An introduction to Gauge Invariants and Hilbert Series

Alessandro Pini

19 November, 2015

1 / 23

Contents of the talk

Introduction and motivations

- Gauge invariants in known QFT (QCD)
- The moduli space of \mathcal{N} = 1 QFT theory

Counting gauge invariants in SUSY theories
The Hilbert Series for N = 4 SYM in 4d

- The Hilbert Series for the Conifold
- 3 The Hilbert Series: general structure

Contents of the talk

Introduction and motivations

- Gauge invariants in known QFT (QCD)
- The moduli space of \mathcal{N} = 1 QFT theory

Counting gauge invariants in SUSY theories
The Hilbert Series for N = 4 SYM in 4d

- The Hilbert Series for the Conifold
- 3 The Hilbert Series: general structure

Onclusions

Gauge invariants in QCD

- Gauge group G = SU(3)
- Global symmetries $F = SU(3) \times U(1)_B$

Problem: How to construct gauge invariants?

$\frac{\mathsf{Mesons}}{\mathsf{Composition of a color and anti-color: } q_i \overline{q_j} \Rightarrow \mathsf{neutral under the } U(1)_B$

Baryons

Composition of the three colors: $q_i q_j q_k \Rightarrow$ charged under the $U(1)_B$

Gauge invariants in QCD

- Gauge group G = SU(3)
- Global symmetries $F = SU(3) \times U(1)_B$

Problem: How to construct gauge invariants?

$\begin{array}{c} {\sf Mesons}\\ {\sf Composition of a color and anti-color: } q_i \overline{q_j} \Rightarrow {\sf neutral under the } U(1)_B \end{array}$

Baryons

Composition of the three colors: $q_i q_j q_k \Rightarrow$ charged under the $U(1)_B$

 Problem: How to classify them in a generic QFT ? ⇒ Hilbert Series We will focus on the mesons.

\mathcal{N} = 1 QFT and structure of the moduli space

$$S = \int d^4x \left[\int d^4\theta \Phi_i e^v \Phi_i^{\dagger} + \left(\frac{1}{4g^2} \int d^2\theta \operatorname{Tr} \left[W_\alpha W^\alpha \right] + \int d^2\theta W(\Phi) + \text{h.c.} \right) \right]$$

The space of vacua is a manifold specified by

F-flatness condition

$$F_i = \frac{\partial W}{\partial \phi_i} \mid_{\phi_i = \phi_{i0}} = 0$$

D-flatness condition

$$D_A = \sum_i \phi_{i0}^{\dagger} T_A \phi_{i0} = 0 \quad \text{with} \quad A = 1, \dots, \text{Dim}[\text{Lie}(G)]$$

• It's parametrized by gauge invariant operators

\mathcal{N} = 1 QFT and structure of the moduli space

$$S = \int d^4 x \left[\int d^4 \theta \Phi_i e^v \Phi_i^{\dagger} + \left(\frac{1}{4g^2} \int d^2 \theta \operatorname{Tr} \left[W_\alpha W^\alpha \right] + \int d^2 \theta W(\Phi) + \text{h.c.} \right) \right]$$

The space of vacua is a manifold specified by

F-flatness condition

$$F_i = \frac{\partial W}{\partial \phi_i} \mid_{\phi_i = \phi_{i0}} = 0$$

D-flatness condition

$$D_A = \sum_i \phi_{i0}^{\dagger} T_A \phi_{i0} = 0 \quad \text{with} \quad A = 1, \dots, \text{Dim}[\text{Lie}(G)]$$

• It's parametrized by gauge invariant operators **Problem:** How to get information regarding the structure of the moduli space as a manifold? \Rightarrow Hilbert series

Contents of the talk

Introduction and motivations

- Gauge invariants in known QFT (QCD)
- The moduli space of \mathcal{N} = 1 QFT theory

Counting gauge invariants in SUSY theories The Hilbert Series for N = 4 SYM in 4d

- The Hilbert Series for the Conifold
- The Hilbert Series: general structure

4 Conclusions

 \mathcal{N} = 4 SYM in 4*d* - first part: only one field

The superpotential and the F-terms

 $W = \operatorname{Tr}[\Phi_1[\Phi_2, \Phi_3]] \quad \Rightarrow \quad F_i : \partial_{\Phi_i} W = [\Phi_j, \Phi_k] = 0$

