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A problem in mathematics

I Important probem: classify d-manifolds up to diffeomorphisms.
I E.g., in d = 3, the Poincaré conjecture [proved in 2002, Pelerman].
I The main such classification problem, still open, is in d = 4.
I One classification can be performed using appropriate topological

invariants.
I Freedman: any two smooth simply connected 4-manifolds M1,M2

are homotopy equivalent if they have the same intersection form QM,
i.e. if QM1 = QM2 .

QM : H2(M,Z)×H2(M,Z)→ Z

QM(a, b) =

∫
M
a ∧ b

where a, b ∈ H2(M,Z).
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A problem in mathematics
I Not good enough since there exist “exotic” 4-manifolds, e.g. exotic

R4’s homeomorphic to the standard R4 but not diffeomorphic to it.

I We need some type of invariant able to distinguish between
diffeomorphisms.

I Donaldson: new class of invariants studying non-abelian instantons
on 4-manifolds.

I Instantons: gauge field configurations satisfying the SD and ASD
equations

?F = ±F

where F = dA+A ∧A and with instanton number

k = − 1

8π2

∫
M

tr||F 2|| = c2(E)

E is the G-bundle, and moduli space of (k-instantons)

M̃G
k =MG

k ∪ (MG
k−1×R4)× (MG

k−2× Sym2R4)× . . .× (SymkR4)

I Donaldson invariants are polynomials on (specific) cycles of
Hn(M). Physically: correlation functions of operators of the
corresponding gauge theory onM.
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A problem in physics

I One of the main objects of interest in a QFT is its partition function

Z[Φ] =

∫
[DΦ] eiS[Φ]

I If one knows the partition function then it is possible to calculate the
correlation functions of various operators of the theory.

I In general it is extremely hard to analytically study the partition
function of a QFT.

I Despite that, progress in N = 2 SYM theories in mid 90’s
(Seiberg-Witten solution) and all through the last 15 years (Nekrasov

partition function, SUSY localization on S4 by Pestun, etc) have allowed
us to explicitly calculate the exact form of Z in some cases.

I Here we will show how to compute the partition function of the
topologically twisted N = 2 SYM living on a toric variety.

I A toric variety can be thought of, geometrically, as a generalization of
the complex projective space Pn.
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The topological twist of N = 2 SYM

I Consider N = 2 SYM with gauge group G

I The Lagrangian of N = 2 SYM reads

L = − 1

8g2
trF ∧ ?F +

θ

32π
trF ∧ F + (∇φ)2 + V (φ) + fermions

I The global symmetry group of N = 2 SYM is the following one

H = SU(2)+ × SU(2)−︸ ︷︷ ︸
KwSpin(4)

×SU(2)I × U(1)R︸ ︷︷ ︸
RwSpin(6)

I Twisting is interpreting the rotation group as some other subgroup of
H [Witten].

I Why twist?
I Allow susy on general 4-manifolds with arbitrary curvature.
I Oservables of twisted theory become a subset of the ones of the

original one with some nice properties.
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The topological twist of N = 2 SYM

I The twist of the N = 2 susy algebra consists of considering our
rotation group as different subgroup of H, namely

K′ = SU(2)′+ × SU(2)−

where SU(2)′+ = diag
(
SU(2)+ × SU(2)I

)
.

I Under H′ = K′ × U(1)R one of the susy generators becomes a scalar
one, Q, while the overall procedure makes the theory a TQFT.

I The theory is topological for the simple reason that certains
correlators are invariant under variation of the metric. This means
that the energy-momentum tensor is Q-exact.

I Actually one gets the cohomology ring

H =
KernelQ
ImageQ

and the various observables are elements of the cohomology groups.
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Donaldson-Witten theory

I The topologically twisted N = 2 theory is called Donaldson-Witten
theory.

I The field content is slightly different than the original N = 2 SYM
theory (Φ, A,Ψ, η, χ+, B+)

I For bundles with non-vanishing first Chern class, c1, we have

c1 =
1

2π

∫
M

trF ∈ H2(M)

in order to be able to sum over all possible vacua of our theory and to
allow any kind of fluxes.

I Under the twist the Lagrangian reads

L =
iτ

4π
trF ∧ F + ω ∧ trF +QV

where ω ∈ H2(M,R) and V is a standard Q-exact term that makes
localization possible.

τ =
i

g2
+

θ

2π
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Supersymmetric localization

I Idea: apply something called equivariant localization techniques to
reduce the path integral to its susy fixed points.

I Consider for example C2.
I Coordinates of C2 by z1 and z2 and allow

z1 → eε1z1 z2 → eε2z2

This is the famous Ω-background of Nekrasov (think about it as a C2

bundle over S1) .
I Path integral, for our twisted theory in Ω-background receivesonly a

finite contribution from point-like instantons (for the non-perturbative part).
I How it works? The Q-exactness of the V term requires we set the

fermions to zero.
I Then the instanton partition function only receives contributions from

point-like instantons of the fixed points of C2 [Nekrasov] and ZC2

inst

can be calculated exactly.
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The torus action on P2

I We will consider the case of P2 = (C3\{0})/(C∗)
I Homogeneous coordinates of P2 are [z0 : z1 : z2] we can get

three patches that locally look like C2, i.e. we have three
fixed points of the torus action.

I The torus action itself is generated on each patch l = 0, 1, 2

by a vector field V (ε
(l)
1 , ε

(l)
2 ).

I Susy is equivariant with respect to the maximal torus
U(1)N+2 acting on P2. The U(1)2 factor is due to the vector
field V . Actually this U(1)2 factor corresponds to the same

Ω-background of Nekrasov with parameters ε
(l)
1 and ε

(l)
2 .

