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Important probem: classify d-manifolds up to diffeomorphisms.

E.g., in d = 3, the Poincaré conjecture [proved in 2002, Pelerman].
The main such classification problem, still open, is in d = 4.

One classification can be performed using appropriate topological
invariants.

Freedman: any two smooth simply connected 4-manifolds M1, M,
are homotopy equivalent if they have the same intersection form Qa,

e if Qumy = QM,-

Qur - H3(M,Z) x HX (M, Z) — Z

QM(a,b)z/ albd

M
where a,b € H2(M,Z).
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Not good enough since there exist “exotic” 4-manifolds, e.g. exotic
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We need some type of invariant able to distinguish between
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» Not good enough since there exist “exotic” 4-manifolds, e.g. exotic
R*'s homeomorphic to the standard R* but not diffeomorphic to it.

» We need some type of invariant able to distinguish between
diffeomorphisms.

» Donaldson: new class of invariants studying non-abelian instantons
on 4-manifolds.

> Instantons: gauge field configurations satisfying the SD and ASD
equations

*F =+F

where F' = dA + A A A and with instanton number

1 2
k=g [ 1P =)
£ is the G-bundle, and moduli space of (k-instantons)

MG = MG UM | xRY) x (M§ 5 x Sym?R?Y) x ... x (Sym*R?)
» Donaldson invariants are polynomials on (specific) cycles of

H"™(M). Physically: correlation functions of operators of the
corresponding gauge theory on M.
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» One of the main objects of interest in a QFT is its partition function

Z[®] = / [D®] *512]

> If one knows the partition function then it is possible to calculate the
correlation functions of various operators of the theory.

> In general it is extremely hard to analytically study the partition
function of a QFT.

» Despite that, progress in A/ = 2 SYM theories in mid 90's
(Seiberg-Witten solution) and all through the last 15 years (Nekrasov
partition function, SUSY localization on S* by Pestun, etc) have allowed
us to explicitly calculate the exact form of Z in some cases.

» Here we will show how to compute the partition function of the
topologically twisted A/ = 2 SYM living on a toric variety.

> A toric variety can be thought of, geometrically, as a generalization of
the complex projective space P™.
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» Consider N' = 2 SYM with gauge group G
» The Lagrangian of N/ = 2 SYM reads

1 0 2 :
L= —@trF A*F + 32—ﬂ_trF ANF + (V¢)* + V(¢) + fermions

v

The global symmetry group of N/ =2 SYM is the following one

H = SU2)4 x SU2)_ x SU2); x U(1)x

K«Spin(4) R«Spin(6)

» Twisting is interpreting the rotation group as some other subgroup of
H [Witten)].
> Why twist?
» Allow susy on general 4-manifolds with arbitrary curvature.
» Oservables of twisted theory become a subset of the ones of the
original one with some nice properties.
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The topological twist of A = 2 SYM

» The twist of the N' = 2 susy algebra consists of considering our
rotation group as different subgroup of H, namely

K'=SU(2). x SU(2)_

where SU(2)/, = onag(SU(z)+ x SU(Q)I).

» Under H' = K’ x U(1)g one of the susy generators becomes a scalar
one, @, while the overall procedure makes the theory a TQFT.

» The theory is topological for the simple reason that certains
correlators are invariant under variation of the metric. This means
that the energy-momentum tensor is Q-exact.

» Actually one gets the cohomology ring

B Kernel Q
o ImageQ

and the various observables are elements of the cohomology groups.
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Donaldson-Witten theory

» The topologically twisted N' = 2 theory is called Donaldson-Witten
theory.

» The field content is slightly different than the original N'= 2 SYM
theory (®, A, ¥, 5, xT, BT)

» For bundles with non-vanishing first Chern class, ¢, we have

1
c1=— | trFe H*M)
2T M
in order to be able to sum over all possible vacua of our theory and to
allow any kind of fluxes.
» Under the twist the Lagrangian reads

L':iltrF/\F—i—w/\trF—l—QV
™

where w € H?(M,R) and V is a standard Q-exact term that makes
localization possible.

i n 0
9?2 2n
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Supersymmetric localization

>

Idea: apply something called equivariant localization techniques to
reduce the path integral to its susy fixed points.