Let's consider only the field Φ_1 . The gauge invariants are

 $\mathbb{I}, \quad \mathrm{Tr}[\Phi_1], \quad \mathrm{Tr}[\Phi_1^2], \quad \mathrm{Tr}[\Phi_1^3], \quad \ldots \quad \mathrm{Tr}[\Phi_1^n]$

Let's introduce the **fugacity**

 $\Phi_1 \mapsto t_1$, such that $t_1 \in \mathbb{C}$ and $|t_1| < 1$

So that summing

$$1 + t_1 + t_1^2 + t_1^3 + \dots + t_1^n + \dots = \sum_{n=0}^{\infty} t_1^n = \frac{1}{1 - t_1}$$

Alessandro Pini

An introduction to Gauge Invariants and Hilbert Series

 \mathcal{N} = 4 SYM in 4*d* - second part: counting all the gauge invariants

Gauge invariants of the form $\operatorname{Tr}[\Phi_1^i \Phi_2^j \Phi_3^k]$ with $i, j, k \ge 0$ If $\forall \quad \Phi_i \mapsto t_i$ we get

$$1 + t_1 + t_2 + t_3 + t_1^2 + t_1 t_2 + \dots = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} t_1^j t_2^j t_3^k = \frac{1}{(1 - t_1)(1 - t_2)(1 - t_3)}$$

Coefficient of the expansion $\stackrel{1:1}{\longleftrightarrow}$ gauge invariant operator

E.g. we have

•
$$1 \leftrightarrow \mathbb{I}$$

•
$$t_i \leftrightarrow \Phi_i$$

•
$$t_i t_j \leftrightarrow \Phi_i \Phi_j$$

$\mathcal{N} = 4$ SYM in 4d - third part: focusing on the dimension

If we **unrefine**, i.e. $t_i \mapsto t$, we get

$$\frac{1}{(1-t_1)(1-t_2)(1-t_3)} \mapsto \frac{1}{(1-t)^3} = 1 + \frac{3t}{3t} + \frac{6t^2}{10t^3} + \dots$$

$$\Delta = 1, \qquad \qquad \mathrm{Tr}[\Phi_1], \ \mathrm{Tr}[\Phi_2], \ \mathrm{Tr}[\Phi_3].$$

$$\Delta=2,\quad \mathrm{Tr}[\Phi_1\Phi_2],\ \mathrm{Tr}[\Phi_1\Phi_3],\ \mathrm{Tr}[\Phi_2\Phi_3],\ \mathrm{Tr}[\Phi_1^2],\ \mathrm{Tr}[\Phi_2^2],\ \mathrm{Tr}[\Phi_3^2].$$

$$\begin{split} \Delta = 3, \quad \mathrm{Tr}[\Phi_1^2 \Phi_2], \ \mathrm{Tr}[\Phi_1^2 \Phi_3], \ \mathrm{Tr}[\Phi_2^2 \Phi_1], \ \mathrm{Tr}[\Phi_2^2 \Phi_3], \ \mathrm{Tr}[\Phi_3^2 \Phi_1], \\ \mathrm{Tr}[\Phi_3^2 \Phi_2], \ \mathrm{Tr}[\Phi_1 \Phi_2 \Phi_3], \ \mathrm{Tr}[\Phi_1^3], \ \mathrm{Tr}[\Phi_2^3], \ \mathrm{Tr}[\Phi_3^3]. \end{split}$$

 \mathcal{N} = 4 SYM in 4*d* - fourth part: summary

Therefore if we unrefine

Coefficient of the expansion	$\stackrel{11}{\longleftrightarrow}$	total number of gauge invariant
		operators with given Δ

Moduli space of vacua

3 independent mesonic operator $M_i = \text{Tr}[\Phi_i] \implies \mathbb{C}^3$

In general, given a set of charges $(k_1, ..., k_n)$, we can define **Hilbert Series** $H(t_1, ..., t_n)$

$$H(t_1,...t_n) = \sum_{i_1,i_2,...i_k} c_{k_1,k_2,...,k_n} t_1^{k_1} t_2^{k_2} ... t_n^{k_n}$$