Nekrasov only had one set of ε′s since he worked in C2

[Nekrasov 2002] .
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The torus action on P2

I For each patch

l ε
(l)
1 ε

(l)
2

0 ε1 ε2
1 −ε2 ε1 − ε2
2 ε2 − ε1 −ε1

I In order to compute the partition function we will need the
Coulomb branch parameters ~a = (a1, . . . , aN ).

I Also note that for each patch the Coulomb branch parameters
change slightly, we have [Nakajima et. al.]

a
(0)
i = ai + piε1 + qiε2

a
(1)
i = ai + pi(ε1 − ε2)− riε2
a

(2)
i = ai + qi(ε2 − ε1)− riε1

where ~p, ~q, ~r are some parameters whose sum is N , while
i = 1, . . . , N .
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Exact partition function

I The partition function for P2 is then [Goottsche et. al.,
Bershtein et. al.]

ZP2

full
(q, x, z, y; ε1,2) =

∑
{pi,qi,ri}

∮
da

2∏
l=0

ZC2

full
(q(l); a(l), ε

(l)
1,2)yc

(l)
1

that is, for P2 we need to compute Nekrasov’s partition
function on each C2 patch separately and then glue them
together.

I Nekrasov’s instanton partition function has a combinatorial
nature. Information is encoded in partitions of the instanton
number represented by Young diagrams.



Exact partition function

I The partition function for P2 is then [Goottsche et. al.,
Bershtein et. al.]

ZP2

full
(q, x, z, y; ε1,2) =

∑
{pi,qi,ri}

∮
da

2∏
l=0

ZC2

full
(q(l); a(l), ε

(l)
1,2)yc

(l)
1

that is, for P2 we need to compute Nekrasov’s partition
function on each C2 patch separately and then glue them
together.

I Nekrasov’s instanton partition function has a combinatorial
nature. Information is encoded in partitions of the instanton
number represented by Young diagrams.



Exact partition function

I The partition function for P2 is then [Goottsche et. al.,
Bershtein et. al.]

ZP2

full
(q, x, z, y; ε1,2) =

∑
{pi,qi,ri}

∮
da

2∏
l=0

ZC2

full
(q(l); a(l), ε

(l)
1,2)yc

(l)
1

that is, for P2 we need to compute Nekrasov’s partition
function on each C2 patch separately and then glue them
together.

I Nekrasov’s instanton partition function has a combinatorial
nature. Information is encoded in partitions of the instanton
number represented by Young diagrams.



Exact partition function

I So we have the product of three partition functions. One for
each patch of P2.

I The Nekrasov partition function on each patch is

ZC2

inst(q;~a, ε1,2) =
∑
{Yα}

q|
~Y |Zhyper(~a, ~Y , ε1,2)

and where

Zhyper(~a, ~Y , ε1,2) =
N∏

a,b=1

∏
s∈Ya

(aba − LYbε1 + (AYa + 1)ε2)−1

×(aab + (LYb + 1)ε1 −AYaε2)−1

Here A is the Young diagram’s arm function and L its leg
function while q = e2πiτ .

I Once we have calculated the partition function on each patch
we have to glue the patches together. But this is not trivial.
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Example: U(2) and k = 1

I This is the simplest example. The Young configurations that
contribute are

⊕ ∅ and ∅ ⊕

I The partition function on the first patch of P2 is

Z
C2
(0)

inst = q2

(
1

ε1ε2a12(a21 + ε1 + ε2)
+

1

ε1ε2a21(a12 + ε1 + ε2)

)

I Using the equivariant variables ε
(l)
1 , ε

(l)
2 for l = 0, 1, 2 we can

easily write down the full partition function as the product

ZC2

inst = Z
C2
(0)

inst Z
C2
(1)

inst Z
C2
(2)

inst
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U(2) and k = 2

I This is slightly more complicated since we have 5 Young
configurations in total

⊕ ∅, ∅ ⊕ ,

⊕ ∅, ∅ ⊕ ,

⊕

I For example, for the first configuration we have

Z
{2⊕∅}
hyp =

(2ε21ε2a12)−1

(−ε1 + ε2)(a21 + 2ε1 + ε2)(a21 + ε1 + ε2)(a12 − ε1)

I Symmetries: Z
{∅⊕2}
hyp (a12) = Z

{2⊕∅}
hyp (a21)

I Find the rest of the configurations, then glue the three C2

contributions together.
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Full partition function on P2 and Donaldson invariants

I I have not told you that we also need to consider the
Zperturbative and Z1−loop contributions as well. Each of those
gets a contribution from each C2 patch of P2 as well.

I Thus the real partition function on P2 is

ZP2
v

2∏
1=0

(ZC2

pert ZC2

1−loop ZC2

inst)
(l)

I Nekrasov: instanton partition function is the same as the
equivariant Donaldson invariants.

I At the non-equivariant limit ε1,2 → 0 then we get the
corresponding Donaldson invariants.
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Conclusion

I It is possible to calculate the partition function of certain susy
gauge theories (we can add matter too) on 4-manifolds
admitting certain isometries.

I We have shown how to do this for compact toric varieties with
the representative being P2. Other known example is P1 × P1.
Other examples?

Hirzebruch surfaces ( P1 bundles over P1 ), etc..

I The partition functions, if they can be calculated, in their
non-equivariant limit should agree to the Donaldson
invariants.

I Applications extend to N ∗ = 2 theory where for Mhyper → 0
gives the Euler characteristic of N = 4 instanton moduli
space, (p, q)-brane webs , i.e. type IIB picture, etc..

I One hopes to learn something about the nature of susy gauge
field theories since the above constructions give access exact
non-perturbative calculations.
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