An introduction to Gauge Invariants and Hilbert Series

Alessandro Pini

19 November, 2015

Universidad de Oviedo

Contents of the talk

(1) Introduction and motivations

- Gauge invariants in known QFT (QCD)
- The moduli space of $\mathcal{N}=1$ QFT theory
(2) Counting gauge invariants in SUSY theories
- The Hilbert Series for $\mathcal{N}=4$ SYM in $4 d$
- The Hilbert Series for the Conifold
(3) The Hilbert Series: general structure
(4) Conclusions

Contents of the talk

(1) Introduction and motivations

- Gauge invariants in known QFT (QCD)
- The moduli space of $\mathcal{N}=1$ QFT theory
(2) Counting gauge invariants in SUSY theories
- The Hilbert Series for $\mathcal{N}=4$ SYM in $4 d$
- The Hilbert Series for the Conifold
(3) The Hilbert Series: general structure

4. Conclusions

Gauge invariants in QCD

- Gauge group $G=S U(3)$
- Global symmetries $F=S U(3) \times U(1)_{B}$

Problem: How to construct gauge invariants?

Mesons

Composition of a color and anti-color: $q_{i} \overline{q_{j}} \Rightarrow$ neutral under the $U(1)_{B}$

Baryons

Composition of the three colors: $q_{i} q_{j} q_{k} \Rightarrow$ charged under the $U(1)_{B}$

Gauge invariants in QCD

- Gauge group $G=S U(3)$
- Global symmetries $F=S U(3) \times U(1)_{B}$

Problem: How to construct gauge invariants?

Mesons

Composition of a color and anti-color: $q_{i} \overline{q_{j}} \Rightarrow$ neutral under the $U(1)_{B}$

Baryons

Composition of the three colors: $q_{i} q_{j} q_{k} \Rightarrow$ charged under the $U(1)_{B}$

- Problem: How to classify them in a generic QFT ? \Rightarrow Hilbert Series We will focus on the mesons.

$\mathcal{N}=1$ QFT and structure of the moduli space

$$
S=\int d^{4} x\left[\int d^{4} \theta \Phi_{i} e^{\vee} \Phi_{i}^{\dagger}+\left(\frac{1}{4 g^{2}} \int d^{2} \theta \operatorname{Tr}\left[W_{\alpha} W^{\alpha}\right]+\int d^{2} \theta W(\Phi)+\text { h.c. }\right)\right]
$$

The space of vacua is a manifold specified by

- F-flatness condition

$$
F_{i}=\left.\frac{\partial W}{\partial \phi_{i}}\right|_{\phi_{i}=\phi_{i 0}}=0
$$

- D-flatness condition

$$
D_{A}=\sum_{i} \phi_{i 0}^{\dagger} T_{A} \phi_{i 0}=0 \quad \text { with } A=1, \ldots, \operatorname{Dim}[\operatorname{Lie}(G)]
$$

- It's parametrized by gauge invariant operators

$\mathcal{N}=1$ QFT and structure of the moduli space

$$
S=\int d^{4} x\left[\int d^{4} \theta \Phi_{i} e^{\nu} \Phi_{i}^{\dagger}+\left(\frac{1}{4 g^{2}} \int d^{2} \theta \operatorname{Tr}\left[W_{\alpha} W^{\alpha}\right]+\int d^{2} \theta W(\Phi)+\text { h.c. }\right)\right]
$$

The space of vacua is a manifold specified by

- F-flatness condition

$$
F_{i}=\left.\frac{\partial W}{\partial \phi_{i}}\right|_{\phi_{i}=\phi_{i 0}}=0
$$

- D-flatness condition

$$
D_{A}=\sum_{i} \phi_{i 0}^{\dagger} T_{A} \phi_{i 0}=0 \quad \text { with } A=1, \ldots, \operatorname{Dim}[\operatorname{Lie}(G)]
$$

- It's parametrized by gauge invariant operators

Problem: How to get information regarding the structure of the moduli space as a manifold? \Rightarrow Hilbert series

