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(Non)-Markovianity

What’s Markovianity?

It’s a property regarding the dynamics of an Open System.

Memoryless dynamics!
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(Non)-Markovianity

Let’s go a bit more mathematical! We start considering the classical case:

{X (t) , t ∈ I ⊂ R} family of random variables X depending on the parameter t
usually representing time. Assume I countable set labeled by n, i.e.
I = {tn ∈ R , n ∈ N}.

We say that a process is Markovian if

p(xn, tn | xn−1, tn−1; . . . ; x0, t0) = p(xn, tn | xn−1, tn−1) ∀ tn ∈ I .

No memory of the past values of X (xn does not have a history).
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(Non)-Markovianity

I from countable to continuous

p(x , t; x ′, t ′) = p(x , t, |x ′, t ′)p(x ′, t ′) ∀ t > t ′

p(x , t) =

∫
dx ′K (x , t|x ′, t ′)p(x ′, t ′)

with K (x , t|x ′, t ′) = p(x , t|x ′, t ′)

K (x , t|x ′, t ′) propagators of the evolution between t ′ and t.

Considers now three consecutive events at times t3 > t2 > t1, we have

p(x3, t3; x2, t2; x1, t1) = p(x3, t3|x2, t2; x1, t1)p(x2, t2; x1, t1) =

= p(x3, t3|x2, t2; x1, t1)p(x2, t2|x1, t1)p(x1, t1) =

= p(x3, t3|x2, t2)p(x2, t2|x1, t1)p(x1, t1)

Integrating over x2 on both sides and dividing by p(x1, t1) we obtain
Chapman-Kolmogorov equation

K (x3, t3; x1, t1) =

∫
dx2K (x3, t3|x2, t2)K (x2, t2|x1, t1)
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(Non)-Markovianity

And now the quantum case:

Probability distributions replaced by density matrices ρ ∈ B(H)
Propagators replaced by dynamical maps Φt : B(H)→ B(H)

What property should Φt satisfy in order to be a legit quantum evolution?

It has to be Completely-Positive-Trace-Preserving, i.e. 1k ⊗ Φt should map
positive operators in positive operators for all k.
Keep in mind: Φt CPTP means that it can be seen as the reduced evolution of a
bigger isolated system initially uncorrelated

Φt(ρ) = TrE (U(t)ρ⊗ χEU(t)†)

Φt,t0 describes a Markovian dynamics if

Φt2,t0 = Φ̃t2,t1Φt1,t0 ∀t2 > t1 > t0

where Φ̃t2,t1 is CPTP, i.e. the intermediate map is a legit quantum evolution.

Φt describes a Markovian dynamics if it is CP-divisible.
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(Non)-Markovianity

So, to summarize:

Whenever a dynamical quantum map Φt cannot be written as a composition of
legit (CPTP) quantum maps we have a Non-Markovian dynamics!

Essential references:
[1] Angel Rivas Vargas, Open Quantum Systems and Quantum Information Dynamics,
PhD thesis (2011)
[2] A. Rivas, S. F. Huelga, M. B. Plenio, PRL 105, 050403 (2010)
[3] A. Rivas, S. F. Huelga, M. B. Plenio, Rep. Prog. Phys. 77, 094001 (2014)
[4] H. -P. Breuer, E. -M. Laine, J. Piilo, PRL 103, 210401 (2009)
[5] D. Chruscinski, S. Maniscalco, PRL 112, 120404 (2014)
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Gaussian States

What are gaussian states?

A gaussian state ρ describing n modes (with annihilation operators {âk}k=1...n)
can be defined by the quadrature vector Ô = {q̂1, p̂1, . . . , q̂n, p̂n}, where

q̂k =
âk + â†k√

2
and p̂k =

âk − â†k√
2i

The quadratures obey the canonical commutation relations [Ôi , Ôj ] = iΩij , where
Ωij is the element of the symplectic form

Ω =
n⊕
1

(
0 1
−1 0

)
.

It is completely characterized by its first and second statistical moments of the
quadrature vector:

Dj = Tr(ρÔj)

σij = Tr
(
ρ{(Ôi − Di ), (Ôj − Dj)}+

)
The positivity condition, ρ ≥ 0 is translated by the bona fide condition

σ + iΩ ≥ 0 .
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Gaussian States

Evolution

Unitary operation on the state ρ corresponds to real symplectic S transformation
on the first and second moments:

ρ′ = ÛρÛ† →

{
D = SD

σ′ = SσST .

In general, a dynamical map Φt acting on ρ corresponds to two 2n × 2n matrices
(X (t),Y (t)) acting on σ as

σ(0) → σ(t) = X (t)σX (t)T + Y (t) .

(X (t),Y (t)) describe a legit quantum (gaussian) evolution if and only if

Y (t) + iΩ− iX (t)ΩX (t)T ≥ 0 ∀ t
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Gaussian Interferometric Power

Gaussian Interferometric Power

The Gaussian Interferometric Power (GIP) quantifies the ability of a two-mode
Gaussian probe to estimate a local phase shift in a worst case scenario, according
to an operational setting generally known as black-box interferometry.

We consider a two mode gaussian state ρAB .