» Consider for example C2.
» Coordinates of C2 by z; and 2o and allow

21 — ey 29 — €229

This is the famous §2-background of Nekrasov (think about it as a C2
bundle over S1)

Path integral, for our twisted theory in 2-background receivesonly a
finite contribution from point-like instantons (for the non-perturbative part).
How it works? The Q-exactness of the V term requires we set the
fermions to zero.

Then the instanton partition function only receives contributions from
point-like instantons of the fixed points of C2 [Nekrasov] and ZC.,
can be calculated exactly.



The torus action on P2



The torus action on P2

» We will consider the case of P2 = (C3\{0})/(C*)



The torus action on P2

» We will consider the case of P2 = (C3\{0})/(C*)

» Homogeneous coordinates of P? are [20 : 21 : z2] we can get
three patches that locally look like C2, i.e. we have three
fixed points of the torus action.



The torus action on P2

» We will consider the case of P2 = (C3\{0})/(C*)

» Homogeneous coordinates of P? are [20 : 21 : z2] we can get
three patches that locally look like C2, i.e. we have three
fixed points of the torus action.

> The torus action itself is generated on each patch [ =0,1,2
by a vector field V(egl), eg)).



The torus action on P2

» We will consider the case of P2 = (C3\{0})/(C*)

» Homogeneous coordinates of P? are [20 : 21 : z2] we can get
three patches that locally look like C2, i.e. we have three
fixed points of the torus action.

> The torus action itself is generated on each patch [ =0,1,2

by a vector field V(" e{!)).

» Susy is equivariant with respect to the maximal torus
U(1)N*2 acting on P2. The U(1)? factor is due to the vector
field V.



The torus action on P2

» We will consider the case of P2 = (C3\{0})/(C*)

» Homogeneous coordinates of P? are [20 : 21 : z2] we can get
three patches that locally look like C2, i.e. we have three
fixed points of the torus action.

> The torus action itself is generated on each patch [ =0,1,2
by a vector field V(" e{!)).

» Susy is equivariant with respect to the maximal torus
U(1)N*2 acting on P2. The U(1)? factor is due to the vector
field V. Actually this U(1)? factor corresponds to the same
)-background of Nekrasov with parameters egl) and eg).
Nekrasov only had one set of €’s since he worked in C?
[Nekrasov 2002] .
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» For each patch

l egl) egl)

0 €1 €9

1 —€9 €1 — €2
2| €e—€ | —€

> In order to compute the partition function we will need the
Coulomb branch parameters @ = (ay, ..

change slightly, we have [Nakajima et. al]

where p, ¢, 7 are some parameters whose sum is N, while

i=1,...,N.

a; + pi€1 + q;€2

a; + pi(e1 — €2) — 1i€ea

a; + qi(ez — €1) — ri€l

S AN)-
» Also note that for each patch the Coulomb branch parameters
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Exact partition function

» The partition function for P? is then [Goottsche et. al.,
Bershtein et. al ]

(l>
Zﬁ (q,x, 2% 61,2) = Z j{daH o ) (l) )

{pi,qi,ri}

that is, for P? we need to compute Nekrasov's partition
function on each C? patch separately and then glue them
together.

» Nekrasov's instanton partition function has a combinatorial
nature. Information is encoded in partitions of the instanton
number represented by Young diagrams.
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Exact partition function

» So we have the product of three partition functions. One for
each patch of P?.

» The Nekrasov partition function on each patch is

2 . > -
Zigst(q; a, 61,2> = Z qu‘ZhyPer(%Y?El,?)