Contents of the talk

(1) Introduction and motivations

- Gauge invariants in known QFT (QCD)
- The moduli space of $\mathcal{N}=1$ QFT theory
(2) Counting gauge invariants in SUSY theories
- The Hilbert Series for $\mathcal{N}=4$ SYM in $4 d$
- The Hilbert Series for the Conifold
(3) The Hilbert Series: general structure

4. Conclusions
$\mathcal{N}=4 S Y M$ in $4 d$ - first part: only one field

The superpotential and the F-terms

$$
W=\operatorname{Tr}\left[\Phi_{1}\left[\Phi_{2}, \Phi_{3}\right]\right] \quad \Rightarrow \quad \mathrm{F}_{i}: \partial_{\Phi_{i}} W=\left[\Phi_{j}, \Phi_{k}\right]=0
$$

Let's consider only the field Φ_{1}. The gauge invariants are

$$
\mathbb{I}, \quad \operatorname{Tr}\left[\Phi_{1}\right], \quad \operatorname{Tr}\left[\Phi_{1}^{2}\right], \quad \operatorname{Tr}\left[\Phi_{1}^{3}\right], \quad \ldots \quad \operatorname{Tr}\left[\Phi_{1}^{n}\right]
$$

Let's introduce the fugacity

$$
\Phi_{1} \mapsto t_{1}, \quad \text { such that } t_{1} \in \mathbb{C} \text { and }\left|t_{1}\right|<1
$$

So that summing

$$
1+t_{1}+t_{1}^{2}+t_{1}^{3}+\ldots+t_{1}^{n}+\ldots=\sum_{n=0}^{\infty} t_{1}^{n}=\frac{1}{1-t_{1}}
$$

$\mathcal{N}=4 S Y M$ in $4 d$ - second part: counting all the gauge invariants

Gauge invariants of the form $\operatorname{Tr}\left[\Phi_{1}^{i} \Phi_{2}^{j} \Phi_{3}^{k}\right]$ with $i, j, k \geq 0$
If $\forall \quad \Phi_{i} \mapsto t_{i}$ we get
$1+t_{1}+t_{2}+t_{3}+t_{1}^{2}+t_{1} t_{2}+\ldots=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} t_{1}^{i} t_{2}^{j} t_{3}^{k}=\frac{1}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{3}\right)}$

Coefficient of the expansion $\stackrel{1: 1}{\longleftrightarrow}$ gauge invariant operator
E.g. we have

- $1 \leftrightarrow \mathbb{I}$.
- $t_{i} t_{j} \leftrightarrow \Phi_{i} \Phi_{j}$
- $t_{i} \leftrightarrow \Phi_{i}$
- ...
$\mathcal{N}=4 S Y M$ in $4 d$ - third part: focusing on the dimension

If we unrefine, i.e. $t_{i} \mapsto t$, we get

$$
\frac{1}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{3}\right)} \mapsto \frac{1}{(1-t)^{3}}=1+3 t+6 t^{2}+10 t^{3}+\ldots
$$

$\Delta=1, \quad \operatorname{Tr}\left[\Phi_{1}\right], \operatorname{Tr}\left[\Phi_{2}\right], \operatorname{Tr}\left[\Phi_{3}\right]$.
$\Delta=2, \operatorname{Tr}\left[\Phi_{1} \Phi_{2}\right], \operatorname{Tr}\left[\Phi_{1} \Phi_{3}\right], \operatorname{Tr}\left[\Phi_{2} \Phi_{3}\right], \operatorname{Tr}\left[\Phi_{1}^{2}\right], \operatorname{Tr}\left[\Phi_{2}^{2}\right], \operatorname{Tr}\left[\Phi_{3}^{2}\right]$.
$\Delta=3, \operatorname{Tr}\left[\Phi_{1}^{2} \Phi_{2}\right], \operatorname{Tr}\left[\phi_{1}^{2} \Phi_{3}\right], \operatorname{Tr}\left[\Phi_{2}^{2} \Phi_{1}\right], \operatorname{Tr}\left[\Phi_{2}^{2} \Phi_{3}\right], \operatorname{Tr}\left[\Phi_{3}^{2} \Phi_{1}\right]$, $\operatorname{Tr}\left[\Phi_{3}^{2} \Phi_{2}\right], \operatorname{Tr}\left[\Phi_{1} \Phi_{2} \Phi_{3}\right], \operatorname{Tr}\left[\Phi_{1}^{3}\right], \operatorname{Tr}\left[\Phi_{2}^{3}\right], \operatorname{Tr}\left[\Phi_{3}^{3}\right]$.

