{P}^{2}=\left(\mathbb{C}^{3} \backslash\{0\}\right) /\left(\mathbb{C}^{*}\right)$
- Homogeneous coordinates of \mathbb{P}^{2} are $\left[z_{0}: z_{1}: z_{2}\right]$ we can get three patches that locally look like \mathbb{C}^{2}, i.e. we have three fixed points of the torus action.
- The torus action itself is generated on each patch $l=0,1,2$ by a vector field $V\left(\epsilon_{1}^{(l)}, \epsilon_{2}^{(l)}\right)$.
- Susy is equivariant with respect to the maximal torus $U(1)^{N+2}$ acting on \mathbb{P}^{2}. The $U(1)^{2}$ factor is due to the vector field V. Actually this $U(1)^{2}$ factor corresponds to the same Ω-background of Nekrasov with parameters $\epsilon_{1}^{(l)}$ and $\epsilon_{2}^{(l)}$. Nekrasov only had one set of $\epsilon^{\prime} s$ since he worked in \mathbb{C}^{2} [Nekrasov 2002] .

The torus action on \mathbb{P}^{2}

- For each patch

l	$\epsilon_{1}^{(l)}$	$\epsilon_{2}^{(l)}$
0	ϵ_{1}	ϵ_{2}
1	$-\epsilon_{2}$	$\epsilon_{1}-\epsilon_{2}$
2	$\epsilon_{2}-\epsilon_{1}$	$-\epsilon_{1}$

The torus action on \mathbb{P}^{2}

- For each patch

l	$\epsilon_{1}^{(l)}$	$\epsilon_{2}^{(l)}$
0	ϵ_{1}	ϵ_{2}
1	$-\epsilon_{2}$	$\epsilon_{1}-\epsilon_{2}$
2	$\epsilon_{2}-\epsilon_{1}$	$-\epsilon_{1}$

- In order to compute the partition function we will need the Coulomb branch parameters $\vec{a}=\left(a_{1}, \ldots, a_{N}\right)$.

The torus action on \mathbb{P}^{2}

- For each patch

l	$\epsilon_{1}^{(l)}$	$\epsilon_{2}^{(l)}$
0	ϵ_{1}	ϵ_{2}
1	$-\epsilon_{2}$	$\epsilon_{1}-\epsilon_{2}$
2	$\epsilon_{2}-\epsilon_{1}$	$-\epsilon_{1}$

- In order to compute the partition function we will need the Coulomb branch parameters $\vec{a}=\left(a_{1}, \ldots, a_{N}\right)$.
- Also note that for each patch the Coulomb branch parameters change slightly, we have [Nakajima et. al.]

$$
\begin{aligned}
a_{i}^{(0)} & =a_{i}+p_{i} \epsilon_{1}+q_{i} \epsilon_{2} \\
a_{i}^{(1)} & =a_{i}+p_{i}\left(\epsilon_{1}-\epsilon_{2}\right)-r_{i} \epsilon_{2} \\
a_{i}^{(2)} & =a_{i}+q_{i}\left(\epsilon_{2}-\epsilon_{1}\right)-r_{i} \epsilon_{1}
\end{aligned}
$$

where $\vec{p}, \vec{q}, \vec{r}$ are some parameters whose sum is N, while $i=1, \ldots, N$.

Exact partition function

- The partition function for \mathbb{P}^{2} is then [Goottsche et. al., Bershtein et. al.]

$$
\mathcal{Z}_{\text {full }}^{\mathbb{P}^{2}}\left(\mathbf{q}, x, z, y ; \epsilon_{1,2}\right)=\sum_{\left\{p_{i}, q_{i}, r_{i}\right\}} \oint d a \prod_{l=0}^{2} \mathcal{Z}_{\text {full }}^{\mathbb{C}^{2}}\left(\mathbf{q}^{(l)} ; a^{(l)}, \epsilon_{1,2}^{(l)}\right) y^{c_{1}^{(l)}}
$$

Exact partition function

- The partition function for \mathbb{P}^{2} is then [Goottsche et. al., Bershtein et. al.]

