Generalized geometric vacua with eight supercharges

Praxitelis Ntokos IPhT, CEA/Saclay

Work with Mariana Graña

IV Postgradute Meeting on Theoretical Physics IFT Madrid, November 2015

- 2 Super-Geometrizing 0
- 3 Super-Geometrizing I (GCG)
- 4 Super-Geometrizing II (EGG)
- S Applications to AdS/CFT

Generalizing the geometry Super-Geometrizing 0

Super-Geometrizing I (GCG) Super-Geometrizing II (EGG) Applications to AdS/CFT Summary and Outlook

Table of Contents

Generalizing the geometry

2 Super-Geometrizing 0

3 Super-Geometrizing I (GCG)

4 Super-Geometrizing II (EGG)

5 Applications to AdS/CFT

Generalizing the geometry Super-Geometrizing 0

Super-Geometrizing I (GCG) Super-Geometrizing II (EGG) Applications to AdS/CFT Summary and Outlook

• Einstein gravity:

 \longrightarrow Gravity

 \longrightarrow Symmetries: Diffeomorphisms $GL(4, \mathbb{R})$

 \longrightarrow suitable formalism: (Riemannian) Geometry

• Supergravity:

- \longrightarrow Gravity + p-forms + Fermions
- \longrightarrow Symmetries: T-duality, U-duality
- \longrightarrow suitable formalism: Generalized Geometry
- \implies Describe supergravity in a purely geometric way!

Pure Einstein gravity:

- Objects: particles
- Charges: momenta described by vectors ξ

 \implies Space of charges = Tangent bundle $T \ni \xi$

- Symmetries: diffeomorphisms $\delta_{\xi}g = \mathcal{L}_{\xi}g$
 - Natural group action: *GL*(*d*)
 - Lie derivative $(\mathcal{L}_u w)^m = u^n \partial_n w^m (\partial_n u^m) w^n$

The "arena" of Generalized Geometry

Supergravity \longrightarrow gravity (g_{mn}) + p-forms $(A_{m_1...m_p})$

- Objects: Extended (Strings + D_{p-1} -branes)
- Charges: momenta described by vectors ξ
 + electric charges described by (p-1)-forms λ
 + magnetic charges described by the dual forms λ

$$\implies \text{Space of charges}: \quad E = \underbrace{T}_{\ni\xi} \oplus \underbrace{G}_{\ni\lambda,\,\bar{\lambda}}, \quad V = \begin{pmatrix} \xi \\ \lambda \\ \tilde{\lambda} \end{pmatrix}$$

- \longrightarrow Enlargement of the tangent structure!
- \longrightarrow How to do geometry on *E*?

Generalized Geometry

- Symmetries: diffeomorphisms $\delta_{\xi}g = \mathcal{L}_{\xi}g$, $\delta_{\xi}A = \mathcal{L}_{\xi}A$ + gauge tran/tions $\delta_{\lambda}g = 0$, $\delta_{\lambda}A = d\lambda$
- F = dA globally defined but A might change (recall Dirac string)

 $A' - A = d\lambda \Longrightarrow e^A \cdot V$ covariant gen. vectors

• Generalization of Lie derivative: Dorfman derivative

$$L_V \tilde{V} = (V \cdot D) \tilde{V} - (D \times V)|_{ad} \tilde{V}$$

Table of Contents

2 Super-Geometrizing 0

3 Super-Geometrizing I (GCG)

4 Super-Geometrizing II (EGG)

5 Applications to AdS/CFT

The setup

Supergravity compactified on a d-dimensional manifold:

$$\mathcal{M}_{10} = \mathcal{M}_{ext} \times \mathcal{M}_d$$

metric:
$$ds_{10}^2 = e^{2A(x)} ds_{ext}^2(y) + ds_d^2(x)$$

spinors: $\epsilon_{10} = \zeta_{ext} \otimes \chi_d + c.c.$
fluxes: $F_{10} = F_d + \operatorname{vol}_{ext} \wedge \tilde{F}_d$

- \mathcal{M}_{ext} maximally symmetric
- ζ_{ext} parametrizes preserved susy (focus on 8 supercharges)