$\mathcal{N}=4$ SYM in $4 d$ - fourth part: summary

Therefore if we unrefine

Coefficient of the expansion $\stackrel{1: 1}{\longleftrightarrow}$ total number of gauge invariant Coefficient of the expansion \longleftrightarrow operators with given Δ

Moduli space of vacua

3 independent mesonic operator $M_{i}=\operatorname{Tr}\left[\Phi_{i}\right] \Rightarrow \mathbb{C}^{3}$

$\mathcal{N}=4$ SYM in $4 d$ - fifth part: generalization

In general, given a set of charges $\left(k_{1}, \ldots, k_{n}\right)$, we can define Hilbert Series $H\left(t_{1}, \ldots t_{n}\right)$

$$
H\left(t_{1}, \ldots t_{n}\right)=\sum_{i_{1}, i_{2}, \ldots i_{k}} c_{k_{1}, k_{2}, \ldots, k_{n}} t_{1}^{k_{1}} t_{2}^{k_{2}} \ldots t_{n}^{k_{n}}
$$

- The coefficient $c_{k_{1}, k_{2}, \ldots, k_{n}}$ is the number of operators with charge $\left(k_{1}, \ldots, k_{n}\right)$
- Mesonic gauge invariant operator $M_{i} \leftrightarrow$ fugacity t_{i}

The conifold \mathcal{C} - first part: overview

- $G=S U(N) \times S U(N)$
- $\mathcal{N}=1 \quad U(1)_{R}$,
$\Delta_{A_{i}}=\Delta_{B_{i}}=\frac{1}{2}$
- $W=\operatorname{Tr}\left[A_{1} B_{1} A_{2} B_{2}-A_{1} B_{2} A_{2} B_{1}\right]=\operatorname{Tr}\left[\operatorname{det} A_{i} B_{j}\right] \quad S U(2)_{A} \times S U(2)_{B}$
- Baryonic-symmetry $U(1)_{B}: A_{i} \rightarrow e^{i \theta} A_{i}, B_{j} \rightarrow e^{-i \theta} B_{j}$

The F-terms are

$$
\begin{array}{ll}
\partial_{A_{1}} W=B_{1} A_{2} B_{2}-B_{2} A_{2} B_{1}, & \partial_{A_{2}} W=-B_{1} A_{1} B_{2}+B_{2} A_{1} B_{1} \\
\partial_{B_{1}} W=A_{2} B_{2} A_{1}-A_{1} B_{2} A_{2}, & \partial_{B_{2}} W=-A_{2} B_{1} A_{1}+A_{1} B_{1} A_{2}
\end{array}
$$

The conifold \mathcal{C} - second part: counting the gauge invariants

The mesonic fields

- Only one field e.g. $\operatorname{Det}\left[A_{i}\right]$, $\operatorname{Det}\left[B_{j}\right] \Rightarrow$ charged under $U(1)_{B}$
- Using two fields

$$
x=\operatorname{Tr}\left[A_{1} B_{1}\right], \quad y=\operatorname{Tr}\left[A_{2} B_{2}\right], \quad z=\operatorname{Tr}\left[A_{1} B_{2}\right], \quad w=\operatorname{Tr}\left[A_{2} B_{1}\right]
$$

Using F-terms we get:

- The mesons commute, i.e.

$$
x z=z x, \quad x w=w x, \quad y z=z y, \quad y w=w y, \quad x y=y x, \quad z w=w z
$$

- The mesons satisfy the relation

$$
x y=z w
$$

that is the conifold equation in \mathbb{C}^{4}.