$$
\mathcal{Z}_{\text {full }}^{\mathbb{P}^{2}}\left(\mathbf{q}, x, z, y ; \epsilon_{1,2}\right)=\sum_{\left\{p_{i}, q_{i}, r_{i}\right\}} \oint d a \prod_{l=0}^{2} \mathcal{Z}_{\text {full }}^{\mathbb{C}^{2}}\left(\mathbf{q}^{(l)} ; a^{(l)}, \epsilon_{1,2}^{(l)}\right) y^{c_{1}^{(l)}}
$$

that is, for \mathbb{P}^{2} we need to compute Nekrasov's partition function on each \mathbb{C}^{2} patch separately and then glue them together.

Exact partition function

- The partition function for \mathbb{P}^{2} is then [Goottsche et. al., Bershtein et. al.]

$$
\mathcal{Z}_{\text {full }}^{\mathbb{P}^{2}}\left(\mathbf{q}, x, z, y ; \epsilon_{1,2}\right)=\sum_{\left\{p_{i}, q_{i}, r_{i}\right\}} \oint d a \prod_{l=0}^{2} \mathcal{Z}_{\text {fuul }}^{\mathbb{C}^{2}}\left(\mathbf{q}^{(l)} ; a^{(l)}, \epsilon_{1,2}^{(l)}\right) y^{c_{1}^{(l)}}
$$

that is, for \mathbb{P}^{2} we need to compute Nekrasov's partition function on each \mathbb{C}^{2} patch separately and then glue them together.

- Nekrasov's instanton partition function has a combinatorial nature. Information is encoded in partitions of the instanton number represented by Young diagrams.

Exact partition function

- So we have the product of three partition functions. One for each patch of \mathbb{P}^{2}.

Exact partition function

- So we have the product of three partition functions. One for each patch of \mathbb{P}^{2}.
- The Nekrasov partition function on each patch is

$$
\mathcal{Z}_{\text {inst }}^{\mathbb{C}^{2}}\left(\mathbf{q} ; \vec{a}, \epsilon_{1,2}\right)=\sum_{\left\{Y_{\alpha}\right\}} \mathbf{q}^{|\vec{Y}|} Z_{\text {hyper }}\left(\vec{a}, \vec{Y}, \epsilon_{1,2}\right)
$$

Exact partition function

- So we have the product of three partition functions. One for each patch of \mathbb{P}^{2}.
- The Nekrasov partition function on each patch is

$$
\mathcal{Z}_{\text {inst }}^{\mathbb{C}^{2}}\left(\mathbf{q} ; \vec{a}, \epsilon_{1,2}\right)=\sum_{\left\{Y_{\alpha}\right\}} \mathbf{q}^{|\vec{Y}|} Z_{\text {hyper }}\left(\vec{a}, \vec{Y}, \epsilon_{1,2}\right)
$$

and where

$$
\begin{aligned}
Z_{\mathrm{hyper}}\left(\vec{a}, \vec{Y}, \epsilon_{1,2}\right)= & \prod_{a, b=1}^{N} \prod_{s \in Y_{a}}\left(a_{b a}-L_{Y_{b}} \epsilon_{1}+\left(A_{Y_{a}}+1\right) \epsilon_{2}\right)^{-1} \\
& \times\left(a_{a b}+\left(L_{Y_{b}}+1\right) \epsilon_{1}-A_{Y_{a}} \epsilon_{2}\right)^{-1}
\end{aligned}
$$

Here A is the Young diagram's arm function and L its leg function while $\mathbf{q}=e^{2 \pi i \tau}$.