{Ya}
and where
N
Zhyper(avya 61,2) = H H (aba - LYbEI + (AYa + 1)62)_1
a,b=1s€Y,

X (aab + (Lyb + 1)61 — Ayaeg)fl

Here A is the Young diagram’s arm function and L its leg
function while q = ™7

» Once we have calculated the partition function on each patch
we have to glue the patches together. But this is not trivial.
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Example: U(2) and k=1

» This is the simplest example. The Young configurations that

contribute are
D @0 and 0B D

» The partition function on the first patch of P? is

200 _ < ! + ! >
inst q
e1e2a12(ag1 + €1 + €2) 6162a21(a12 +e + 62)

» Using the equivariant variables egl), egl) forl =0,1,2 we can

easily write down the full partition function as the product

2 2 2
Z}CQ — Z.(C(O) Z.(C(l)Z.(C(Q)

inst Inst Inst inst
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U(2) and k =2

>

This is slightly more complicated since we have 5 Young
configurations in total

L lee, 0ol 1]

H@@, @@H,

el ]

For example, for the first configuration we have

260} _ (2¢eaarz) !

hyp (=1 +e2)(ag1 + 2¢1 + €2) (a1 + €1 + €2)(a12 — €1)

D@2 200
éyf HNaig) = Zh{y? Hazn)

Find the rest of the configurations, then glue the three C?
contributions together.

Symmetries: Z,
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v

| have not told you that we also need to consider the
Zperturbative and Z1_jo0p contributions as well. Each of those
gets a contribution from each C? patch of P? as well.

Thus the real partition function on P2 is

2
2 2 2 2
ZP - | | (ZC Z(lc—loop Zi(Est)(l)

pert
1=0

Nekrasov: instanton partition function is the same as the
equivariant Donaldson invariants.

At the non-equivariant limit €1 o — 0 then we get the
corresponding Donaldson invariants.



Conclusion

> It is possible to calculate the partition function of certain susy
gauge theories (we can add matter too) on 4-manifolds
admitting certain isometries.

» We have shown how to do this for compact toric varieties with
the representative being P2. Other known example is P* x P
Other examples?



Conclusion

> It is possible to calculate the partition function of certain susy
gauge theories (we can add matter too) on 4-manifolds
admitting certain isometries.

» We have shown how to do this for compact toric varieties with
the representative being P2. Other known example is P* x P
Other examples? Hirzebruch surfaces (P! bundles over P! ), etc..



Conclusion

> It is possible to calculate the partition function of certain susy
gauge theories (we can add matter too) on 4-manifolds
admitting certain isometries.

» We have shown how to do this for compact toric varieties with
the representative being P2. Other known example is P* x P
Other examples? Hirzebruch surfaces (P! bundles over P! ), etc..

» The partition functions, if they can be calculated, in their
non-equivariant limit should agree to the Donaldson
invariants.



Conclusion

> It is possible to calculate the partition function of certain susy
gauge theories (we can add matter too) on 4-manifolds
admitting certain isometries.

» We have shown how to do this for compact toric varieties with
the representative being P2. Other known example is P* x P
Other examples? Hirzebruch surfaces (P! bundles over P! ), etc..

» The partition functions, if they can be calculated, in their
non-equivariant limit should agree to the Donaldson
invariants.

» Applications extend to N* = 2 theory where for Mpyper — 0
gives the Euler characteristic of A = 4 instanton moduli
space,



Conclusion

> It is possible to calculate the partition function of certain susy
gauge theories (we can add matter too) on 4-manifolds
admitting certain isometries.

» We have shown how to do this for compact toric varieties with
the representative being P2. Other known example is P* x P
Other examples? Hirzebruch surfaces (P! bundles over P! ), etc..

» The partition functions, if they can be calculated, in their
non-equivariant limit should agree to the Donaldson
invariants.

» Applications extend to N* = 2 theory where for Mpyper — 0
gives the Euler characteristic of A = 4 instanton moduli
space, (p, q)-brane webs , i.e. type |IB picture, etc..



Conclusion

> It is possible to calculate the partition function of certain susy
gauge theories (we can add matter too) on 4-manifolds
admitting certain isometries.

» We have shown how to do this for compact toric varieties with
the representative being P2. Other known example is P* x P
Other examples? Hirzebruch surfaces (P! bundles over P! ), etc..

» The partition functions, if they can be calculated, in their
non-equivariant limit should agree to the Donaldson
invariants.

» Applications extend to N* = 2 theory where for Mpyper — 0
gives the Euler characteristic of A = 4 instanton moduli
space, (p, q)-brane webs , i.e. type |IB picture, etc..

» One hopes to learn something about the nature of susy gauge
field theories since the above constructions give access exact
non-perturbative calculations.



Thank you!



Thank you! And a big thanks to the organizers!
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