- The coefficient $c_{k_1,k_2,...,k_n}$ is the number of operators with charge $(k_1,...,k_n)$
- Mesonic gauge invariant operator $M_i \leftrightarrow$ fugacity t_i

The conifold \mathcal{C} - first part: overview

•
$$W = \operatorname{Tr}[A_1B_1A_2B_2 - A_1B_2A_2B_1] = \operatorname{Tr}[\det(A_i \cap B_j) \cap SU(2)_A) \times SU(2)_B$$

• Baryonic-symmetry $U(1)_B : A_i \to e^{i\theta}A_i, B_j \to e^{-i\theta}B_j$

The F-terms are

$$\begin{array}{l} \partial_{A_1}W = B_1A_2B_2 - B_2A_2B_1, \quad \partial_{A_2}W = -B_1A_1B_2 + B_2A_1B_1\\ \partial_{B_1}W = A_2B_2A_1 - A_1B_2A_2, \quad \partial_{B_2}W = -A_2B_1A_1 + A_1B_1A_2 \end{array}$$

The mesonic fields

Only one field e.g. Det[A_i] , Det[B_j] ⇒ charged under U(1)_B
Using two fields

 $x = \operatorname{Tr}[A_1B_1], \quad y = \operatorname{Tr}[A_2B_2], \quad z = \operatorname{Tr}[A_1B_2], \quad w = \operatorname{Tr}[A_2B_1]$

Using F-terms we get:

• The mesons commute, i.e.

xz = zx, xw = wx, yz = zy, yw = wy, xy = yx, zw = wz

• The mesons satisfy the relation

$$xy = zw$$

that is the conifold equation in \mathbb{C}^4 .

Alessandro Pini An introduction to Gauge Invariants and Hilbert Series 19 November, 2015 13 / 23

The conifold ${\mathcal C}$ - third part: computation of the Hilbert Series

Let's consider the abelian case N = 1, then

- \Rightarrow A_i and B_j are c-numbers \Rightarrow commute.
- generic mesonic operator $Tr[A_i^n B_i^n]$.
- \forall *n* we have $(n+1)^2$ different operators.
- $t \leftrightarrow \text{mesonic operator} \Rightarrow$

$$HS(t) = \sum_{n=0}^{\infty} (n+1)^2 t^n = \frac{1+t}{(1-t)^3} = 1 + 4t + 9t^2 + \dots$$

$$\Delta = 0 \implies I$$

 $\Delta = 1, \ x = \mathrm{Tr}[A_1B_1], \ \ y = \mathrm{Tr}[A_2B_2], \ \ z = \mathrm{Tr}[A_1B_2], \ \ w = \mathrm{Tr}[A_2B_1]$

The conifold ${\mathcal C}$ - fourth part: summary

Contents of the talk

Introduction and motivations

- Gauge invariants in known QFT (QCD)
- The moduli space of \mathcal{N} = 1 QFT theory

Counting gauge invariants in SUSY theories
The Hilbert Series for N = 4 SYM in 4d

• The Hilbert Series for the Conifold

3 The Hilbert Series: general structure

4 Conclusions

Unrefined Hilbert Series H(t): the general structure

$$H(t) = \frac{Q(t)}{(1-t)^p}$$

Polynomial of integer coefficientsDimension of the embedding space

The polynomial Q(t)

•
$$Q(t) = 1 \Rightarrow$$
 there are not relations.

•
$$Q(t) = \prod_{j=1}^{M} (1 - t^{d_j}) \Rightarrow$$
 complete intersection. with $d_j \in \mathbb{N}$

number of relations + dimension of the = number of generators

• $Q(t) \neq \prod_{i=1}^{M} (1 - t^{d_i}) \Rightarrow$ not complete intersection

Alessandro Pini

Unrefined Hilbert Series H(t): the PE

It's useful to use the Plethystic Exponetial

Given a function
$$f(t) | f(0) = 0$$
 $\operatorname{PE}[f(t)] = \exp\left(\sum_{n=1}^{\infty} \frac{1}{n} f(t^n)\right)$

$$\mathcal{N} = 4 \; SYM \; 4d \qquad H(t) = \frac{1}{(1-t)^3} = \operatorname{PE}[3t]$$

Conifold \mathcal{C} $H(t) = \frac{1-t^2}{(1-t)^4} = \operatorname{PE}[4t-t^2]$

 \Rightarrow Compact way to summarize the information

Unrefined Hilbert Series H(t): the PLog

The inverse function of the PE is the Plethystic Logarithm

$$\operatorname{PLog}[f(t)] = \sum_{n=0}^{\infty} \frac{\mu(n)}{n} \operatorname{Log}[f(t^n)]$$

E.g.