Exact partition function

- So we have the product of three partition functions. One for each patch of \mathbb{P}^{2}.
- The Nekrasov partition function on each patch is

$$
\mathcal{Z}_{\text {inst }}^{\mathbb{C}^{2}}\left(\mathbf{q} ; \vec{a}, \epsilon_{1,2}\right)=\sum_{\left\{Y_{\alpha}\right\}} \mathbf{q}^{|\vec{Y}|} Z_{\text {hyper }}\left(\vec{a}, \vec{Y}, \epsilon_{1,2}\right)
$$

and where

$$
\begin{aligned}
Z_{\mathrm{hyper}}\left(\vec{a}, \vec{Y}, \epsilon_{1,2}\right)= & \prod_{a, b=1}^{N} \prod_{s \in Y_{a}}\left(a_{b a}-L_{Y_{b}} \epsilon_{1}+\left(A_{Y_{a}}+1\right) \epsilon_{2}\right)^{-1} \\
& \times\left(a_{a b}+\left(L_{Y_{b}}+1\right) \epsilon_{1}-A_{Y_{a}} \epsilon_{2}\right)^{-1}
\end{aligned}
$$

Here A is the Young diagram's arm function and L its leg function while $\mathbf{q}=e^{2 \pi i \tau}$.

- Once we have calculated the partition function on each patch we have to glue the patches together. But this is not trivial.

Example: $U(2)$ and $k=1$

- This is the simplest example. The Young configurations that contribute are

$$
\square \oplus \emptyset \text { and } \emptyset \oplus \square
$$

Example: $U(2)$ and $k=1$

- This is the simplest example. The Young configurations that contribute are

$$
\square \oplus \emptyset \text { and } \emptyset \oplus \square
$$

- The partition function on the first patch of \mathbb{P}^{2} is

$$
\mathcal{Z}_{\text {inst }}^{\mathbb{C}_{(0)}^{2}}=\mathbf{q}^{2}\left(\frac{1}{\epsilon_{1} \epsilon_{2} a_{12}\left(a_{21}+\epsilon_{1}+\epsilon_{2}\right)}+\frac{1}{\epsilon_{1} \epsilon_{2} a_{21}\left(a_{12}+\epsilon_{1}+\epsilon_{2}\right)}\right)
$$

Example: $U(2)$ and $k=1$

- This is the simplest example. The Young configurations that contribute are

$$
\square \oplus \emptyset \text { and } \emptyset \oplus \square
$$

- The partition function on the first patch of \mathbb{P}^{2} is

$$
\mathcal{Z}_{\text {inst }}^{\mathbb{C}_{(0)}^{2}}=\mathbf{q}^{2}\left(\frac{1}{\epsilon_{1} \epsilon_{2} a_{12}\left(a_{21}+\epsilon_{1}+\epsilon_{2}\right)}+\frac{1}{\epsilon_{1} \epsilon_{2} a_{21}\left(a_{12}+\epsilon_{1}+\epsilon_{2}\right)}\right)
$$

- Using the equivariant variables $\epsilon_{1}^{(l)}, \epsilon_{2}^{(l)}$ for $l=0,1,2$ we can easily write down the full partition function as the product

$$
\mathcal{Z}_{\text {inst }}^{\mathbb{C}^{2}}=\mathcal{Z}_{\text {inst }}^{\mathbb{C}_{(0)}^{2}} \mathcal{Z}_{\text {inst }}^{\mathbb{C}_{(1)}^{2}} \mathcal{Z}_{\text {inst }}^{\mathbb{C}_{(2)}^{2}}
$$

$U(2)$ and $k=2$

- This is slightly more complicated since we have 5 Young configurations in total

$\square \oplus \square$
$U(2)$ and $k=2$
- This is slightly more complicated since we have 5 Young configurations in total

- For example, for the first configuration we have

$$
Z_{\mathrm{hyp}}^{\{2 \oplus \emptyset\}}=\frac{\left(2 \epsilon_{1}^{2} \epsilon_{2} a_{12}\right)^{-1}}{\left(-\epsilon_{1}+\epsilon_{2}\right)\left(a_{21}+2 \epsilon_{1}+\epsilon_{2}\right)\left(a_{21}+\epsilon_{1}+\epsilon_{2}\right)\left(a_{12}-\epsilon_{1}\right)}
$$

$U(2)$ and $k=2$

- This is slightly more complicated since we have 5 Young configurations in total