The conifold \mathcal{C} - third part: computation of the Hilbert Series

Let's consider the abelian case $N=1$, then

- $\Rightarrow A_{i}$ and B_{j} are c-numbers \Rightarrow commute.
- generic mesonic operator $\operatorname{Tr}\left[A_{i}^{n} B_{j}^{n}\right]$.
- $\forall n$ we have $(n+1)^{2}$ different operators.
$t \leftrightarrow$ mesonic operator \Rightarrow

$$
\mathrm{HS}(t)=\sum_{n=0}^{\infty}(n+1)^{2} t^{n}=\frac{1+t}{(1-t)^{3}}=1+4 t+9 t^{2}+\ldots
$$

$$
\Delta=0 \Rightarrow \mathbb{I}
$$

$\Delta=1, x=\operatorname{Tr}\left[A_{1} B_{1}\right], \quad y=\operatorname{Tr}\left[A_{2} B_{2}\right], \quad z=\operatorname{Tr}\left[A_{1} B_{2}\right], \quad w=\operatorname{Tr}\left[A_{2} B_{1}\right]$

The conifold \mathcal{C} - fourth part: summary

$$
\Delta=2, \quad x^{2}, \quad y^{2}, \quad z^{2}, \quad w^{2}, \quad x z, \quad x w, \quad x y, \quad y z, \quad y w
$$

Total number of gauge invariant
Coefficient of the expansion $\stackrel{1: 1}{\longleftrightarrow}$ operators with given Δ up to relations

Contents of the talk

(1) Introduction and motivations

- Gauge invariants in known QFT (QCD)
- The moduli space of $\mathcal{N}=1$ QFT theory
(2) Counting gauge invariants in SUSY theories
- The Hilbert Series for $\mathcal{N}=4$ SYM in $4 d$
- The Hilbert Series for the Conifold
(3) The Hilbert Series: general structure

4. Conclusions

Unrefined Hilbert Series $H(t)$: the general structure

$$
H(t)=\frac{Q(t)}{(1-t) p}
$$

- Polynomial of integer coefficients
- Dimension of the embedding space

The polynomial $Q(t)$

- $Q(t)=1 \Rightarrow$ there are not relations.
- $Q(t)=\prod_{j=1}^{M}\left(1-t^{d_{j}}\right) \Rightarrow$ complete intersection. with $d_{j} \in \mathbb{N}$

$$
\text { number of relations }+\begin{aligned}
& \text { dimension of the } \\
& \text { moduli space }
\end{aligned}=\text { number of generators }
$$

- $Q(t) \neq \prod_{j=1}^{M}\left(1-t^{d_{j}}\right) \Rightarrow$ not complete intersection

Unrefined Hilbert Series $H(t)$: the PE

It's useful to use the Plethystic Exponetial

Given a function $f(t) \left\lvert\, f(0)=0 \quad \mathrm{PE}[f(t)]=\exp \left(\sum_{n=1}^{\infty} \frac{1}{n} f\left(t^{n}\right)\right)\right.$

$$
\begin{array}{ll}
\mathcal{N}=4 \text { SYM } 4 d & H(t)=\frac{1}{(1-t)^{3}}=\mathrm{PE}[3 t] \\
\text { Conifold } \mathcal{C} & H(t)=\frac{1-t^{2}}{(1-t)^{4}}=\mathrm{PE}\left[4 t-t^{2}\right]
\end{array}
$$

\Rightarrow Compact way to summarize the information

Unrefined Hilbert Series $H(t)$: the PLog

The inverse function of the PE is the Plethystic Logarithm

$$
\operatorname{PLog}[f(t)]=\sum_{n=0}^{\infty} \frac{\mu(n)}{n} \log \left[f\left(t^{n}\right)\right]
$$

E.g.

- $\mathcal{N}=4$ SYM $4 d$,
$\operatorname{PLog}[H(t)]=3 t$
- Conifold \mathcal{C},
$\operatorname{PLog}[H(t)]=4 t-t^{2}$
- Not complete intersection \Rightarrow infinite series.