Supersymmetry conditions

 \Longrightarrow

A supersymmetric background satisfies

Gravitino:
$$\delta \Psi_M^{(10)} = \begin{pmatrix} \delta \Psi_\mu^{(10)} \\ \delta \Psi_m^{(10)} \end{pmatrix} = 0$$

Dilatino: $\delta \lambda = 0$

 $\begin{aligned} \left[\nabla + (\text{Fluxes})_I \right] \chi &= 0 & \text{Internal gravitino} \\ \left[m + (\text{Fluxes})_E \right] \chi &= 0 & \text{External gravitino} \\ \left[(\text{Fluxes})_D \right] \chi &= 0 & \text{Dilatino} \end{aligned}$

What do we generalize?

The Calabi-Yau story (d=6):

Fluxes = 0
$$\implies \nabla_m \chi = 0$$

Build bilinears:

Kähler structure: $\omega_{(2)} = \chi^{\dagger} \gamma_{(2)} \chi$

Complex structure: $\Omega_{(3)} = \chi^{c\dagger} \gamma_{(3)} \chi$

susy background $\implies d\omega = d\Omega = 0$ (closure conditions)

 \implies Calabi-Yau manifold \longrightarrow well studied case

 \implies Well-known effective theory $\longrightarrow D = 4, \mathcal{N} = 2$ (ungauged) sugra

Seek for generalization of the closure conditions when fluxes $\neq 0$

Table of Contents

Generalizing the geometry

2 Super-Geometrizing 0

3 Super-Geometrizing I (GCG)

4 Super-Geometrizing II (EGG)

5 Applications to AdS/CFT

Super-Geometrizing 0 Super-Geometrizing I (GCG) Applications to AdS/CFT Summary and Outlook

Generalized Complex Geometry

Supergravity NSNS sector $\longrightarrow (g_{mn}, B_{mn}, \phi)$

• Generalization of tangent space^{*} $T \rightarrow _T_ \oplus _T^*$

momenta windings

- Natural group action: O(d, d) (T-duality)
- Construct bispinors $\longrightarrow \Phi_1 = \chi_1 \chi_2^{\dagger}, \quad \Phi_2 = \chi_1 \chi_2^{c\dagger}$ and identify with forms: $\Phi_{(n)} = \sum_{n} \chi^{\dagger} \gamma_{(n)} \chi$
- Natural O(d, d) spinor bilinear Mukai pairing:

$$\langle \Phi_1, \Phi_2 \rangle = \Phi_1 \wedge s(\Phi_2)|_{top}$$

• For even d, they define complex structures on $T \oplus T^*$.

*Hitchin 02, Gualtieri 04

CGC closure conditions

susy equations for $\chi \implies$

 $d_H \Phi = \text{obstructions}$

$$d_H = d + H \wedge = e^{-B} de^B$$

where

obstructions =
$$\begin{cases} F_{RR} & \text{RR fluxes} \\ dA & \text{warping} \\ m & \text{AdS curvature} \end{cases}$$

 \implies Really (to be)-closed object = "Dressed" spinor: $\Phi^D = e^B \Phi$

 \implies Pure spinors inherit the patching on $T \oplus T^*$.

Link to effective sugra

Effective theory data written in terms of T-duality invariants (as in CY)

- \longrightarrow For purely NSNS backgrounds:
 - Moduli kinetic terms given by Kähler potential

$$e^{K} = i \langle \Phi^{D}, \bar{\Phi}^{D} \rangle = i \langle \Phi, \bar{\Phi} \rangle$$

• Moduli potential given by Killing prepotentials

$$\mathcal{P} \sim \langle \Phi^D, d\Phi^D
angle = \langle \Phi, d_H \Phi
angle$$

 \longrightarrow Seek for U-duality invariants when RR fluxes are included

Table of Contents

Generalizing the geometry

2 Super-Geometrizing 0

3 Super-Geometrizing I (GCG)

4 Super-Geometrizing II (EGG)

5 Applications to AdS/CFT

Exceptional Generalized Geometry

Full Bosonic Sector (NSNS +RR) $\longrightarrow (g_{mn}, B_{mn}, \phi, C_{m_1...m_p})$

• Generalization of tangent space*:

• Natural group action: E_{d+1} (U-duality)

Differential structure

$$\longrightarrow \text{Identifying } GL(d) \subset E_{d+1}, \text{ we embed } D_M = \begin{cases} \partial_m & , M = m \\ 0 & , \text{ otherwise} \end{cases}$$

→Then construct Dorfman

$$L_V \tilde{V} = (V \cdot D) \tilde{V} - (D \times V)|_{ad} \tilde{V}$$

^{*}Hull 07, Pacheco Waldram 08

Construction of the structures

$$(\chi_1,\chi_2) \longrightarrow (\theta_1,\theta_2) \longrightarrow (J_{a0},K_0) \longrightarrow (J_a,K)$$

H-structure:

- $J_{a0} = (\sigma_a)^{ij} \theta_i \otimes \theta_j^*$, $SU(2)_R$ triplet
- adjoint of group $E_{d+1} \longrightarrow$ generalized tensor
- associated to hypermultiplet moduli

V-structure:

- $K_0 = \epsilon^{ij} \theta_i \otimes \theta_j$, $SU(2)_R$ singlet
- fundamental of $E_{d+1} \longrightarrow$ generalized vector
- associated to vector-multiplet moduli

 $\longrightarrow J_a = e^A J_{a0}, K = e^A K_0$ are the "dressed" structures (recall $\Phi^D = e^B \Phi$)

The (conjectured) closure equations

Condition	Generalised Closure	=	AdS deformation
TT			
H-	$DJ_a + \epsilon_{abc} \operatorname{tr}(J_b DJ_c)$	=	$\lambda_a S(\mathbf{K})$
			_
V-	$L_K K$	=	0
$(H \cap V)_{comp.}$	$L_K J_a$	=	$\epsilon_{abc}\lambda_b J_c$

where:

- s(K) is related to the group invariant
- SU(2) vector λ_a : parametrizes cosmological constant

^{*}Graña Louis Sim Waldram 09, Ashmore Waldram 15

Concrete application for d=5

d=5
$$\longrightarrow$$
 U-duality group = $E_{6(6)} \supset \begin{cases} USp(8) \\ SL(6) \times SL(2) \end{cases}$

Spinor embedding:

$$(\chi_1, \chi_2) \longrightarrow \theta_1^{\alpha} = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}, \theta_2^{\alpha} = \begin{pmatrix} \chi_1^c \\ \chi_2^c \end{pmatrix}, \text{ fund. of } USp(8)$$
$$K_0^{\alpha\beta} = [\epsilon^{ij}\theta_i^{\alpha}\theta_j^{\beta}]_{tr=0}, \quad (J_{a0})_{\beta}^{\alpha} = (\sigma_a)^{ij}\theta_i^{\alpha}\theta_j^{*\beta}$$

Derivative and gauge fields embedding:

By identifying $GL(5) \subset SL(6) \times SL(2)$, e.g. $\partial_m = D_{m6}$, in the $(\overline{15}, 1)$

Table of Contents

Generalizing the geometry

2 Super-Geometrizing 0

3 Super-Geometrizing I (GCG)

4 Super-Geometrizing II (EGG)

S Applications to AdS/CFT

Applications to AdS/CFT

General goal: Describe marginal deformations of SCFT's using EGG

 \longrightarrow Success of GCG in this direction (e.g. describing β -deformations) *

Marginal deformations in $\mathcal{N} = 1$ SCFTs

Two classes:

- Kähler deformations $\sim \int d^4\theta V$ correspond to δK
- Superpotential deformations $\sim \int d^2\theta \mathcal{O}$ correspond to δJ_a
- \longrightarrow Field theory analysis by †

 \longrightarrow Recover field theory results by "solving" the exceptional integrability conditions (future work)

^{*}Minasian, Petrini, Zaffaroni 2006

[†]Green Komargodski Seiberg Tachikawa Wecht 10

Summary:

- Generalized Geometry is the geometric language to describe the supergravity degrees of freedom.
- Supersymmetric vacua can be described by the generalized "closure" of appropriate spinor bilinears.

Future directions:

- Study of moduli spaces for the effective theory.
- Applications to AdS/CFT (marginal couplings)

Thank you for your attention!