- For example, for the first configuration we have

$$
Z_{\mathrm{hyp}}^{\{2 \oplus \emptyset\}}=\frac{\left(2 \epsilon_{1}^{2} \epsilon_{2} a_{12}\right)^{-1}}{\left(-\epsilon_{1}+\epsilon_{2}\right)\left(a_{21}+2 \epsilon_{1}+\epsilon_{2}\right)\left(a_{21}+\epsilon_{1}+\epsilon_{2}\right)\left(a_{12}-\epsilon_{1}\right)}
$$

- Symmetries: $Z_{\text {hyp }}^{\{\emptyset \oplus 2\}}\left(a_{12}\right)=Z_{\text {hyp }}^{\{2 \oplus \emptyset\}}\left(a_{21}\right)$
$U(2)$ and $k=2$
- This is slightly more complicated since we have 5 Young configurations in total

- For example, for the first configuration we have

$$
Z_{\mathrm{hyp}}^{\{2 \oplus \emptyset\}}=\frac{\left(2 \epsilon_{1}^{2} \epsilon_{2} a_{12}\right)^{-1}}{\left(-\epsilon_{1}+\epsilon_{2}\right)\left(a_{21}+2 \epsilon_{1}+\epsilon_{2}\right)\left(a_{21}+\epsilon_{1}+\epsilon_{2}\right)\left(a_{12}-\epsilon_{1}\right)}
$$

- Symmetries: $Z_{\text {hyp }}^{\{\emptyset \oplus 2\}}\left(a_{12}\right)=Z_{\text {hyp }}^{\{2 \oplus \emptyset\}}\left(a_{21}\right)$
- Find the rest of the configurations, then glue the three \mathbb{C}^{2} contributions together.

Full partition function on \mathbb{P}^{2} and Donaldson invariants

- I have not told you that we also need to consider the $\mathcal{Z}_{\text {perturbative }}$ and $\mathcal{Z}_{1 \text {-loop }}$ contributions as well. Each of those gets a contribution from each \mathbb{C}^{2} patch of \mathbb{P}^{2} as well.

Full partition function on \mathbb{P}^{2} and Donaldson invariants

- I have not told you that we also need to consider the $\mathcal{Z}_{\text {perturbative }}$ and $\mathcal{Z}_{1 \text {-loop }}$ contributions as well. Each of those gets a contribution from each \mathbb{C}^{2} patch of \mathbb{P}^{2} as well.
- Thus the real partition function on \mathbb{P}^{2} is

$$
\mathcal{Z}^{\mathbb{P}^{2}} \backsim \prod_{1=0}^{2}\left(\mathcal{Z}_{\text {pert }}^{\mathbb{C}^{2}} \mathcal{Z}_{1-\text { loop }}^{\mathbb{C}^{2}} \mathcal{Z}_{\text {inst }}^{\mathbb{C}^{2}}\right)^{(l)}
$$

Full partition function on \mathbb{P}^{2} and Donaldson invariants

- I have not told you that we also need to consider the $\mathcal{Z}_{\text {perturbative }}$ and $\mathcal{Z}_{1 \text {-loop }}$ contributions as well. Each of those gets a contribution from each \mathbb{C}^{2} patch of \mathbb{P}^{2} as well.
- Thus the real partition function on \mathbb{P}^{2} is

$$
\mathcal{Z}^{\mathbb{P}^{2}} \backsim \prod_{1=0}^{2}\left(\mathcal{Z}_{\text {pert }}^{\mathbb{C}^{2}} \mathcal{Z}_{1-\text { loop }}^{\mathbb{C}^{2}} \mathcal{Z}_{\text {inst }}^{\mathbb{C}^{2}}\right)^{(l)}
$$

- Nekrasov: instanton partition function is the same as the equivariant Donaldson invariants.