Mode B enters a black-box in which it undergoes a 1-parameter, φ, unitary
transformation where the parameter is unknown and only the spectrum of
the generator is initially known.

The information on the black-box generator is provided to the two parties
only after the transformation allowing for optimal measurement to be
performed on the output.

The objective of the interferometric setup is to deduce the unknown phase φ
with the maximum possible precision.
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Gaussian Interferometric Power

Assuming a large number κ of copies of the probing state ρAB are initially
prepared we have a bound on the precision with which we can estimate the
parameter φ given by the Cramer-Rao bound

κ∆φ2 ≥ 1

F(φφAB)

where F(φφAB) is the Quantum Fisher Information defined as

F(φφAB) = −2 lim
dφ→0

∂2F (ρφAB , ρ
φ+dφ
AB )

∂(dφ)2

with F (ρφAB , ρ
φ+dφ
AB ) being the Uhlmann fidelity.

The GIP of a two-mode Gaussian state is defined as

QG
B (ρAB) =

1

4
inf
ĤB

F(ρφAB)

quantifies the guaranteed precision allowed by a given probing state ρAB in the
estimation of the parameter φ with incomplete prior knowledge of the local
generator ĤB .
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Gaussian Interferometric Power

It can be shown that the GIP is a measure of discord-type correlations for a
general state ρAB . As such it satisfies the following

it vanishes iff ρAB is a product state,

it is invariant under local unitaries,

it is monotonically non-increasing under local CPTP operations on
party A,

it is monotonically non-increasing under local CPTP operations on
party A!!!

About GIP:
[6] D. Girolami et al., PRL 112, 210401 (2014)
[7] G. Adesso, PRA 90, 022321 (2014)
[8] M. N. Bera, arXiv:1406.5144
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it is monotonically non-increasing under local CPTP operations on
party A,

it is monotonically non-increasing under local CPTP operations on
party A!!!

About GIP:
[6] D. Girolami et al., PRL 112, 210401 (2014)
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All these things together

All theese things together

What our ingredients are so far:

We know that an evolution Φt is Markovian if Φt2,t0 = Φ̃t2,t1Φt1,t0 with the

intermediate map Φ̃t2,t1 being CPTP.

We have a discord-type correlation quantity QG
B (ρAB) monotonically

non-increasing under local CPTP operations.

Well, but then...

D(t) =
d

dt
QG

B (ρAB(t)) > 0 ⇒ Non-Markovian evolution!
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All these things together

Let’s suppose we want to determine if a given single-mode gaussian map Φt is
Non-Markovian. What shall we do?

We prepare a correlated two-mode gaussian state ρAB described by the
covariance matrix σAB .

We let the system evolve under the map ΦA
t ⊗ 1B , i.e.

σAB(t) = (
√

Λ1(t)1A ⊕ 1B)TσAB(0)(
√

Λ1(t)1A ⊕ 1B) + Λ2(t)1A ⊕OB

We study the time evolution of the GIP of the state ρAB , i.e.
D(t) = d

dtQ
G
B (ρAB(t)).

We define a Non-Markovianity witness

Nσ
Q (Φ) =

∫
D(t)>0

D(t)dt
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All these things together

If the witness Nσ
Q (Φ) does not vanish, then we can conclude that the one-mode

map Φ is Non-Markovian.

We can go a bit further defining a measure of Gaussian Non-Markovianity
optimizing the the witness over the set of all initial Gaussian states:

NQ(Φ) = max
σAB (0)

Nσ
Q (Φ)

However, it is worth notice that the most remarkable aspect of characterizing
Non-Markovianity through gaussian GIP is its ability to witness Non-Markovian
dynamics of a local Gaussian channel by using two-mode probes which exhibit
quantum correlations beyond entanglement.
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All these things together

Example: Damping channel
Let’s consider the Gaussian channel characterized by the following equation:

dρ

dt
= α

γ(t)

2
(2âρâ† − {â†â, ρ}+)

where α is a coupling constant and γ(t) is the so called decay parameter (or
damping coefficient).

The covariance matrix is mapped into

σAB(t) = (e−x(t)/21A ⊕ 1B)TσAB(0)(e−x(t)/21A ⊕ 1B) + Λ2(t)1A ⊕OB

where x(t) = α
∫ t

0
2γ(s)ds.

It can be easily shown that if γ(t) ≥ 0 ∀t, then the intermediate map Φ̃t2,t1 is
completely positive and hence the dynamics is markovian.
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All these things together

We choose for illustrative purpouses the following damping coefficient

γ(t) =

{
1
2e

−t/10 sin t if t < 5π/2
1
2e

−π/4 if t ≥ 5π/2
.

so that γ(t) < 0 for π < t < 2π.

Hence
Nσ

Q (Φ) = QG
B (ρAB(t = 2π))−QG

B (ρAB(t = π))
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Conclusion

We have defined the Non-Markovianity of a map Φt as the violation of the
complete positivity of the intermediate map Φ̃t2,t1 .

We introduced a witness of gaussian Non-Markovianity based on revivals of
a discord-type correlation quantity, of metrological relevance, namely
Gaussian Interferometric Power.

Remarkably, this witness allows to witness Non-Markovianity using
non-entangled probes.

arXiv:1507.05798
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