- $\mathcal{N} = 4 \ SYM \ 4d$, $\operatorname{PLog}[H(t)] = 3t$ • Conifold \mathcal{C} , $\operatorname{PLog}[H(t)] = 4t - t^2$ generators \leftarrow relations
- Not complete intersection ⇒ infinite series.

Contents of the talk

Introduction and motivations

- Gauge invariants in known QFT (QCD)
- The moduli space of \mathcal{N} = 1 QFT theory

Counting gauge invariants in SUSY theories
The Hilbert Series for N = 4 SYM in 4d

• The Hilbert Series for the Conifold

3) The Hilbert Series: general structure

- The Hilbert Series is a powerful tool for the characterization of the moduli space of vacua.
- The Hilbert Series has been applied also in the characterization of the moduli space of instantons and computation of the superconformal index.
- It's also possible to count baryonic charges ⇒ baryonic Hilbert series

THANK YOU FOR THE ATTENTION

AND...

Alessandro Pini

An introduction to Gauge Invariants and Hilbert Series

19 November, 2015 22 / 23

Alessandro Pini An introduction

An introduction to Gauge Invariants and Hilbert Series

19 November, 2015 23 / 23

Appendix 1: $\mathcal{N} = 4$ SYM G = U(N) in 4d

i, j = 1, ..., 6, a, b = 1, ..., 4.Using the $\mathcal{N} = 1$ language

$$\mathcal{N} = 4 \quad \text{multiplet} \Rightarrow \begin{cases} 1 \ \mathcal{N} = 1 \text{ vector multiplet} \ W_{\alpha} : (A_{\mu}, \psi^{4}) \\ 3 \ \mathcal{N} = 1 \text{ chiral multiplets} \ \Phi^{i} : (\phi^{i} + i\phi^{i+3}, \psi^{i}) \end{cases}$$

$$S = \frac{1}{g_{YM}^2} \int d^4 x \int d^4 \theta \left(W_{\alpha}^2 + \sum_{i=1}^3 \overline{\Phi}_1 \Phi_i + \int d^2 \theta \epsilon_{ijk} \Phi^i \Phi^j \Phi^k \right)$$

Alessandro Pini An introduction to Gauge Invariants and Hilbert Series 19 November, 2015 1 / 5

Appendix 2: D3 branes on flat space-time

Alessandro Pini

An introduction to Gauge Invariants and Hilbert Series

Appendix 3: D3 branes at the tip of a cone χ

• Constraints among mesons \Rightarrow manifold χ

•
$$\operatorname{Sym}[\chi] = \chi^N / N!$$

An introduction to Gauge Invariants and Hilbert Series

19 November, 2015 3 / 5

Global symmetries

$$ds_{T^{1,1}}^{2} = \frac{1}{9} (d\psi + \cos\theta_{1} d\phi_{1} + \cos\theta_{2} d\phi_{2})^{2} + \sum_{i=1}^{2} \frac{1}{6} (d\theta_{i}^{2} + \sin^{2}\theta_{i} d\phi_{i}^{2})$$
$$SU(2)_{i} : (\psi, \theta_{i}, \phi_{i}), \qquad U(1)_{R} : \psi$$

Baryonic symmetry

• $T^{1,1} \sim S^3 \times S^2$

• reduction of the RR 4-form on $S^3 \mapsto$ vector field on $AdS_5 \mapsto$ baryonic symmetry in the CFT

$$\mu(n) = \begin{cases} 0 & n \text{ has one or more repetead prime factors} \\ 1 & n = 1 \\ (-1)^n & n \text{ is a product of disticnt primes} \end{cases}$$