Full partition function on \mathbb{P}^{2} and Donaldson invariants

- I have not told you that we also need to consider the $\mathcal{Z}_{\text {perturbative }}$ and $\mathcal{Z}_{1 \text {-loop }}$ contributions as well. Each of those gets a contribution from each \mathbb{C}^{2} patch of \mathbb{P}^{2} as well.
- Thus the real partition function on \mathbb{P}^{2} is

$$
\mathcal{Z}^{\mathbb{P}^{2}} \backsim \prod_{1=0}^{2}\left(\mathcal{Z}_{\text {pert }}^{\mathbb{C}^{2}} \mathcal{Z}_{1-\text { loop }}^{\mathbb{C}^{2}} \mathcal{Z}_{\text {inst }}^{\mathbb{C}^{2}}\right)^{(l)}
$$

- Nekrasov: instanton partition function is the same as the equivariant Donaldson invariants.
- At the non-equivariant limit $\epsilon_{1,2} \rightarrow 0$ then we get the corresponding Donaldson invariants.

Conclusion

- It is possible to calculate the partition function of certain susy gauge theories (we can add matter too) on 4-manifolds admitting certain isometries.
- We have shown how to do this for compact toric varieties with the representative being \mathbb{P}^{2}. Other known example is $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Other examples?

Conclusion

- It is possible to calculate the partition function of certain susy gauge theories (we can add matter too) on 4-manifolds admitting certain isometries.
- We have shown how to do this for compact toric varieties with the representative being \mathbb{P}^{2}. Other known example is $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Other examples? Hirzebruch surfaces (\mathbb{P}^{1} bundles over \mathbb{P}^{1}), etc..

Conclusion

- It is possible to calculate the partition function of certain susy gauge theories (we can add matter too) on 4-manifolds admitting certain isometries.
- We have shown how to do this for compact toric varieties with the representative being \mathbb{P}^{2}. Other known example is $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Other examples? Hirzebruch surfaces (\mathbb{P}^{1} bundles over \mathbb{P}^{1}), etc..
- The partition functions, if they can be calculated, in their non-equivariant limit should agree to the Donaldson invariants.

Conclusion

- It is possible to calculate the partition function of certain susy gauge theories (we can add matter too) on 4-manifolds admitting certain isometries.
- We have shown how to do this for compact toric varieties with the representative being \mathbb{P}^{2}. Other known example is $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Other examples? Hirzebruch surfaces (\mathbb{P}^{1} bundles over \mathbb{P}^{1}), etc..
- The partition functions, if they can be calculated, in their non-equivariant limit should agree to the Donaldson invariants.
- Applications extend to $\mathcal{N}^{*}=2$ theory where for $M_{\text {hyper }} \rightarrow 0$ gives the Euler characteristic of $\mathcal{N}=4$ instanton moduli space,

Conclusion

- It is possible to calculate the partition function of certain susy gauge theories (we can add matter too) on 4-manifolds admitting certain isometries.
- We have shown how to do this for compact toric varieties with the representative being \mathbb{P}^{2}. Other known example is $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Other examples? Hirzebruch surfaces (\mathbb{P}^{1} bundles over \mathbb{P}^{1}), etc..
- The partition functions, if they can be calculated, in their non-equivariant limit should agree to the Donaldson invariants.
- Applications extend to $\mathcal{N}^{*}=2$ theory where for $M_{\text {hyper }} \rightarrow 0$ gives the Euler characteristic of $\mathcal{N}=4$ instanton moduli space, (p, q)-brane webs, i.e. type IIB picture, etc..

Conclusion

- It is possible to calculate the partition function of certain susy gauge theories (we can add matter too) on 4-manifolds admitting certain isometries.
- We have shown how to do this for compact toric varieties with the representative being \mathbb{P}^{2}. Other known example is $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Other examples? Hirzebruch surfaces (\mathbb{P}^{1} bundles over \mathbb{P}^{1}), etc..
- The partition functions, if they can be calculated, in their non-equivariant limit should agree to the Donaldson invariants.
- Applications extend to $\mathcal{N}^{*}=2$ theory where for $M_{\text {hyper }} \rightarrow 0$ gives the Euler characteristic of $\mathcal{N}=4$ instanton moduli space, (p, q)-brane webs, i.e. type IIB picture, etc..
- One hopes to learn something about the nature of susy gauge field theories since the above constructions give access exact non-perturbative calculations.

Thank you!

Thank you! And a big thanks to the organizers!