Contents of the talk

(1) Introduction and motivations

- Gauge invariants in known QFT (QCD)
- The moduli space of $\mathcal{N}=1$ QFT theory
(2) Counting gauge invariants in SUSY theories
- The Hilbert Series for $\mathcal{N}=4$ SYM in $4 d$
- The Hilbert Series for the Conifold
(3) The Hilbert Series: general structure

4 Conclusions

Conclusions

- The Hilbert Series is a powerful tool for the characterization of the moduli space of vacua.
- The Hilbert Series has been applied also in the characterization of the moduli space of instantons and computation of the superconformal index.
- It's also possible to count baryonic charges \Rightarrow baryonic Hilbert series

THANK YOU FOR THE ATTENTION

AND...

SEE YOU IN-OVIEDO NEXT YEAR

Appendix 1: $\mathcal{N}=4$ SYM $G=U(N)$ in $4 d$

$$
S=\frac{1}{g_{Y M}^{2}} \int d^{4} \times \operatorname{Tr}\left[-\frac{1}{2} F_{\mu \nu}^{2}-i \bar{\psi}^{a} D \psi_{a}-\left(D_{\mu} \phi^{i}\right)^{2}+C_{i}^{a b} \psi_{a}\left[\phi^{i}, \psi_{b}\right]+\left[\phi^{i}, \phi^{j}\right]^{2}\right]
$$

$i, j=1, \ldots, 6, \quad a, b=1, \ldots, 4$.
Using the $\mathcal{N}=1$ language

$$
\mathcal{N}=4 \text { multiplet } \Rightarrow\left\{\begin{array}{l}
1 \mathcal{N}=1 \text { vector multiplet } W_{\alpha}:\left(A_{\mu}, \psi^{4}\right) \\
3 \mathcal{N}=1 \text { chiral multiplets } \Phi^{i}:\left(\phi^{i}+i \phi^{i+3}, \psi^{i}\right)
\end{array}\right.
$$

$$
S=\frac{1}{g_{Y M}^{2}} \int d^{4} x \int d^{4} \theta\left(W_{\alpha}^{2}+\sum_{i=1}^{3} \bar{\Phi}_{1} \Phi_{i}+\int d^{2} \theta \epsilon_{i j k} \Phi^{i} \Phi^{j} \Phi^{k}\right)
$$

Appendix 2: D3 branes on flat space-time

1 D3 brane

- 3 complex scalars Φ_{i}
- the transverse space \mathbb{C}^{3}
- $\operatorname{Sym}^{N}\left[\mathbb{C}^{3}\right]=\left(\mathbb{C}^{3}\right)^{N} / N$!

Appendix 3: D3 branes at the tip of a cone χ

1 D3 Brane

- Constraints among mesons \Rightarrow manifold χ
- $\operatorname{Sym}[\chi]=\chi^{N} / N$!

Appendix 3: The conifold $T^{1,1}$

Global symmetries

$$
\begin{gathered}
d s_{T^{1,1}}^{2}=\frac{1}{9}\left(d \psi+\cos \theta_{1} d \phi_{1}+\cos \theta_{2} d \phi_{2}\right)^{2}+\sum_{i=1}^{2} \frac{1}{6}\left(d \theta_{i}^{2}+\sin ^{2} \theta_{i} d \phi_{i}^{2}\right) \\
\operatorname{SU}(2)_{i}:\left(\psi, \theta_{i}, \phi_{i}\right), \quad U(1)_{R}: \psi
\end{gathered}
$$

Baryonic symmetry

- $T^{1,1} \sim S^{3} \times S^{2}$
- reduction of the RR 4-form on $S^{3} \mapsto$ vector field on $A d S_{5} \mapsto$ baryonic symmetry in the CFT

Appendix 4: The Möbius function $\mu(n)$

$$
\mu(n)=\left\{\begin{array}{l}
0 \quad n \text { has one or more repetead prime factors } \\
1 \\
n=1 \\
(-1)^{n} \quad \mathrm{n} \text { is a product of disticnt primes }
\end{array}\right.
$$

